Recent Publications

Export 33 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Grilo, Filipe, Chintan Shah, Steffen Kühn, René Steinbrügge, Keisuke Fujii, José Marques, Ming Feng Gu, José Paulo Santos, José Crespo R. López-Urrutia, and Pedro Amaro. "Comprehensive Laboratory Measurements Resolving the {LMM} Dielectronic Recombination Satellite Lines in Ne-like Fe xvii Ions." The Astrophysical Journal 913 (2021): 140. AbstractWebsite
n/a
Guerra, M., P. Amaro, C. I. Szabo, A. Gumberidze, P. Indelicato, and J. P. Santos. "Analysis of the charge state distribution in an ECRIS Ar plasma using high-resolution x-ray spectra." Journal of Physics B: Atomic, Molecular and Optical Physics 46 (2013): 065701. AbstractWebsite

In this work, we obtained a charge state distribution inside an Ar plasma produced by an electron–cyclotron-resonance ion source. The processes that lead to the observed lines in x-ray spectra are identified and included in the simulated x-ray spectrum. The geometrical constraints of the flat double crystal spectrometer, used to measure the x-ray spectrum, are investigated as they are crucial for correctly obtaining the ion densities from the observed transition amplitudes. Multiple electron impact ionization is included, and a realistic electron velocity distribution is taken into account. The charge state distribution of the Ar ions is compared to measured extracted ionic currents.

Guerra, M., F. Parente, P. Indelicato, and J. P. Santos. "Modified binary encounter Bethe model for electron-impact ionization." Int. J. Mass Spectrom. 313 (2012): 1. AbstractWebsite

Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed.
The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells.
The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

Guerra, M., J. M. Sampaio, T. I. Madeira, F. Parente, P. Indelicato, J. P. Marques, J. P. Santos, J. Hoszowska, Cl J. Dousse, L. Loperetti, F. Zeeshan, M. Muller, R. Unterumsberger, and B. Beckhoff. "Theoretical and experimental determination of L-shell decay rates, line widths, and fluorescence yields in Ge." Physical Review A 92 (2015): 022507-9. AbstractWebsite
n/a
Guerra, M., F. Parente, and J. P. Santos. "Electron impact ionization of atomic target inner-shells." Journal of Physics: Conference Series 194 (2009): 042047. AbstractWebsite
There is a need for reliable theoretical methods to calculate electron-impact total ionization cross sections for the large number of neutral atoms and ions with open shell structures. These cross sections are used in a wide range of scientific and industrial applications, such as astrophysical plasmas, atmospheric science, X-ray lasers, magnetic fusion, radiation physics, semiconductor fabrication, accelerator physics and tumor therapy physics. The binary-encounter-Bethe (BEB) model [1], using an analytic formula that requires only two atomic constants, the binding energy and kinetic energy of the electrons, generates direct ionization cross sections for any neutral atom (or molecule), which are reliable in intensity (15%) and shape from the ionization threshold to a few keV in the incident energy [3], or to thousands keV if we consider its relativistic version(RBEB) [2]. In this work we present K- and L-shell ionization cross sections calculations for heavy atoms.
Guerra, M., P. Amaro, J. Machado, and J. P. Santos. "Modified Binary-Encounter-Bethe Model for Electron Impact Ionization Cross Sections of Highly Charged Ions ." Journal of Physics: Conference Series 635 (2015): 052067. AbstractWebsite
n/a
Guerra, M., F. Parente, and J. P. Santos. "Electron impact ionization of atomic target inner-shells." Journal of Physics: Conference Series 194 (2009): 042047. AbstractWebsite

There is a need for reliable theoretical methods to calculate electron-impact total ionization cross sections for the large number of neutral atoms and ions with open shell structures. These cross sections are used in a wide range of scientific and industrial applications, such as astrophysical plasmas, atmospheric science, X-ray lasers, magnetic fusion, radiation physics, semiconductor fabrication, accelerator physics and tumor therapy physics. The binary-encounter-Bethe (BEB) model [1], using an analytic formula that requires only two atomic constants, the binding energy and kinetic energy of the electrons, generates direct ionization cross sections for any neutral atom (or molecule), which are reliable in intensity (15%) and shape from the ionization threshold to a few keV in the incident energy [3], or to thousands keV if we consider its relativistic version(RBEB) [2]. In this work we present K- and L-shell ionization cross sections calculations for heavy atoms.

