[ Publications ]

Export 15 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Siopa, F., AS Pereira, LM Ferreira, M. M. Marques, and P. S. Branco. "Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles." Bioorganic Chemistry. 44 (2012): 19-24. AbstractWebsite

The enzymatic (tyrosinase) and chemical (NaIO4, Ag2O or Fremys's salt) oxidation of biologically relevant catecholamines, such as dopamine (DA), N-acetyldopamine (NADA) and the Ecstasy metabolites (alpha-MeDA and N-Me-alpha-MeDA) generates the corresponding o-quinone which can be trapped with nitrogen bionucleophiles such as N-acetyl-histidine and imidazole in a regioselective reaction that takes place predominantly at the 6-position of the catecholamine. (C) 2012 Elsevier Inc. All rights reserved.

2009
Rivas, M. G., M. S. P. Carepo, C. S. Mota, M. Korbas, M. C. Durand, A. T. Lopes, CD Brondino, AS Pereira, GN George, A. Dolla, JJG Moura, and I. Moura. "Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in Desulfovibrio alaskensis." Biochemistry. 48 (2009): 873-882. AbstractWebsite

The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmemtal conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 mu M molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.

2008
Gavel, OY, SA Bursakov, G. Di Rocco, J. Trincao, I. J. Pickering, GN George, JJ Calvete, VL Shnyrov, CD Brondino, AS Pereira, J. Lampreia, P. Tavares, JJG Moura, and I. Moura. "A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774." Journal of Inorganic Biochemistry. 102 (2008): 1380-1395. AbstractWebsite

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.

2004
Bursakov, SA, OY Gavel, G. Di Rocco, J. Lampreia, J. Calvete, AS Pereira, JJG Moura, and I. Moura. "Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas." Journal of Inorganic Biochemistry. 98 (2004): 833-840. AbstractWebsite

An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type [S2MoS2CuS2MoS2] [J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.

Dias, JM, T. Alves, C. Bonifacio, AS Pereira, J. Trincao, D. Bourgeois, I. Moura, and MJ Romao. "Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617." Structure. 12 (2004): 961-973. AbstractWebsite

Cytochrome c peroxidase (CCP) catalyses the reduction of H2O2 to H2O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca2+ and was refined at 2.2 Angstrom resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca2+ dependent and was crystallized at pH 5.3 and refined at 2.4 Angstrom resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.

2001
Di Rocco, G., AS Pereira, SA Bursakov, OY Gavel, F. Rusnak, J. Lampreia, JJG Moura, and I. Moura. "Cloning of a novel Mo-Cu containing protein from Desulfovibrio.gigas." Journal of Inorganic Biochemistry. 86 (2001): 202. AbstractWebsite
n/a
Cabrito, I., AS Pereira, P. Tavares, S. Besson, C. Brondino, B. Hoffman, K. Brown, M. Tegoni, C. Cambillau, JJG Moura, and I. Moura. "Nitrous oxide reductase (N2OR) from Pseudomonas nautica 617." Journal of Inorganic Biochemistry. 86 (2001): 165. AbstractWebsite
n/a
Baldwin, J., W. C. Voegtli, N. Khidekel, P. Moenne-Loccoz, C. Krebs, AS Pereira, B. A. Ley, BH HUYNH, T. M. Loehr, P. J. Riggs-Gelasco, A. C. Rosenzweig, and J. M. Bollinger. "Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase." Journal of the American Chemical Society. 123 (2001): 7017-7030. AbstractWebsite

