
An Integrated Course on Parallel and Distributed Processing�

José C. Cunha João Lourenço
fjcc, jmlg@di.fct.unl.pt

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Portugal

Abstract

Most known teaching experiences focus on parallel com-
puting courses only, but some teaching experiences on dis-
tributed computing courses have also been reported. In this
paper we describe a course on Parallel and Distributed Pro-
cessing that is taught at undergraduate level in the Com-
puter Science degree of our University.

This course presents an integrated approach concern-
ing concurrency, parallelism, and distribution issues. It’s
a breadth-first course addressing a wide spectrum of ab-
stractions: the theoretical component focus on the funda-
mental abstractions to model concurrent systems, includ-
ing process cooperation schemes, concurrent programming
models, data and control distribution, concurrency control
and recovery in transactional systems, and parallel process-
ing models; the practical component illustrates the design
and implementation issues involved in selected topics such
as a data and control distribution problem, a distributed
transaction-based support system and a parallel algorithm.

We also discuss how this approach has been contributing
to prepare the student to further actions regarding research
and development of concurrent, distributed, or parallel sys-
tems.

Introduction

Most known teaching experiences focus on parallel comput-
ing courses only [9, 10, 12, 18, 20]. They report on several
approaches concerning the hardware and software support.

Some teaching experiences on distributed computing
courses have also been reported [7, 16, 19] encompassing
network computing or distributed algorithm design. A pro-
posal for an integrated approach to teach concurrency issues
in operating systems, database systems, and distributed sys-
tems can be found in [2] but it doesn’t discuss parallel com-
puting, and its focus is more on the operating system level.

�Accepted for publication in “The 29th SIGCSE Technical Symposium
on Computer Science Education”.

In this paper we describe a course on Parallel and Dis-
tributed Processing that is taught at undergraduate level in
our Computer Science (CS) degree, and presents an inte-
grated approach concerning concurrency, parallelism, and
distribution issues. It is a breadth-first course addressing a
wide spectrum of abstractions, but it assumes a previous ex-
posure to classical concurrency issues at the operating sys-
tem level and basic knowledge of computer networks. It
is attended by students in their final (fifth) year aiming to
prepare them for further actions at the university or the in-
dustry requiring a deep understanding of the complex be-
havior of real concurrent, distributed and parallel systems.
Although most classical CS courses cover individual top-
ics such as concurrent programming, network programming,
transaction-based processing, or parallel algorithm design,
they usually consider each topic in a very narrow scope.
From a conceptual point of view, many common issues ap-
pear among the above topics which must be clearly identified
and put into a more broad scope, such that a better under-
standing of real applications and systems can be achieved.
We think this integrated view can be presented in a final
course of a CS degree.

The theoretical component focus on the fundamental ab-
stractions to model concurrent systems, including process
cooperation schemes, concurrent programming models, data
and control distribution, concurrency control and recovery in
transactional systems, and parallel processing models. The
practical component aims at illustrating the design and im-
plementation issues involved in a few selected and signif-
icant topics: (i) a data and control distribution problem,
which is typically a distributed algorithm involving dis-
tributed process synchronization based on logical clocks; (ii)
a distributed transaction-based support system, typically in-
volving both concurrency control and recovery techniques;
(iii) a parallel algorithm and its application, typically involv-
ing its implementation and performance evaluation.

A distinctive characteristic of our approach is the empha-
sis on a close integration of the following aspects: (i) the the-
oretical issues involving concurrency, distribution, and par-
allelism which are presented in an unified way; (ii) a tight

1



interaction between theoretical abstractions and their practi-
cal implementation; and (iii) the effective use of an unified
platform—the PVM [3] system—to support the implemen-
tation.

In the following three sections we discuss each of the
above aspects. We conclude with a discussion on the charac-
teristics of this approach, and describe further experiences.

Abstractions for Concurrency, Distribution, and
Parallelism

Our goal is twofold: (i) to identify the main fundamental
abstractions for concurrency, communication, and synchro-
nization; (ii) to introduce distribution and parallelism con-
cepts and techniques.

The theoretical lectures address the following topics:

1. A discussion on the characteristics of concurrent, dis-
tributed, and parallel systems. The goal is to iden-
tify the distinctive aspects of so-called concurrent, dis-
tributed and parallel systems as well as the underly-
ing common concepts. This is made by discussing
the whole spectrum of computation layers: classes of
applications, formal models, programming languages,
operating systems, and hardware architectures. A
breadth-first approach is highly desirable because it
gives a global view of the issues, and prepares the way
to further exploration of specific topics. The student
will get a clear understanding of the logical problem
specification, and the approaches that support the im-
plementation of high-level abstractions.

