[ Publications ]

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2007
Fisher, K., D. J. Lowe, P. Tavares, AS Pereira, BH HUYNH, D. Edmondson, and W. E. Newton. "Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function." Journal of Inorganic Biochemistry. 101 (2007): 1649-1656. AbstractWebsite

Various S = 3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alpha H195Q, alpha H195N, and alpha Q191 K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N-2 with the alpha H195Q and alpha H195N variants, but not with the alpha Q191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alpha H195Q or alpha H195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alpha Q191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze Fe-57 Mossbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alpha H195Q and alpha H195N MoFe proteins can bind N-2, but alpha Q195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N-2 reduction. (C) 2007 Elsevier Inc. All rights reserved.

Ferreira, I. M. P. L. V., R. Eca, O. Pinho, P. Tavares, A. Pereira, and A. C. Roque. "Development and validation of an HPLC/UV method for quantification of bioactive peptides in fermented milks." Journal of Liquid Chromatography & Related Technologies. 30 (2007): 2139-2147. AbstractWebsite

The simultaneous separation and quantification of two casein peptides (IPP, VPP) presenting potent inhibitory activity of angiotensin-converting-enzyme (ACE) and casein in fermented milks was developed. Gradient elution was carried out at a flow-rate of 1 mL/min, using a mixture of two solvents. Solvent A was 0.1% TFA in water and solvent B was acetonitrile-water-trifluoracetic acid 95:5:0.1. The effluent was monitored by UV detector at 214 nm. Calibration curves were constructed in the interval of 0.01-1.0 mg/mL for VPP, 0.005-1.0 mg/mL for IPP, and 0.05-3.0 mg/mL for casein. R 2 invariably exceeded 0.999. The detection limits were 0.004 for VPP, 0.002 mg/mL for IPP, and 0.02 mg/mL for casein. Repeatability of the method was evaluated by six consecutive injections of two standard solutions containing VPP, IPP, and casein. The RSD values for concentration were all below 5.08%. Recovery studies were carried out to determine the accuracy of the method. Recoveries ranged between 88 and 98.2%. The methodology was applied, not only, for the monitorization of VPP, IPP, and casein in commercial fermented milks labeled as presenting anti hypertensive properties, but also, in milk with different degrees of fermentation by L Helveticus, and in other commercial functional fermented milks, such as, those presenting cholesterol lowering properties.

1998
Pereira, AS, W. Small, C. Krebs, P. Tavares, DE Edmondson, E. C. Theil, and BH HUYNH. "Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization." Biochemistry. 37 (1998): 9871-9876. AbstractWebsite

Rapid freeze-quench (RFQ) Mossbauer and stopped-flow absorption spectroscopy were used to monitor the ferritin ferroxidase reaction using recombinant (apo) frog M ferritin; the initial transient ferric species could be trapped by the RFQ method using low iron loading (36 Fe2+/ferritin molecule). Biphasic kinetics of ferroxidation were observed and measured directly by the Mossbauer method; a majority (85%) of the ferrous ions was oxidized at a fast rate of similar to 80 s(-1) and the remainder at a much slower rate of similar to 1.7 s(-1). In parallel with the fast phase oxidation of the Fe2+ ions, a single transient iron species is formed which exhibits magnetic properties (diamagnetic ground state) and Mossbauer parameters (Delta E-Q = 1.08 +/- 0.03 mm/s and delta = 0.62 +/- 0.02 mm/s) indicative of an antiferromagnetically coupled peroxodiferric complex. The formation and decay rates of this transient diiron species measured by the RFQ Mossbauer method match those of a transient blue species (lambda(max) = 650 nm) determined by the stopped-flow absorbance measurement. Thus, the transient colored species is assigned to the same peroxodiferric intermediate. Similar transient colored species have been detected by other investigators in several other fast ferritins (H and M subunit types), such as the human H ferritin and the Escherichia coli ferritin, suggesting a similar mechanism for the ferritin ferroxidase step in all fast ferritins. Peroxodiferric complexes are also formed as early intermediates in the reaction of O-2 With the catalytic diiron centers in the hydroxylase component of soluble methane monooxygenase (MMOH) and in the D84E mutant of the R2 subunit of E. coli ribonucleotide reductase. The proposal that a single protein site, with a structure homologous to the diiron centers in MMOH and R2, is involved in the ferritin ferroxidation step is confirmed by the observed kinetics, spectroscopic properties, and purity of the initial peroxodiferric species formed in the frog M ferritin.

Valentine, AM, P. Tavares, AS Pereira, R. Davydov, C. Krebs, BM Koffman, DE Edmondson, BH HUYNH, and SJ Lippard. "Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase, an analog of intermediate X in ribonucleotide reductase R2 assembly." Journal of the American Chemical Society. 120 (1998): 2190-2191. AbstractWebsite
n/a
1997
Tavares, P., AS Pereira, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Mossbauer spectroscopic and kinetic characterization of ferric clusters formed in h-chain ferritin mineralization." Abstracts of Papers of the American Chemical Society. 213 (1997): 503-INOR. AbstractWebsite
n/a
Pereira, AS, P. Tavares, S. G. Lloyd, D. Danger, DE Edmondson, E. C. Theil, and BH HUYNH. "Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization." Biochemistry. 36 (1997): 7917-7927. AbstractWebsite

Conversion of Fe ions in solution to the solid phase in ferritin concentrates iron required for cell function. The rate of the Fe phase transition in ferritin is tissue specific and reflects the differential expression of two classes of ferritin subunits (H and L). Early stages of mineralization were probed by rapid freeze-quench Mossbauer, at strong fields (up to 8 T), and EPR spectroscopy in an H-type subunit, recombinant frog ferritin; small numbers of Fe (36 moles/mol of protein) were used to increase Fe3+ in mineral precursor forms, At 25 ms, four Fe3+-oxy species (three Fe dimers and one Fe trimer) were identified, These Fe3+-oxy species were found to form at similar rates and decay subsequently to a distinctive superparamagentic species designated the ''young core.'' The rate of oxidation of Fe2+ (1026 s(-1)) corresponded well to the formation constant for the Fe3+- tyrosinate complex (920 s(-1)) observed previously [Waldo, G. S., & Theil, E. C. (1993) Biochemistry 32, 13261] and, coupled with EPR data, indicates that several or possibly all of the Fe3+-oxy species involve tyrosine. The results, combined with previous Mossbauer studies of Y30F human H-type ferritin which showed decreases in several Fe3+ intermediates and stabilization of Fe2+ [Bauminger, E. R., et al. (1993) Biochem, J. 296, 709], emphasize the involvement of tyrosyl residues in the mineralization of H-type ferritins. The subsequent decay of these multiple Fe3+-oxy species to the superparamagnetic mineral suggests that Fe3+ species in different environments may be translocated as intact units from the protein shell into the ferritin cavity where the conversion to a solid mineral occurs.