The outcome of O-2 activation at the diiron(II) cluster in the R2 subunit of Escherichia coli (class I) ribonucleotide reductase has been rationally altered from the normal tyrosyl radical (Y122)(1) production to self-hydroxylation of a phenylalanine side-chain by two amino acid substitutions that leave intact the (histidine)(2)-(carboxylate)(4) ligand set characteristic of the diiron-carboxylate family. Iron ligand Asp (D) 84 was replaced with Glu (E), the amino acid found in the cognate position of the structurally similar diiron-carboxylate protein, methane monooxygenase hydroxylase (MMOH). We previously showed that this substitution allows accumulation of a mu -1,2-peroxodiiron(III) intermediate,(2 3) which does not accumulate in the wild-type (wt) protein and is probably a structural homologue of intermediate P (H-peroxo) in O-2 activation by MMOH.(4) In addition, the near-surface residue Trp (W) 48 was replaced with Phe (F), blocking transfer of the "extra" electron that occurs in wt R2 during formation of the formally Fe(LII)Fe(IV) cluster X.(5-7) Decay of the mu1,2-peroxodiiron(III) complex in R2-W38F/D84E gives an initial brown product, which contains very little YI22(.) and which converts very slowly (t(1/2) similar to 7 h) upon incubation at 0 degreesC to an intensely purple final product. X-ray crystallographic analysis of the purple product indicates that F208 has undergone epsilon -hydroxylation and the resulting phenol has shifted significantly to become st ligand to Fe2 of the diiron cluster. Resonance Raman (RR) spectra of the purple product generated with O-16(2) or O-18(2) show appropriate isotopic sensitivity in bands assigned to O-phenyl and Fe-O-phenyl vibrational modes, confirming that the oxygen of the Fe(III)-phenolate species is derived from Or. Chemical analysis, experiments involving interception of the hydroxylating intermediate with exogenous reductant, and Mossbauer and EXAFS characterization of the brown and purple species establish that F208 hydroxylation occurs during decay of the peroxo complex and formation of the initial brown product. The slow transition to the purple Fe(LII)-phenolate species is ascribed to a ligand rearrangement in which mu -O2- is lost and the F208-derived phenolate coordinates. The reprogramming to F208 monooxygenase requires both amino acid substitutions, as very little epsilon -hydroxyphenylalanine is formed and pathways leading to Y122(.) formation predominate in both R2-D84E and R2-W48F(2-7).

Alves, T., S. Besson, AS Pereira, G. W. Pettigrew, JJG Moura, and I. Moura. "Structure-function studies of cytochrome c peroxidase from ps. nautica." Journal of Inorganic Biochemistry. 86 (2001): 122. AbstractWebsite
n/a
Franco, R., AS Pereira, P. Tavares, A. Mangravita, MJ Barber, I. Moura, and GC Ferreira. "Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants." Biochemical Journal. 356 (2001): 217-222. AbstractWebsite

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q Variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical For the catalytic process by controlling the release of the product.

2000
Brown, K., M. Tegoni, M. Prudencio, AS Pereira, S. Besson, J. J. Moura, I. Moura, and C. Cambillau. "A novel type of catalytic copper cluster in nitrous oxide reductase." Nature Structural Biology. 7 (2000): 191-195. AbstractWebsite

Nitrous oxide (N(2)O) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N(2)O elimination from the biosphere, N(2)O reductases catalyze the two-electron reduction of N(2)O to N(2). These 2 x 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N(2)O reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 Angstrom. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N(2)O binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.

Prudencio, M., AS Pereira, P. Tavares, S. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. VanBeeumen, F. Rusnak, G. Fauque, JJG Moura, M. Tegoni, C. Cambillau, and I. Moura. "Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617." Biochemistry. 39 (2000): 3899-3907. AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named CUA and Cut. Cut could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)= 2.015, A(x) = 1.5 mT, g(y) = 2.071, A(y) = 2 mT, g(z) = 2.138, A(z) = 7 mT) and a strong absorption at similar to 640 nm. Cu-A can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x) g(y) = 2.021, A(x) = A(y) = 0 T, g(z) =0.178, A(z) = 4 mT) and absorption bands at 480, 540, and similar to 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the CuA center. In form A, CUA is predominantly oxidized (S = 1/2, Cu1.5+-Cu1.5+), while in form B it is mostly in the one-electron reduced state (S = 0, Cu1+-Cu1+). In both forms, Cu-Z remains reduced (S = 1/2). Complete crystallographic data at 2.4 Angstrom indicate that Cu-A is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu-Z is a novel tetracopper cluster [Brown, K., et ai. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

1999
Prudencio, M., AS Pereira, P. Tavares, S. Besson, and I. Moura. "Copper-containing nitrous oxide reductase from Pseudomonas nautica: spectroscopic and redox properties." Journal of Inorganic Biochemistry. 74 (1999): 267. AbstractWebsite
n/a
Almendra, MJ, CD Brondino, O. Gavel, AS Pereira, P. Tavares, S. Bursakov, R. Duarte, J. CALDEIRA, JJG Moura, and I. Moura. "Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas." Biochemistry. 38 (1999): 16366-16372. AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein, Selenium was not detected. The UV/visible absorption spectrum of D, gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with Fe-57 and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

1996
Pereira, AS, R. Franco, MJ Feio, C. Pinto, J. Lampreia, MA Reis, J. Calvete, I. Moura, I. Beech, AR Lino, and JJG Moura. "Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel." Biochemical and Biophysical Research Communications. 221 (1996): 414-421. AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed. (C) 1996 Academic Press, Inc.