2. An overview of concurrent, distributed, and parallel
programming models. Known approaches for the spec-
ification of concurrency and communication are dis-
cussed. Processes, threads, objects, shared and dis-
tributed name spaces, and associated communication
models are presented and illustrated with examples,
drawn from representative languages and models.

3. A discussion on the fundamental aspects of data and
control distribution. Models of data and control distri-
bution, partitioning and replication are discussed. Syn-
chronization of distributed processes and event order-
ing management (logical and vector clocks, and causal
precedence) is deeply studied. Several classes of dis-
tributed algorithms are discussed, ranging from mutual
exclusion, election, deadlock handling, termination de-
tection, to high-level protocols for atomic and causal
message broadcasting, and coherent management of
replicated data.

4. A discussion of concurrency in transaction-based sys-
tems. Transactions in database and object-oriented set-
tings are discussed. Both concurrency control and

fault-handling and recovery techniques are discussed,
using centralized and distributed approaches.

5. An overview of parallel processing systems. A discus-
sion of several classes of parallel applications and al-
gorithms, the identification of significant parallel pro-
gramming models, and the implementation issues con-
cerning the operating system and the parallel architec-
ture.

Integrating Theory and Practice

Practical support for teaching Parallel and Distributed Pro-
cessing can be entirely based on the high-level programming
language level. Languages such as Occam [15], or Linda-
based languages [4, 8] can be used with the advantage of
clearly illustrating the adequacy (or lack of it) of a specific
programming paradigm to solve distinct problems.

Alternatively, a more generic (and flexible) approach con-
sists in using a language such as SR [1], offering the possi-
bility of exploiting several distinct concurrency and commu-
nication semantics in an unified framework.

However, in order to support such a wide spectrum of
concepts as discussed in the theoretical lectures, we need
a very flexible programming platform, preferably at an in-
termediate level, offering an adequate compromise between
some degree of transparency, and some level of control of
system-level abstractions. This requirement results from the
need to illustrate typical distributed system concepts, typical
transaction-based concepts, and typical parallel processing
concepts, in a single framework.

Among the existing platforms, we find the PVM system
[3] to be the most suitable to meet the above goal. Prac-
tical sessions are organized according to three main small
projects, each closely corresponding to one major topic that
is developed by the theoretical lectures. In the following we
illustrate three examples that have been actually performed
in our course:

1. A project on distributed algorithm design and imple-
mentation. Typically, a classical distributed algorithm
is selected among the ones discussed on the lectures,
and the students must devise a logical distributed archi-
tecture that matches the algorithm. Issues such as pro-
cess decomposition and cooperation, synchronization
and event ordering with no global clock, cost in terms
of message traffic, and fault-handling naturally arise,
and are handled in the setting of this specific problem.

2. A project on transaction-based processing. Typically, a
simplified transaction-based system is designed on top
of an existing UNIX file system, including a concur-
rency control method, based on locking, and a deadlock
handling strategy. Centralized and distributed solutions
are analyzed.

2



3. A project on parallel processing. Typically, a parallel
algorithm is selected, and several alternative designs
concerning granularity and process and data distribu-
tion are discussed. Performance measurement is per-
formed in order to evaluate the actual implementation.

Evaluation of the PVM System as a Tool to Support
Practical Laboratories

The PVM programming interface is simple and easy to use.
The students quickly master the fundamentals of process
control and communication mechanisms provided by the
system. Practical PVM-based laboratories are easily in-
stalled on any UNIX-based local network.

For each of the above projects, an incremental develop-
ment approach is followed: first the student designs and im-
plements some basic mechanisms and associated primitives
that are needed to support the specific high-level abstrac-
tions required by each problem; at a second step, the stu-
dent actually uses such primitives to implement a solution to
the problem; finally, an evaluation of the selected solution is
made, concerning both its functionality and its performance.
Alternative solutions may then be proposed but usually there
is no time to actually implement them.

As an example, consider the project on distributed algo-
rithm design. First the students implement an extended ver-
sion of the PVM communication primitives such that logi-
cal timestamps and logical clock management is supported.
Then, using such primitives, the students implement the dis-
tributed algorithm. A similar approach is followed con-
cerning the transaction-based project. First support for lock
management is implemented, and then deadlock handling is
added. Concerning the project on parallel algorithm design,
first a master-slave scheme is implemented, and then it is
actually used to solve the specific problem.

From our experience, we claim this is a very fruitful ap-
proach because it allows a clear identification of the required
abstraction mechanisms, at distinct levels, their implemen-
tation on top of a specific platform (PVM), and their use to
solve the proposed problem. This allows the student to get
a very realistic feeling about the theory, the design abstrac-
tions, and the implementation constraints.

