Recent Publications

Export 116 results:
Sort by: Author Title Type [ Year  (Desc)]
2011
Santos, J. P., A. Costa, C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition wavelenghts and probabilities for spectral lines of Ne II." The European Physical Journal D 63 (2011): 89-96. AbstractWebsite

Transition wavelengths and probabilities for several 2 p 4 3 p -2 p 4 3 s and 2 p 4 3 d -2 p 4 3 p lines in fluorine-like neon ion (NeII) have been calculated within the multiconfiguration Dirac-Fock (MCDF) method with quantum electrodynamics (QED) corrections. The results are compared with all existing experimental and theoretical data.

Surzhykov, A., P. Indelicato, J. P. Santos, P. Amaro, Th Stöhlker, and S. Fritzsche. "Two-photon absorption of few-electron heavy ions." Physical Review A 84 (2011): 022511. AbstractWebsite

The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.

Surzhykov, A., P. Indelicato, J. P. Santos, P. Amaro, Th Stöhlker, and S. Fritzsche. "Two-photon absorption of few-electron heavy ions." Physical Review A 84 (2011): 022511. AbstractWebsite

The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.

2010
Surzhykov, A., A. Volotka, F. Fratini, J. P. Santos, P. Indelicato, G. Plunien, Th Stöhlker, and S. Fritzsche. "Angular correlations in the two-photon decay of heliumlike heavy ions." Physical Review A 81 (2010): 042510. AbstractWebsite
The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory and Dirac’s relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e., how the angular correlation function depends on the shell structure of the ions in their initial and final states). Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s1S0, 1s2s3S1, and 1s2p3P0 states of helium-like Xe52+, Au77+, and U90+ ions.
Surzhykov, A., A. Volotka, F. Fratini, J. P. Santos, P. Indelicato, G. Plunien, Th Stöhlker, and S. Fritzsche. "Angular correlations in the two-photon decay of heliumlike heavy ions." Physical Review A 81 (2010): 042510. AbstractWebsite

The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory and Dirac’s relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e., how the angular correlation function depends on the shell structure of the ions in their initial and final states). Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s1S0, 1s2s3S1, and 1s2p3P0 states of helium-like Xe52+, Au77+, and U90+ ions.

Santos, J. P., A. M. Costa, J. P. Marques, M. C. Martins, P. Indelicato, and F. Parente. "X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas." Physical Review A 82 (2010): 062516. AbstractWebsite
Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.
Santos, J. P., A. M. Costa, J. P. Marques, M. C. Martins, P. Indelicato, and F. Parente. "X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas." Physical Review A 82 (2010): 062516. AbstractWebsite

Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.

2009
Surzhykov, A., J. P. Santos, P. Amaro, and P. Indelicato. "Negative-continuum effects on the two-photon decay rates of hydrogenlike ions." Physical Review A (Atomic, Molecular, and Optical Physics) 80 (2009): 052511. AbstractWebsite
Two-photon decay of hydrogenlike ions is studied within the framework of second-order perturbation theory, based on the relativistic Dirac's equation. Special attention is paid to the effects arising from the summation over the negative-energy (intermediate virtual) states that occur in such a framework. In order to investigate the role of these states, detailed calculations have been carried out for the 2s1/2–>1s1/2 and 2p1/2–>1s1/2 transitions in neutral hydrogen H as well as for hydrogenlike xenon Xe53+ and uranium U91+ ions. We found that for a correct evaluation of the total and energy-differential decay rates, summation over the negative-energy part of Dirac's spectrum should be properly taken into account both for high-Z and low-Z atomic systems.
Surzhykov, A., J. P. Santos, P. Amaro, and P. Indelicato. "Negative-continuum effects on the two-photon decay rates of hydrogenlike ions." Physical Review A 80 (2009): 052511. AbstractWebsite

Two-photon decay of hydrogenlike ions is studied within the framework of second-order perturbation theory, based on the relativistic Dirac's equation. Special attention is paid to the effects arising from the summation over the negative-energy (intermediate virtual) states that occur in such a framework. In order to investigate the role of these states, detailed calculations have been carried out for the 2s1/2-->1s1/2 and 2p1/2-->1s1/2 transitions in neutral hydrogen H as well as for hydrogenlike xenon Xe53+ and uranium U91+ ions. We found that for a correct evaluation of the total and energy-differential decay rates, summation over the negative-energy part of Dirac's spectrum should be properly taken into account both for high-Z and low-Z atomic systems.