Guerra, M., F. Parente, and J. P. Santos. "Electron impact ionization cross sections of several ionization stages of Kr, Ar and Fe." International Journal of Mass Spectrometry 348 (2013): 1-8. AbstractWebsite

International Journal of Mass Spectrometry, 348 (2013) 1-8. doi:10.1016/j.ijms.2013.02.011

Guerra, M., F. Parente, P. Indelicato, and J. P. Santos. "Modified binary encounter Bethe model for electron-impact ionization." International Journal of Mass Spectrometry Accepted (2011). Abstract

Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed.The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells.The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83.Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

Guerra, M., P. Amaro, J. P. Santos, and P. Indelicato. "Relativistic calculations of screening parameters and atomic radii of neutral atoms." Atomic Data and Nuclear Data Tables 117-118 (2017): 439-457. AbstractWebsite

Atomic Data and Nuclear Data Tables, 117-118 (2017) 439-457. doi:10.1016/j.adt.2017.01.001

Guerra, M., S. C. Pé-Leve Santos, A. M. E. Barroso, C. P. S. Fonseca, M. Eloy Cruz, P. Amaro, J. L. Figueirinhas, M. L. Carvalho, and J. P. Santos. "Spatially resolved determination of toxic trace elements in plants of Panasqueira mining region using micro X-ray fluorescence." Microscopy and Microanalysis 21 (2015): 54-55. AbstractWebsite
n/a
Guerra, M., P. Amaro, J. Machado, and J. P. Santos. "Single differential electron impact ionization cross sections in the binary-encounter- Bethe approximation for the low binding energy regime." Journal of Physics B: Atomic, Molecular and Optical Physics 48 (2015): 1-9. AbstractWebsite

Journal of Physics B: Atomic, Molecular and Optical Physics, 48(2015) 185202. doi:10.1088/0953-4075/48/18/185202

Guerra, M., R. M. Pinto, J. P. Santos, and A. C. S. Paiva. "Towards the assignment of the REMPI spectrum of Ph 2O using CIS and TD-DFT methods." Molecular Physics 111 (2013): 3311-3319. AbstractWebsite
n/a
Guerra, M., F. Parente, P. Indelicato, and J. P. Santos. "Modified binary encounter Bethe model for electron-impact ionization." International Journal of Mass Spectrometry 313 (2012): 1. AbstractWebsite

Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed.The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells.The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

Guerra, M., F. Parente, and J. P. Santos. "Electron impact ionization cross sections of several ionization stages of Kr, Ar and Fe." International Journal of Mass Spectrometry 348 (2013): 1-8. AbstractWebsite

International Journal of Mass Spectrometry, 348 (2013) 1-8. doi:10.1016/j.ijms.2013.02.011

Guerra, M., R. M. Pinto, J. P. Santos, and A. C. S. Paiva. "Towards the assignment of the REMPI spectrum of Ph 2O using CIS and TD-DFT methods." Molecular Physics 111 (2013): 3311-3319. AbstractWebsite
n/a
Guerra, M., J. M. Sampaio, F. Parente, P. Indelicato, P. Hönicke, M. Muller, B. Beckhoff, J. P. Marques, and J. P. Santos. "{Theoretical and experimental determination of $K$- and $L$-shell x-ray relaxation parameters in Ni}." Phys. Rev. A 97 (2018): 042501. Abstract
n/a
Guerra, M., Th Stöhlker, P. Amaro, J. Machado, and J. P. Santos. "Electron impact ionization cross-sections for few-electron uranium ions." Journal of Physics B: Atomic, Molecular and Optical Physics 48 (2015): 1-5. AbstractWebsite

Journal of Physics B: Atomic, Molecular and Optical Physics, 48(2015) 144027. doi:10.1088/0953-4075/48/14/144027

Guerra, M., C. Ferreira, M. L. Carvalho, J. P. Santos, and S. Pessanha. "Distribution of toxic elements in teeth treated with amalgam using μ-energy dispersive X-ray fluorescence." Spectrochimica Acta Part B: Atomic Spectroscopy 122 (2016): 114-117. AbstractWebsite

Spectrochimica Acta Part B: Atomic Spectroscopy, 122 (2016) 114-117. doi:10.1016/j.sab.2016.06.006

Guerra, M., P. Amaro, C. I. Szabo, A. Gumberidze, P. Indelicato, and J. P. Santos. "Analysis of the charge state distribution in an ECRIS Ar plasma using high-resolution x-ray spectra." Journal of Physics B: Atomic, Molecular and Optical Physics 46 (2013): 065701. AbstractWebsite

In this work, we obtained a charge state distribution inside an Ar plasma produced by an electron–cyclotron-resonance ion source. The processes that lead to the observed lines in x-ray spectra are identified and included in the simulated x-ray spectrum. The geometrical constraints of the flat double crystal spectrometer, used to measure the x-ray spectrum, are investigated as they are crucial for correctly obtaining the ion densities from the observed transition amplitudes. Multiple electron impact ionization is included, and a realistic electron velocity distribution is taken into account. The charge state distribution of the Ar ions is compared to measured extracted ionic currents.

