
Type Safe Evolution of Live Systems

Miguel Domingues
NOVA-LINCS – Universidade Nova de Lisboa

miguel@domingues.pt

João Costa Seco
NOVA-LINCS – Universidade Nova de Lisboa

joao.seco@fct.unl.pt

ABSTRACT
This paper introduces a novel programming model for safe and in-
cremental construction of live applications. We capture a verified
style of agile development that spans over the whole development
life cycle, from specification and prototyping to maintenance and
evolution. This approach proposes a step forward with relation to
the traditional code-compile-deploy cycle, allowing for both code
and data updates to be safely applied during execution. We pro-
pose a language-based development and runtime system to evolve
data-centric applications. Our approach is presented as a core typed
imperative calculus with a reactive semantics. The associated type
discipline ensures a correct interleaving of interaction and construc-
tion of systems. The soundness of our calculus is supported by
standard progress, type preservation and convergence results.

1. INTRODUCTION
Development frameworks and agile methodologies are increasingly
popular, especially in the domain of web and cloud applications.
Such tools provide support for code refactoring, but do not avoid
the risk of service disruption that a software update may cause. Up-
dates are a natural part of the software system’s life cycle, one that
is particularly prone to errors, that may cause significant downtime
and impact on end users [3]. Such effect is magnified by the gap be-
tween the code and the persistent state. The act of programming is
mostly based on the developer’s reasoning, whose results are only
visible in a separate moment while debugging, testing and running
the application. Moreover, updates in data-centric applications of-
ten require explicitly programmed scripts to handle the evolution of
both code and persistent data, in an ad-hoc and synchronized way.

We present an effective and typeful incremental way of construct-
ing applications without causing service disruption. We introduce a
novel core programming model that provides immediate feedback
on the effects of gradually introducing new programming elements,
or redefining existing ones. Our model combines the static verifi-
cation of each programming step with a scheduling discipline that
ensures the absence of runtime errors and interferences between
execution and development. Such goals are instantiated in a core
programming language that allows for a flexible style of incremen-
tal [14] and live [4] programming, where typing ensures that the

system is always sound. Live programming environments are set to
reduce the feedback loop that exists between writing the code and
perceiving its effects. We extend this goal to the complete life cycle
of data-centric systems, where updates are defined using a uniform
reconfiguration mechanism, that includes both code and data.

Reactive frameworks and software architectures (e.g. Meteor1) are
increasingly important in the definition of collaborative applica-
tions, as well as in other computational models [2]. However, the
way that changes in persistent data are transmitted to user inter-
faces, is usually implemented by ad-hoc and hand-crafted code.
Using suitable language constructs, enable us to specify and rea-
son about the evolution of applications. Our model is instantiated
in a imperative and reactive programming language, capturing the
essence of reactive frameworks, and imperative characteristics of
typical data-centric applications, allowing to continuously evolve
code [7, 11], and reconfigure the underlying data [3, 8].

To the best of our knowledge, this is the first work combining a
type-safe imperative and reactive language with a statically verified
and uniform evolution mechanism. Our key contributions are:
• a novel core programming model for data-centric applications,

that supports type-safe dynamic evolution.
• a type system that statically ensures the safety of applications in

the presence of reactive propagation and dynamic evolution.
• a data-flow operational semantics supporting the synchronized

evolution of both code and data.
• type preservation and progress results that imply properties like

convergence of change propagation.

In Section 2 we introduce our model with an example. Section 3
formally presents our core programming language, type system,
operational semantics, and incremental construction mechanism.
Section 4 states the soundness results of our language. Sections
5 and 6 provide a comparison with related work, and final remarks.

2. LIVE AND REACTIVE PROGRAMMING
We introduce three main ingredients to model our target scenario
of data-centric applications: state variables, data transformation ex-
pressions, and actions. Bound state variables model the persistent
data layer. Application logic layer is modeled by bound data trans-
formation expressions, representing either a query over persistent
data, or code that processes results to serve a view of the system.
Actions are delayed computations modeling event handlers, and en-
close (imperative) insert or update queries to the data layer.

We follow a layered model where we provide a remote interface
(console) to manage the application code (c.f. [11]). Construc-
tion operations are interpreted at the systems’ interface level to

1www.meteor.com

www.meteor.com


var messages=[


id = 0,
author = “Paul”,
message = “Hi there! ...”,
likes = 10

 , . . .]

def size=foreach(x in messages with y = 0) y + 1

def post=λa.λm.action {insert


id = size,
author = a,
message = m,
likes = 0

 into messages}

def like=λi.action {update m in messages with


id = m.id,
author = m.author,
message = m.message,
likes = m.likes + 1

 where m.id = i}

var user=“Paul”
def wall=map(r in messages)

{
m = r,
incLikes = like r.id

}
def index=map(r in wall) {. . .do r.incLikes . . .} . . . {. . .do post user #message . . .}

messages

size

post

like

wall

index

user

Figure 1: Bulletin Board.
var whoLikes=[

{
name = “Henry”,
msgId = 0

}
]

def like=λi.action { insert
{

name = user,
msgId = i

}
into whoLikes }

def countLikes=λid.foreach(x in whoLikes with y = 0) x.msgId = id ? y + 1 : y

atomic {

var msgText=map(x in messages)

 id = x.id,
author = x.author,
message = x.message


def post=λa.λm.action { insert

 id = size,
author = a,
message = m

 into msgText }

def messages=map(x in msgText)


id = x.id,
author = x.author,
message = x.message,
likes = countLikes x.id


}

msgText whoLikes

messages

size

post

like

wall

index

countLikes

user

Figure 3: Bulletin Board Reconfiguration.