Martins, M. C., J. P. Marques, A. M. Costa, J. P. Santos, F. Parente, S. Schlesser, Le E. - O. Bigot, and P. Indelicato. "Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma." Physical Review A (Atomic, Molecular, and Optical Physics) 80 (2009): 032501. AbstractWebsite
The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double-KL and triple-KLL ionizations, transition probabilities and energies for the de-excitation processes, are calculated in the framework of the multiconfiguration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kalpha x-ray spectrum is obtained, which is compared to recent experimental data.
Martins, M. C., J. P. Marques, A. M. Costa, J. P. Santos, F. Parente, S. Schlesser, E. O. Le Bigot, and P. Indelicato. "Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma." Physical Review A 80 (2009): 032501. AbstractWebsite

The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double-KL and triple-KLL ionizations, transition probabilities and energies for the de-excitation processes, are calculated in the framework of the multiconfiguration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kalpha x-ray spectrum is obtained, which is compared to recent experimental data.

Amaro, P., J. P. Santos, F. Parente, A. Surzhykov, and P. Indelicato. "Resonance effects on the two-photon emission from hydrogenic ions." Physical Review A (Atomic, Molecular, and Optical Physics) 79 (2009): 062504. AbstractWebsite
A theoretical study of the all two-photon transitions from initial bound states with ni=2,3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1<=Z<=92 are obtained through the use of finite basis sets for the Dirac equation constructed from B splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeros in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the line profile approach and the QED approach based on the analysis of the relativistic two-loop self-energy) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in good numerical agreement.
Amaro, P., J. P. Santos, F. Parente, A. Surzhykov, and P. Indelicato. "Resonance effects on the two-photon emission from hydrogenic ions." Physical Review A 79 (2009): 062504. AbstractWebsite

A theoretical study of the all two-photon transitions from initial bound states with ni=2,3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1<=Z<=92 are obtained through the use of finite basis sets for the Dirac equation constructed from B splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeros in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the line profile approach and the QED approach based on the analysis of the relativistic two-loop self-energy) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in good numerical agreement.

2008
Santos, J. P., M. C. Martins, A. M. Costa, P. Indelicato, and F. Parente. "X-ray spectra emitted by Cl14+ ions in ECRIS plasmas." Vacuum 82 (2008): 1522-1524. AbstractWebsite
We study the contribution of the most important processes leading to the creation of excited states of Cl14+ ions from the ground configurations of Cl ions in an Electron Cyclotron Resonance Ion Source (ECRIS), which lead to the emission of K X-ray lines. Theoretical values for inner-shell excitation, K and KL ionization cross-sections, and energies and transition probabilities for the de-excitation processes are calculated in the framework of the Multi-Configuration Dirac-Fock (MCDF) method. With reasonable assumptions about the electron energy distribution, a theoretical K[alpha] X-ray spectrum is obtained, which reproduces closely a recent experimental result.
Santos, J. P., M. C. Martins, A. M. Costa, P. Indelicato, and F. Parente. "X-ray spectra emitted by Cl14+ ions in ECRIS plasmas." Vacuum 82 (2008): 1522-1524. AbstractWebsite

We study the contribution of the most important processes leading to the creation of excited states of Cl14+ ions from the ground configurations of Cl ions in an Electron Cyclotron Resonance Ion Source (ECRIS), which lead to the emission of K X-ray lines. Theoretical values for inner-shell excitation, K and KL ionization cross-sections, and energies and transition probabilities for the de-excitation processes are calculated in the framework of the Multi-Configuration Dirac-Fock (MCDF) method. With reasonable assumptions about the electron energy distribution, a theoretical K[alpha] X-ray spectrum is obtained, which reproduces closely a recent experimental result.