Guimarães, D., J. P. Santos, M. L. Carvalho, M. S. Diniz, B. House, and V. M. Miller. "Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius." NeuroToxicology 44 (2014): 91-97. AbstractWebsite

Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.

Guimarães, D., J. P. Santos, M. L. Carvalho, M. S. Diniz, B. House, and V. M. Miller. "Analytical evidence of heterogeneous lead accumulation in the hypothalamic defence area and nucleus tractus solitarius." NeuroToxicology 44 (2014): 91-97. AbstractWebsite

Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.

Guimarães, D., J. P. Santos, M. L. Carvalho, G. Vale, H. M. Santos, V. Geraldes, I. Rocha, and J. L. Capelo. "Ultrasonic energy as a tool to overcome some drawbacks in the determination of lead in brain tissue and urine of rats." Talanta 86 (2011): 442-446 . AbstractWebsite

An ultrasonic assisted solid‚Äìliquid extraction method was developed to determine the level of lead in the brain and urine of rats. Lead was determined by electrothermal atomic absorption spectrometry with longitudinal-Zeeman background correction. Several analytical drawbacks were addressed and overcome, namely small brain sample mass and the formation of precipitate in the urine samples. Utrasonication provided by an ultrasonic probe succeeded in extracting lead from brain samples. Furthermore, it was demonstrated that the formation of a precipitate lowered the lead content in the liquid phase of the urine. Lead was back extracted from the precipitate to the liquid phase with the aid of ultrasonic energy and acidifying the urine with 10% v/v nitric acid. A microwave-assisted acid digestion protocol was used to check the completeness of the lead extraction. The within bath and between bath precision was 5% (n = 9) and 7% (n = 3) respectively. The limit of quantification was 1.05 Œºg g‚àí1 for brain samples and 2.1 Œºg L‚àí1 for urine samples. A total of 6 samples of urine and 12 samples of brain from control rats and another 6 samples of urine and 12 samples of brain from rats fed with tap water rich in lead acetate were used in this research. Lead levels in brain and urine from exposed rats ranged from1.9 ¬± 0.2 Œºg g‚àí1 to 3.5 ¬± 0.2 Œºg g‚àí1 and from 752 ¬± 56 Œºg L‚àí1 to 60.9 ¬± 1.2 mg L‚àí1 respectively. Statistically significant differences of levels of lead in brain and urine were found between exposed and non exposed rats.

Guimarães, D., A. A. Dias, M. Carvalho, M. L. Carvalho, J. P. Santos, F. R. Henriques, F. Curate, and S. Pessanha. "Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence – Postmortem evaluation." Talanta 155 (2016): 107-115. AbstractWebsite

Talanta, 155 + (2016) 107-115. doi:10.1016/j.talanta.2016.04.028

Guimarães, D., M. L. Carvalho, V. Geraldes, I. Rocha, and J. P. Santos. "Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect." Metallomics 4 (2012): 66. AbstractWebsite

The accumulation of lead in several bones of Wistar rats with time was determined and compared Q3 for the different types of bones. Two groups were studied: a control group (n = 20), not exposed to lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly throughmother’s milk, and then directly through a diet containing lead acetate in drinking water (0.2%). Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of the collections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia–fibula and skull have been analysed by energy dispersive X-ray fluorescence technique (EDXRF). Samples of formaldehyde used to preserve the bone tissues were also analysed by Electrothermal Atomic Absorption (ETAAS), showing that there was no significant loss of lead from the tissue to the preservative. The bones mean lead concentration of exposed rats range from 100 to 300 mg g 1 while control rats never exceeded 10 mg g 1. Mean bone lead concentrations were compared andthe concentrations were higher in iliac, femur and tibia–fibula and after that skull. However, of all the concentrations in the different collections, only those in the skull were statistically Q4 significantly different (p o 0.05) from the other types of bones. Analysis of a radar chart also allowed us to say that these differences tend to diminish with age. The Spearman correlation test applied to mean lead concentrations showed strong and very strong positive correlations betweenall different types of bones. This test also showed that mean lead concentrations in bones are negatively correlated with the age of the animals. This correlation is strong in iliac and femur and very strong in tibia–fibula and skull. It was also shown that the decrease of lead accumulation with age is made by three plateaus of accumulation,