Figure 2: Bulletin Board UI.
(re)define parts of an application, and trigger data updates. Oper-
ations submitted to the system are statically checked and ill-typed
operations are rejected. Moreover, we follow a data-driven opera-
tional semantics where changes in data are pro-actively pushed to
interfaces. A working prototype of a live development environment
based on this model can be found in [1], where it is possible to build
and evolve applications, while at the same time interact with them.

We next illustrate the syntax and semantics of our language by
means of a simple example, developed in two different stages.

2.1 Building the System
Consider the problem of developing a small bulletin board appli-
cation, with a user interface (UI) similar to Figure 2. This applica-
tion includes a list of messages stored persistently; a “thumbs-up”
icon for each message, linked to actions that increment the counter
of “likes” for that message; a form (text box and a button “Post”)
linked to an action that adds a new message. Figure 1 shows the
construction operations that may be used to support such UI.

We first define state variable messages containing a collection ([...])
of sample messages, records ({...}). This defines the initial (per-
sistent) state of the application, and is incrementally applied to the
running system. Each record in collection messages contains a
message identifier (id), the author, the message, and the number of
likes. The scope of name messages includes all future (re)definitions
in the application.

Data transformation expression named size denotes the number of
messages. Notice that size will always be up-to-date with relation
to the contents of messages. The foreach expression iterates (c.f.
foldl) over messages with an accumulator y whose initial value
is 0, and on each iteration, the value of y is increased by 1. We ab-
stract the insertion of a new message into messages with function
post where parameter a denotes the author, and m the message.
Notice that the definition of function post uses name size to assign
a fresh id, which is always up-to-date with relation to the contents
of messages. In order to define the behavior of the “thumbs-up”
icon we define function like, that increments the likes counter of
message with identifier i (given by parameter).

State variable user denotes the current logged in user. At this stage,
we abstract the different levels of data persistence present in web
applications (e.g. sessions, database tables). In this case, messages
would be a database table, and user a session variable.

We now gather all the required data, used in the UI, into a collection
named wall, containing the message (m) and an action (incLikes)
value for each row, representing a thunk containing the identifier of
the message in the same row. Using a template language, we can
produce a web page definition that corresponds to the UI.



def index=
map(r in wall){
div {

img (“/imgs/” + r.m.author + “.jpg”)
r.m.message
button (img “/imgs/thumbsup.jpg”) do r.incLikes
“(” + r.m.likes + “)”
}
}
div {

img (“/imgs/” + user + “.jpg”)
textarea#message
button “Post” do post user #message
}

For the sake of simplicity, we omit styling properties and only
present the page skeleton. Expression map iterates collection wall,
generating a <div> element for each message. Declared names can
conceivably be accessed as resources through URLs (e.g. name wall
can be accessed using a GET request on URL /wall/). The execu-
tion of operation do r.incLikes, triggered by clicking the “thumbs-
up” icon, is linked to a POST request. Notice that r.incLikes de-
notes an action generated by name like for the respective message.
The second div expression generates the bottom section of the UI,
containing the form with button “Post” linked to the execution of an
action. The list of messages in Figure 2 corresponds to accessing
name index (e.g. on URL /). Whenever the state of the applica-
tion changes, the web page generated by accessing name index is
updated, and the new values are pro-actively pushed to the UI.

In summary, adding messages or clicking a “thumbs-up” icon up-
dates the state variable messages, causes a propagation of changes
to names that depend on it (i.e. size, wall and index), thus re-
freshing them. The propagation paths are detailed in the graph
of Figure 1. This dependency graph is incrementally built along
with each operation, and kept up-to-date with relation to dependen-
cies between data transformation expressions. Nodes correspond
to named elements (square: var, ellipse: def ). Solid edges denote
dependencies between names, representing the propagation direc-
tion. Dashed edges denote delayed action assignments, and are not
accounted during propagation. In order to ensure that change prop-
agation does not diverge, we must ensure that the graph is acyclic.
This is statically ensured by our type system (Section 3.1), and is
one of our final results (Theorem 4.3). Notice that the expressive-
ness of the language is not limited by the acyclic property of the
graph, since the application logic is mainly concentrated in the data
transformation expressions, which is a parameter in our setting.

2.2 Evolving the System
Consider a second sprint in the development to add a new feature.
Instead of simply counting occurrences, we would like to store
which users have liked each message. Using the general scheme
of (re)definition of names, one can extend and redefine parts of
the running system. The language’s type discipline ensures that the
typed name dependencies in the system are not broken by each new
(re)definition. We also introduce a more flexible evolution mecha-
nism, that combines construction operations into an atomic opera-
tion, where transient inconsistencies can happen without impact on
execution. The evolution of the new feature in the existing system
is attained by the operations in Figure 3, and will change the core of
the application without the need to redefine important visible parts
(index and wall), depicted in gray on the right-hand side graph.