2007
Indelicato, P., J. P. Santos, S. Boucard, and J. P. Descalux. "QED and relativistic corrections in superheavy elements." The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 45 (2007): 155-170. AbstractWebsite
In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.
Indelicato, P., J. P. Santos, S. Boucard, and J. P. Descalux. "QED and relativistic corrections in superheavy elements." The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 45 (2007): 155-170. AbstractWebsite

In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.Topical Issue on the Atomic Properties of the Heaviest Elements

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kα hypersatellite line energies and transition probabilities for selected atoms with 12<=Z<=80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite
The transition probabilities of Kα hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac–Fock model for several values of atomic number Z throughout the periodic table. The influence of the Breit interaction on the Kα1h/Kα2h line intensity ratio, Kα1h and Kα2h line energy shifts and Kα1h to Kα2h line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 ⩽Z⩽ 30, calculated within the same approach, are compared with available experimental results.
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of K&alpha; hypersatellite line energies and transition probabilities for selected atoms with 12 ≤ Z ≤ 80." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57. AbstractWebsite

The transition probabilities of K&alpha; hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac&ndash;Fock model for several values of atomic number <I>Z</I> throughout the periodic table. The influence of the Breit interaction on the K&alpha;<SUB>1</SUB><SUP>h</SUP>/K&alpha;<SUB>2</SUB><SUP>h</SUP> line intensity ratio, K&alpha;<SUB>1</SUB><SUP>h</SUP> and K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy shifts and K&alpha;<SUB>1</SUB><SUP>h</SUP> to K&alpha;<SUB>2</SUB><SUP>h</SUP> line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 &les;<I>Z</I>&les; 30, calculated within the same approach, are compared with available experimental results.

2006
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13 ≤ Z ≤ 80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite

Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.Al_Sc_Mg_Ti

Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13<=Z<=80." Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366. AbstractWebsite
Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite
Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.
Santos, J. P., G. C. Rodrigues, J. P. Marques, F. Parente, J. P. Desclaux, and P. Indelicato. "Relativistic correlation correction to the binding energies of the ground configuration of beryllium-like, neon-like, magnesium-like and argon-like ions." The European Physical Journal D 37 (2006): 201-207. AbstractWebsite

Total electronic correlation corrections to the binding energies of the isoelectronic series of beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is increased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

2005
Santos, J. P., C. Madruga, F. Parente, and P. Indelicato. "Relativistic transition probabilities for F-like ions with 10⩽Z⩽49." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 235 (2005): 171-173. AbstractWebsite

In the present work we have calculated several relativistic transition probabilities for the F-like ions with 10 less-than-or-equals, slant Z less-than-or-equals, slant 49, in the framework of the Multi-Configuration Dirac–Fock method, for applications on laserphysics and astrophysics. The lines considered correspond to transitions between levels of 2p43s, 2p43p and 2p43d configurations. The spectral fine structure is taken into consideration and the results for individual lines are given.

Santos, J. P., F. Parente, S. Boucard, P. Indelicato, and J. P. Desclaux. "X-ray energies of circular transitions and electrons screening in kaonic atoms." Physical Review A 71 (2005): 032501. AbstractWebsite
The QED contribution to the energies of the circular (n, = n–1), 2n13, transitions have been calculated for several kaonic atoms throughout the periodic table, using the current world-average kaon mass. Calculations were done in the framework of the Klein-Gordon equation, with finite nuclear size, finite particle size, and all-order Uelhing vacuum polarization corrections, as well as Källén and Sabry and Wichmann and Kroll corrections. These energy level values are compared with other computed values. The circular transition energies are compared with available measured and theoretical transition energies. Electron screening is evaluated using a Dirac-Fock model for the electronic part of the wave function. The effect of electronic wave-function correlation is evaluated.