We start by declaring a new state variable (whoLikes) to store the
relation between messages and users. Since there was no previ-
ous information of which user liked each message, for the sake of
illustrating the structure, we include only one record stating that

o ::= r | do e
r ::= var a=e | def a=e | r � r′

e ::= a | b | x | λx.e | e e′ | action {a← e} | e ? e′ : e′′ | e op e′
| [e1, . . . , en] | foreach(x in e with y = e′) e′′

| match e with x::xs→ e′ | []→ e′′

Figure 4: Programming Language Syntax.
user “Henry” liked message with id 0. Function like is redefined
to insert a record into collection whoLikes instead of incrementing
the counter in messages. Auxiliary function countLikes counts the
number of “likes” for a particular message (id).

The following construction steps target the creation of a new col-
lection (msgText) without the counter, and the redefinition of name
messages as a view (c.f. database views) to the pair of state vari-
ables (msgText and whoLikes). Since the evolution of the system is
interleaved with regular execution (adding messages and “likes”),
we next introduce the construction operation atomic, that allows
to apply a set of operations in a transactional style. With this mech-
anism, we temporarily disallow interaction operations and propa-
gation of changes, which helps avoiding effects such as the one
described above (e.g. transient states). In this atomic block, we
define a new collection to store messages (msgText), without coun-
ters, and initialize it by iterating the existing messages. Func-
tion post is modified, so to add messages to msgText instead of
messages. Finally, messages is redefined as a view to state vari-
ables msgText and whoLikes. Notice that messages represents es-
sentially the same information as before, but with a different inter-
nal representation that can be used in further extensions.

In summary, all construction steps are seamlessly applied to the
running system, while all elements in the UI (Figure 2), namely
index, continue to operate and be refreshed. This allows for a step-
by-step construction style where the developer has immediate feed-
back about the validity and effect of the introduced changes.

3. PROGRAMMING LANGUAGE
We now present our core programming language, whose syntax is
presented in Figure 4, and consists in top-level operations (o), com-
prising construction (r) and interaction (do e). These operations
rely on a λ-calculus-based core (e), which is a parameter in our
model. We define an operational semantics where operations (o)
are evaluated with relation to a running application enclosing both
state and code. We assume that a, b, c, ... range over a set of names
N , and x, y, z, ... range over a set of variables V . For the sake of
simplicity, names are global in the application domain. A modular
structure with nested names can be extrapolated from this language,
but with no real immediate benefit to the focus of this work. Con-
struction operations (r) include the declaration of state variables
(var a=e) in the application’s namespace, imperatively associat-
ing name a to the value denoted by expression e. Construction
operation for the declaration of pure data transformation elements
(def a=e) associates name a to the value denoted by expression e.
Expressions defining names may use names previously defined. Fi-
nally, we introduce the composition operation (r�r′) that allows to
combine construction operations. In the example from Section 2.2,
this was introduced as the atomic block. These blocks are evalu-
ated in a transactional style, allowing for transient inconsistencies
in the system. Interaction operations (do e) represent the explicit
execution of an action denoted by expression e, which updates the
state of the application. Data updates are implicitly and automati-
cally propagated through data transformation elements, thus updat-
ing their computed values (cf. a data-driven semantics).

The functional core of the language (e) includes names (a) that de-
note the corresponding values in the application state, basic values



τ = b∆(a)c τ ≺ δ(a)

∆; Γ `δ a : τ
(T-NAME)

∆; Γ, x:τ `δ e : τ ′

∆; Γ `δ
′
λx:τ.e : τ

δ−→τ ′
(T-ABS)

∆; Γ `δ e : τ
δ′−→τ ′ ∆; Γ `δ e′ : τ δ′ v δ
∆; Γ `δ e e′ : τ ′

(T-APP)

∆, a:varδ(τ); Γ `δ[a:var(τ)]
e : τ

∆, a:varδ(τ); Γ `δ
′
action {a← e} : Action(δ[a:var(τ)])

(T-ACTION)

Figure 5: Typing Rules for Expressions.
b (e.g. true, false), and variables x. Abstraction (λx.e) and ap-
plication (e e′) follow a call-by-value semantics. The expression
action {a ← e} contains a delayed assignment to state variable
a. We also include the ternary conditional operator (?:), and for
the sake of simplicity, assume a set of binary operators (op) over
basic values. We extend the base λ-calculus with collections, with
a constructor [e1, ..., en], and corresponding concatenation (@) and
append (::) operators (in op). Iterator foreach(x in e with y =
e′) e′′ denotes a fold-left operation on the collection denoted by
expression e, and the iterated expression e′′. Variable x denotes the
current element in the collection, and variable y denotes either the
value of expression e′′ in the previous iteration, or the initial value
given by expression e′ in the first iteration. Collections destructor
match e with x::xs → e′ | [] → e′′ denotes one of two cases,
depending on the value of expression e. In the case of a non-empty
collection, the evaluation proceeds with expression e′, where vari-
able x denotes the head of the collection, and xs denotes its tail.
For an empty collection ([]), the result is denoted by expression e′′.

In Section 2, we used a slightly more elaborate syntax to write the
example that can be directly mapped into the syntax of Figure 4.

insert e into a , a← a@[e]

update x in a with e where e′ ,
a← foreach(x in a with y = []) y@[e′ ? e : x]

map(x in e) e′ , foreach(x in e with y = []) y@[e′]

atomic {r1, . . . , rn} , r1 � . . .� rn

We also used a template language to produce web pages that can
extend the language orthogonally. We next present the type system
and operational semantics. Since the construction and execution of
applications are tightly intertwined, we start by describing the type
system, and then define the operational semantics.

3.1 Type System
We now define a type and effect system to discipline the construc-
tion of systems so that soundness of the type system implies that
the application is safe and responsive. To do so, we statically keep
track of name dependencies to avoid the creation of unguarded
cyclic dependencies. We say that a dependency cycle is guarded
if it crosses an action value, and hence needs an explicit interaction
operation to be activated. Any unguarded cycle would cause the
propagation process to diverge. The absence of runtime errors and
infinite propagation cycles are implied by the standard progress and
preservation results (Section 4). Our type language is defined by

τ ::= β(b) | τ∗ | τ δ−→τ ′ | Action(δ)

where we include a set of basic types (e.g. Bool) with β(b) denot-
ing the type of basic value b, types for homogeneous collections
(τ∗), functions (τ δ−→τ ′), and actions (Action(δ)). Function and ac-
tion types, specify the behavior of delayed expressions, and use δ to
denote a set of typed dependencies on declared names. This book-
keeping of dependencies is crucial to determine the soundness of
a name’s (re)definition (described in detail in Section 3.3). Typed
dependencies sets are defined by

δ ::= a : τ, δ | a : var(τ), δ | ε
and capture information about the type of a used name, and whether
it denotes a state variable. A typed dependency of the form a:τ

means that name a is used with type τ , while the form a:var(τ)
means that name a is used as state variable with type τ . Our type
and effect system is defined by two layers of typing judgments that
target operations and expressions.

∆ ` o : ∆′ (Operations) ∆; Γ `δ e : τ (Expressions)

Typing environments ∆ register the type and usage information of
names. Expressions type environments Γ map variables x, y, z, ...
to types. The typing judgment for operations registers the effect
(∆′) of operation o, and the judgment for expressions includes the
typed dependencies (δ) of expression e. Typing environments ∆
map names to type annotations (σ), which are designed to carry
information about the names’ denotation, and are defined by

σ ::= varδ(τ) | defδ(τ)

where δ denotes a typed dependencies set (as defined above), to de-
note all typed dependencies of the expression associated the anno-
tated name (i.e. the direct dependencies). Typed dependency sets
are essential to avoid unguarded cyclic definitions, which would
cause infinite propagation loops. In Section 3.3, we show how to
statically satisfy and preserve this. Consider the following auxiliary
definitions essential to understand the typing rules for expressions.

DEFINITION 3.1 (TYPE OF ANNOTATION). We obtain the type
of an annotation σ, as follows

bvarδ(τ)c , τ bdefδ(τ)c , τ
DEFINITION 3.2 (TYPED DEPENDENCY COERCION). We de-

fine the type dependency coercion, as follows
τ ≺ τ τ ≺ var(τ) var(τ) ≺ var(τ)

The former allows to extract the actual type from a type annotation,
and the latter defines a coercion mechanism. Notably, we define
that a write typed dependency (var(τ)) can be used whenever a
simple dependency (τ ) is required. This relation can also be lifted
to define a relation between typed dependency sets δ v δ′.

The typing relation on expressions is inductively defined, and fol-
lows standard lines, except that they are extended with the invari-
ant conditions about typed dependencies (δ). We show, in Figure 5,
only the most interesting cases. In the typing relation on expres-
sions, all language values (b, x, λx.e and action {a ← e})
are typed with all typed dependencies sets. In the case of rule
T-NAME, a name a is typed with relation to an environment and
a typed dependencies set that agree in the type of a, modulo the
typed dependency coercion of Definition 3.2, and the type of the
annotation (Definition 3.1). Abstraction λx.e is typed (T-ABS) with
any typed dependency set δ′, given that the resulting function type
is annotated with the typed dependency set (δ) that types the ab-
straction body e. This captures the dependencies set of a closure,
which conservatively signal the typed dependencies of the abstrac-
tion body, and defer its use to the time of its application. That
can be observed in rule T-APP, where the typed dependencies set
of the functional type (δ′) is required to be a subset (or equal) of
the application typed dependencies set (δ′ v δ). Rule T-ACTION re-
quires that in an assignment, the type of the expression (e) agrees
with the type of the annotated name (a), and that name is a state
variable (varδ(τ)). Expression e can refer to the old value of the
assigned variable, hence its typed dependencies set is δ[a:var(τ)].
The resulting action type keeps track of the use of name a as a state
variable (a:var(τ)), therefore blocking all code changes that try to
redefine it into a data transformation expression (def ).

The type and effect system on operations is defined by a judgment
of the form ∆ ` o : ∆′ asserting that operation o produces the
effect ∆′ with relation to the typing environment ∆. The typing
based on effects of operations, inductively defined in Figure 6, al-
lows us to capture the incremental effects of each operation, and



∆; ε `δ e : τ a 6∈ dom(δ)

∆ ` var a=e : {a : varδ(τ)}
(TVAR)

∆; ε `δ e : τ a 6∈ dom(δ)

∆ ` def a=e : {a : defδ(τ)}
(TDEF)

∆ ` r : ∆′ ∆ ]∆′ ` r′ : ∆′′

∆ ` r � r′ : ∆′ ]∆′′
(TCOMP)

∆; ε `δ
′
e : Action(δ)

∆ ` do e : ε
(TDO)

Figure 6: Typing Rules for Operations.
therefore verify that a given operation is compatible with the run-
ning system (further detailed in Section 3.3 with Definition 3.9).
Notice that the type verification based on the effects is essential
to dynamically accept new construction operations, by allowing to
predict if the system is sound after executing all steps that are in the
evaluation queue to be processed. We use the following auxiliary
definition about the right-biased union of two typing environments.

DEFINITION 3.3 (TYPING ENVIRONMENT UNION). The union
of typing environments ∆ and ∆′, written ∆ ]∆′, is defined by

∆ ]∆′ =
{
a : ∆(a) | a ∈ dom(∆)− dom(∆′)

}
∪∆′

We next define the notion of well-formed type and well-formed
typed dependencies. The first (Definition 3.4) asserts that a given
type is well-formed with relation to a typing environment ∆. The
most interesting cases are for function and action types, where we
also assert that the typed dependencies (δ) are well-formed, accord-
ing to Definition 3.5. Regarding Definition 3.5, it asserts that all
typed dependencies agree with the type of the name, and also that
type associated with the name is well-formed (Definition 3.4).

DEFINITION 3.4 (WELL-FORMED TYPE). A type τ is well-
formed wrt. typing environment ∆, if ∆ ` τ is derivable by

∆ ` β(b)
∆ ` τ
∆ ` τ∗

∆ ` δ
∆ ` Action(δ)

∆ ` τ ∆ ` τ ′ ∆ ` δ

∆ ` τ δ−→τ ′

DEFINITION 3.5 (WELL-FORMED TYPED DEPENDENCIES).
A typed dependencies set δ is well-formed with relation to a typing
environment ∆, if ∆ ` δ can be derived by

∆ ` ε
b∆(a)c ≺ τ ∆ ` τ ∆ ` δ′

∆ ` δ′, a : τ

∆(a) = varδ(τ) ∆ ` τ ∆ ` δ′

∆ ` δ′, a : var(τ)

The effect of the two construction operations var a=e and def a=e
is specified by rules TVAR and TDEF (Figure 6). The expressions e
typed dependencies (δ) and type (τ ) are included in the registered
effect (defδ(τ) or varδ(τ) respectively). Notice that a definition for
name a cannot directly depend on the name itself (represented by
a 6∈ dom(δ)). In a composition operation (TCOMP), the left operand
is typed with relation to the initial typing environment ∆, while the
right operand is typed in a typing environment obtained by com-
bining the initial environment with the effect of the left-hand side
operation (∆]∆′). The effect of the composition is the combined
effects of both operands (∆′ ]∆′′). Interaction operations (do e)
do not produce any effects (ε), i.e. the application definition is not
modified, only the state is modified at runtime.

3.2 Operational Semantics
We define a reactive operational semantics by means of two layers
of small-step reduction relations (for construction operations and
for expressions). The semantics of construction operations is de-
fined on runtime configurations (∆;S;Q) representing a complete
live system. Typing environment ∆ describes the current system
type specification, S is a state mapping names (a) to tuples with
the form (e, ν), with e an expression, whose free names range over
the domain of S, and ν the current denotation of the name a, that
can be either a computed value (v), or the special denotation unde-
fined (2). We write S[a 7→ (e, ν)] to denote a state obtained from
state S and mapping a to (e, ν). Runtime values are defined by

v ::= b | λx.e | action {a← e} | [v0, . . . , vn]

and includes base values b (e.g. true, false), abstractions, actions,
and collections of values. The third element of a runtime configu-
ration,Q, denotes a queue of operations, and is defined by

Q ::= do e;Q | a;Q | a〈e〉;Q | [q]∆S ;Q | ε
q ::= r; q | a; q | a〈e〉; q | ε

The queue disciplines the evaluation of a set of related events. Queued
events have one of the following sorts: interaction operations (do e),
names to be refreshed (a), names currently being refreshed (a〈e〉),
or construction blocks ([q]∆S ). Construction blocks are annotated
with a typing environment ∆ and a state S, that describe its par-
tial effect. A construction block is defined over a queue of selected
events q, that exclude the execution of actions (do e). Blocks can
contain var a=e or def a=e construction operations (r), names
queued to be refreshed (a), and names being evaluated (a〈e〉).

Consider some extra definitions, auxiliary in the reduction relation
on operations. We define the subscribers of a name a, as all data
transformation expressions (def ) that depend directly on name a.
This definition is crucial to setup the propagation process, that fol-
low the data transformation expressions and does not go into ex-
pressions that initialize state variables.

DEFINITION 3.6 (SUBSCRIBERS). The set of subscribers of
name a, with relation to ∆, written subscribers∆(a), is defined by

subscribers∆(a) = { b | ∆(b) = defδ(τ) ∧ a ∈ dom(δ) }

We also define the union of two states (S ] S) as the right-biased
union of two states (similar to Definition 3.3 on typing environ-
ments). Given these auxiliary definitions, the reduction relation on
operations is inductively defined in Figure 7, following the general
structure ∆;S;Q −→ ∆′;S ′;Q′ where operations are executed ac-
cording to the discipline imposed by queue Q, modifying the typ-
ing environment ∆ and state S accordingly. We divide the descrip-
tion of the operational semantics, and start by the rules that specify
the handling of queued events. Section 3.3 introduces runtime rules
that allow to insert operations into the queue.

Queued construction operations reduce through rules S-RVAR and S-
RDEF. The partial typing environment (∆′) is updated with the
effect of the operation (∆′′), and the partial state (S ′) is updated
to associate name a to the defined expression e, and an undefined
value (2). The name a is placed in the queue to be evaluated. This
is the general schema to evaluate expressions, through the queue,
and with precedence towards operations already in the queue. The
evaluation of the expression associated to a name is specified by
rules S-QUEUE and S-RQUEUE that reduces the event a in the queue to
the event a〈e〉, according to the current state. Rule S-QUEUE works
with relation to S, and rule S-RQUEUE works on the partially con-
structed state (S ]S ′). The remaining pair of rules work according
to the same convention over states and partial states. Rule S-STEP

(S-RSTEP) reduces expression e associated to a name a in the queue.
This step relies on the reduction relation for expressions defined
below. The evaluation of a terminated queued name (i.e. it refers
to a value) is reduced by rule S-VALUE (S-RVALUE) that updates the
state, replacing the old value v′ (ν) associated to name a by the new
value v. In the case of a value update outside a construction block
(S-VALUE), the subscribers of the updated name (Definition 3.6) are
placed at the beginning of the queue. This ensures that we imme-
diately propagate changes into other names, thus giving the reac-
tive behavior to our semantics. In the case of a construction block,
this procedure is delayed until the end of the block, and names are
placed in bulk in the queue (rule S-REMPTY). Rule S-REMPTY uses a
lifted definition of the subscribers set (Definition 3.6) for sets of
names. At the end of a construction block (S-REMPTY) the par-
tially computed typing environment and state are combined with



(S-RVAR)
∆ ]∆′ ` var a=e : ∆′′

∆;S; ([var a=e; q]∆
′
S′ ;Q) −→ ∆;S; ([a; q]∆

′]∆′′
S′[a7→(e,2)];Q)

(S-QUEUE)
S(a) = (e, v)

∆;S; (a;Q) −→ ∆;S; (a〈e〉;Q)

(S-RQUEUE)
(S ] S′)(a) = (e, ν)

∆;S; ([a; q]∆
′
S′ ;Q) −→ ∆;S; ([a〈e〉; q]∆′

S′ ;Q)

(S-RDEF)
∆ ]∆′ ` def a=e : ∆′′

∆;S; ([def a=e; q]∆
′
S′ ;Q) −→ ∆;S; ([a; q]∆

′]∆′′
S′[a7→(e,2)];Q)

(S-STEP)
S; e −→ e′

∆;S; (a〈e〉;Q) −→ ∆;S; (a〈e′〉;Q)

(S-RSTEP)
S ] S′; e −→ e′

∆;S; ([a〈e〉; q]∆′
S′ ;Q) −→ ∆;S; ([a〈e′〉; q]∆′

S′ ;Q)

(S-VALUE)
s = subscribers∆(a)

∆;S[a 7→ (e, v′)]; (a〈v〉;Q) −→ ∆;S[a 7→ (e, v)]; (s;Q)

(S-RVALUE)
(S ] S′)(a) = (e, ν)

∆;S; ([a〈v〉; q]∆′
S′ ;Q) −→ ∆;S; ([q]∆

′
S′[a 7→(e,v)];Q)

(S-DO)
S; e −→ e′

∆;S; (do e;Q) −→ ∆;S; (do e′;Q)

s = subscribers∆]∆′ (dom(∆′))

∆;S; ([ε]∆
′
S′ ;Q) −→ ∆ ]∆′;S ] S′; (s;Q)

(S-REMPTY) ∆;S[a 7→ (e′, v)]; (do action {a← e};Q) −→ ∆;S[a 7→ (e, v)]; (a;Q) (S-DO-ACTION)

Figure 7: Operations Operational Semantics.
the main typing environment and state, as if committing changes.
This is a key point, where our static type analysis ensures that the
soundness of the system (that can be transient in a construction
block) is restored, and propagation proceed.

Finally, rules S-DO and S-DO-ACTION handle the interaction opera-
tion (do e). Rule S-DO reduces the inner expression e, based on the
reduction relation for expressions. The reduction of an action value
(S-DO-ACTION) proceeds by updating the expression (e′) associated
to the assigned name (a) in the state. The general evaluation strat-
egy then follows; name a is added to the queue, evaluated and the
state is updated (rules S-STEP and S-VALUE respectively).

The reduction relation on configurations depends on a reduction
relation for expressions with relation to a state. We follow the
structure S; e −→ e′ that specifies that expression e reduces to e′

with relation to state S. Reduction of expressions does not change
the state and follows standard lines, and is therefore omitted This
description concludes the operational semantics regarding the exe-
cution of the system. We now describe how a system may evolve
by adding new construction operations to the queue.

3.3 Incremental Construction
We next describe how our runtime system dynamically evolves by
combining the presented type system (Section 3.1) and operational
semantics (Section 3.2). For that purpose, first consider some aux-
iliary definitions that enable our runtime system to dynamically
check conditions that ensure the soundness of the system.

DEFINITION 3.7 (TYPED DEPENDENCIES EXPANSION). The
expansion of typed dependencies δ, in a given names environment
∆, written t∆(δ), is defined by
t∆(δ) , dom(δ) ∪

⋃
a∈dom(δ)

{
t∆(δ′) | ∆(a) = defδ′ (τ)

}
Computing the expansion of the typed dependencies is essential to
statically avoid circular dependencies, and ensuring that the propa-
gation of changes does not diverge. Notice that state variables in δ
are not expanded, this is sound and corresponds with the restriction
on change propagation into state variables. One important invariant
on runtime configurations is the absence of unguarded dependency
cycles. We next define a (static) property on typing environments,
that directly implies this invariant.

DEFINITION 3.8 (ACYCLIC). A typing environment ∆ is acyclic
if, ∆ ↓ is derivable by the rules

∀a ∈ dom(∆).∆ ↓a
∆↓

∆(a) = varδ(τ) ∆ ` δ, a : τ

∆↓a
∆(a) = defδ(τ) a 6∈ t∆(δ) ∆ ` δ, a : τ

∆↓a
We define the notion of compatibility between two typing environ-
ments ∆ and ∆′ in Definition 3.9.

DEFINITION 3.9 (COMPATIBLE). We define compatibility of
typing environments ∆ and ∆′, written ∆ � ∆′, if ∆ ]∆′ ↓.

Verifying that a typing environment does not contain unguarded
cycles, and that two typing environments are compatible is a cru-
cial step when adding operations to a running system. The notion
of compatibility ensures that for the combined typing environment
∆ ] ∆′ (Definition 3.3), all names are acyclic (a 6∈ t∆(δ)), and
their typed dependencies are well-formed (∆ ` δ, a : τ ) accord-
ing to Definition 3.5. This enables us to guarantee that either type
changes, or a name redefined from a state variable into a pure data
transformation element (or vice-versa) does not break type safety.

Since our runtime queue may contain unprocessed construction
blocks, we define the notion of queue effects (Definition 3.10), that
computes the effects of an unprocessed queue, and allows to add
new construction operations to the queue, in a verified way.

DEFINITION 3.10 (QUEUE EFFECTS). We define the effects
of a queue Q, wrt. a typing environment ∆, written ∆ ` Q a ∆′,
producing the effects typing environment ∆′, as follows

∆ ` Q a ∆′

∆ ` a;Q a ∆′
∆ ` [q]∆

′

S′ ;Q a ∆′′

∆ ` [a; q]∆
′
S′ ;Q a ∆′′

∆ ]∆′ ` Q a ∆′′

∆ ` [ε]∆
′
S′ ;Q a ∆′ ]∆′′

∆ ` Q a ∆′

∆ ` a〈e〉;Q a ∆′

∆ ]∆′ ` r : ∆′′ ∆ ]∆′ ]∆′′ ` [q]εε;Q a ∆′′′

∆ ` [r; q]∆
′
S′ ;Q a ∆′ ]∆′′ ]∆′′′

∆ ` [q]∆
′

S′ ;Q a ∆′′

∆ ` [a〈e〉; q]∆′
S′ ;Q a ∆′′ ∆ ` ε a ε

∆ ` do e : ε ∆ ` Q a ∆′

∆ ` do e;Q a ∆′

With these auxiliary definitions, we now introduce how interaction
operations are added to the running application. The following rule
enables the addition of an operation do e to the end of the queue

∆ ` Q a ∆′ ∆ ]∆′ ` do e : ε

∆;S;Q do e−−−→ ∆;S; (Q;do e)
(INTERACTION)

Notice that the operation do e is typed under the typing envi-
ronment ∆ ]∆′, corresponding to the combination of the current
system typing environment ∆ with the effects of the queue ∆′.
This ensures that the new operation takes into account all pend-
ing events still queued. Recall that interactions operations do not
change the system’s definition, hence the resulting typing environ-
ment ε. Next, we present the rule that enqueues a construction
operation r at the end of the queue

∆ ` Q a ∆′ ∆ ]∆′ ` r : ∆′′ ∆ ]∆′ � ∆′′

∆;S;Q r−→ ∆;S; (Q; [[r]]εε)
(CONSTRUCTION)

Similarly, we gather the remaining queue effects ∆′, and the new
operation r is typed under the combined typing environment ∆ ]
∆′. Since, in this case, we are reconfiguring the system, we must
check that the new operation is compatible with the current running
system (∆ ]∆′ � ∆′′). This ensures that the queued operation r
will not break type safety, or cause propagation of changes to di-
verge. Notice that the construction block initial typing environment
and state are both empty (ε). These will later be constructed by the
operational semantics rules that reduce the construction blocks.



With the notion of compatibility (Definition 3.9), we allow for a
composition construction operation to introduce transient incon-
sistencies in-between sub-operations (e.g. cyclic definitions). Our
composition operator enables the (re)definition of several names
that may introduce transient inconsistencies, while ensuring that in
the end the application is sound. In Section 4 we present our main
results that include type safety, and the convergence of propagation.

4. TYPE SAFETY
We next present the main soundness results for our language, that
are based on proving safety (progress and preservation), and con-
vergence of the propagation of changes. Besides common typing
errors, our system also statically ensures that the intended reactive
behavior is kept sound even when the system evolves. The results
presented here follow the syntactic approach of [13]. We state our
main results and provide full proofs in a technical report [6].

We next present our runtime progress result (Theorem 4.1) and type
preservation (Theorem 4.1). In the first, we ensure a stronger in-
variant of the reduction relation, states that all names in the current
state have a value associated (Sv(a) = v).

THEOREM 4.1 (RUNTIME PROGRESS). For all runtime con-
figurations (∆;S;Q), if ` (∆;S;Q) andQ 6= ε and ∀a ∈ dom(S).
Sv(a) = v then, there is a program configuration (∆′;S ′;Q′) such
that ∆;S;Q −→ ∆′;S ′;Q′ and ∀a ∈ dom(S ′).S ′v(a) = v.

THEOREM 4.2 (RUNTIME TYPE PRESERVATION). For all run-
time configurations (∆;S;Q) and (∆′;S ′;Q′), if ` ∆;S;Q, and
∆;S;Q −→ ∆′;S ′;Q′ then, ` ∆′;S ′;Q′.
Based on a strong normalizing result for the simply typed λ-calculus
(c.f. [12]), we are able to establish an even stronger result, where all
well-typed runtime configurations with a non-empty queue, reach
a runtime configuration with an empty queue after a finite number
of steps.

THEOREM 4.3 (CONVERGENCE). For all runtime configura-
tions (∆;S;Q), if ` (∆;S;Q) then ∆;S;Q −→∗ ∆′;S ′; ε.
Notice that this result is based (and parametric) on the termina-
tion of the functional core, which in our case is a simply typed
λ-calculus extended with collections. Using any expression lan-
guage free of side-effects, for which we can prove termination (e.g.
[10]), then the result also holds. These results allow us to ensure
that the automatic propagation of changes converges, and dynamic
reconfiguration of both code and data is always sound.

5. RELATED WORK
Several works on dynamic reconfiguration and incremental com-
putation of software systems have already been proposed [7, 11].
These solutions are mostly designed for imperative programming
languages. For instance, DSU [7] provides dynamic updates in
programs by explicitly defining points where updates may occur.
Up to some point our approach is similar, however we use the same
uniform mechanism that allows to build and evolve applications.

AFP [2] uses an underlying dependency graph and a change prop-
agation algorithm to adapt the output when input changes. We use
a similar technical approach, where propagation is also encoded
into operational semantics by the queue. Our approach also goes
further by providing a reactive framework that allows to safely
dynamically reconfigure and evolve applications. Several Func-
tional Reactive Programming approaches have been proposed [9,
5]. However, neither of these approaches combines reactivity with
a statically verified evolution mechanism as the one presented in
this paper. In FrTime [5], reactivity is embedded into a call-by-
value dynamic programming language. In principle, an untyped
fragment of our language can be encoded into FrTime. However, in

such untyped fragment it would be possible to define programs with
transient inconsistent states causing the propagation to diverge. In
our approach, we ensure that the propagation of changes does not
diverge, and that all (re)definitions are safe, thus making it impos-
sible to define infinite propagation cycles.

TouchDevelop [4] provides an environment with immediate feed-
back in the development of interfaces and small applications. The
edit-compile-run cycle is tightened by allowing the display code to
be refreshed without restarting programs. Although related in their
goals, we target the development of data-centric applications where
the correct evolution of state is of major importance.

6. FINAL REMARKS
We have introduced a core language, its type system and opera-
tional semantics, that is suitable for safe and incremental construc-
tion of live software systems. Our language is the first approach that
is uniform, statically type safe, and supports the dynamic evolution
of both code and data. Our main results include the soundness of
the whole system, and the convergence of the propagation. We also
presented a working prototype [1] that allows to build and evolve
web applications using the techniques presented in this paper.

We identify some future challenges in our model, both in the formal
and pragmatic domains. On the pragmatic side, we may extend the
language expressiveness by parameterizing the model with a full-
fledged functional or imperative language. All these extensions are
being pursued by developments in our prototype [1]. On the formal
side, extensions include the parallel scheduling of the queue and
corresponding type discipline based on notions of separation.

7. REFERENCES
[1] Prototype. http://tiny.cc/prototype.
[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive

Functional Programming. ACM TOPLAS, 28(6), 2006.
[3] P. Bhattacharya and I. Neamtiu. Dynamic Updates for Web

and Cloud Applications. In Proceedings of APLWACA, 2010.
[4] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid,

M. Moskal, N. Tillmann, and J. Kato. It’s Alive! Continuous
Feedback in UI Programming. In Proceedings of PLDI,
2013.

[5] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Proceedings of
ESOP, 2006.

[6] M. Domingues and J. C. Seco. Type Safe Evolution of Live
Systems. Technical report, NOVA-LINCS – UNL, 2015.
http://miguel.domingues.pt.

[7] M. Hicks and S. Nettles. Dynamic Software updating. ACM
TOPLAS, 27(6), 2005.

[8] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric
lenses. In Proceedings of POPL, 2011.

[9] L. Mandel and M. Pouzet. ReactiveML: a reactive extension
to ML. In Proceedings of PPDP, 2005.

[10] D. McAllester and K. Arkoudas. Walther recursion. In
Automated Deduction—Cade-13. 1996.

[11] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.
Mutatis Mutandis: Safe and Predictable Dynamic Software
Updating. ACM TOPLAS, 29(4), 2007.

[12] W. W. Tait. Intensional interpretations of functionals of finite
type i. Journal of Symbolic Logic, 32(2), 1967.

[13] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 1994.

[14] D. Yellin and R. Strom. INC: a language for incremental
computations. In Proceedings of PLDI, 1988.

http://tiny.cc/prototype
http://miguel.domingues.pt

	Introduction
	Live and Reactive Programming
	Building the System
	Evolving the System

	Programming Language
	Type System
	Operational Semantics
	Incremental Construction

	Type Safety
	Related Work
	Final Remarks
	References