Although many courses use specific parallel machines,
greater flexibility can be achieved by having a heteroge-
neous local computer network including some multiproces-
sor nodes. We use a UNIX LAN with access to two multi-
computers, each with sixteen Transputer-based nodes. Con-
cerning the software environment, there is an advantage of
using PVM and the C language for all the programming
projects in such a short course because it provides a more
uniform environment instead of a variety of languages and
environments. A more advanced course can explore multi-
ple parallel programming models.

Discussion

This course has been lectured for several years and we have
some evidence that it really helps the student to get a rel-
atively deep understanding of the theoretical and practical
issues involved in the covered topics.

In a fifteen-week term, the course has 30 hours of theoret-
ical lectures, and 45 hours of practical sessions. The average
students are typically able to complete the practical session
projects with only some extra effort beyond class time. An
average number of 40 students have attended the course each
year. They are divided in two classes during the laboratory
sessions. They are in their fifth year of the Informatics Engi-
neering degree and have a classical background in computer
architecture and organization, operating systems, computer
networks, and programming and software engineering. So
they are well prepared to concentrate on design and imple-
mentation issues from an integrated, system-level point of
view.

As there is not enough time to explore all course mat-
ters with depth, both theoretically and practically, the course
has a broad breadth-first scope aiming at the following main
goals:

1. To prepare the student for an integrated view of con-
current, parallel and distributed systems technology as
found in real systems and applications. Real systems
and applications encompass multiple dimensions re-
lated to the course topics, e.g. they exhibit different
levels of concurrency, with several possible forms of
parallelism, which are typically integrated into a dis-
tributed and heterogeneous environment.

2. To enable further advanced studies which complement
this course: in the final course project during the second
term of the fifth year of the engineering degree, or at
master level.

As there are no support texts fully encompassing the
course topics we are using multiple sources [5, 13, 14, 17]
and some significant papers concerning algorithm design.
An integrated view of all these elements is given to the stu-
dents in a set of lecture notes [6].

In [18] a prediction is made that in the long-term specific
parallel computing courses may well tend to disappear, and
be subsumed within other computer courses ranging from
algorithms, to compilers, operating systems, and software
engineering. Although we tend to agree with this view, this
is not the case for an integrated approach such as the one we
propose.

Our experience with the course even shows a great need
to increase the focus on the integrated view. This con-
cerns for example the presentation of distinct abstractions
into more unified models, e.g. shared-memory, distributed-
memory, and distributed-shared memory; process-based,

3



object-based and thread-based; centralized and distributed
data and control; total and partial orderings. It also concerns
the illustration of specific case studies where the above mul-
tiple dimensions can be found in real applications and sys-
tems.

Further Experiences

In the past five years, about 20 final student projects were
successfully completed. These projects took place during
the second fifteen-week term following our course, and in-
volved a large diversity of topics such as distributed debug-
ging, parallel genetic algorithms, parallel volume visualiza-
tion algorithms, parallel and distributed Prolog, and runtime
support systems for the Transputer machines. Some of these
students have made our M.Sc. course in Computer Science
where they attended a more advanced course on Parallel and
Distributed Processing, and completed dissertation projects
under related topics. Through these actions we found that
some specific topics which were lectured in the course can
be more deeply explored by the students.

In 1996 we have started an exciting experience by involv-
ing our undergraduate students in a large project for design-
ing and implementing a parallel and distributed computa-
tional steering environment for genetic algorithms. The stu-
dents were divided into groups, each responsible for the de-
sign and implementation of a component in the environment,
under our close supervision:

1. Parallel genetic algorithms: four students were respon-
sible for the implementation of a PVM-based proto-
type for the parallel execution of genetic algorithms,
including a visualization component that graphically
displays the evolution of the parallel computation. We
also selected two test applications involving optimiza-
tion problems in the area of the environmental sciences,
as case studies to evaluate the prototype.

2. Parallel and distributed debugging: four students were
in charge of developing a distributed debugging archi-
tecture for C programs in the PVM environment. This
is being used as the steering component of the whole
environment, in order to dynamically control the pa-
rameters of the genetic algorithm prototype.

From the pedagogical point of view this project has been
showing us several interesting aspects:

1. The students were really involved into a real collabora-
tive effort which forced them to carefully analyze the
interfaces between components, and to face the corre-
sponding design and implementation difficulties. This
also puts particular requirements upon the developed
documentation describing each component.

2. Intermediate design or implementation errors in some
components were made evident when trying to inte-
grate them into the system.

3. The students were highly motivated and stimulated by
this environment which is expected to be used by non-
computer scientists.

All of these students had previously attended the inte-
grated course on parallel and distributed processing.

Besides our undergraduate degree we have also applied
this approach in three intensive courses that we have lec-
tured within the scope of an European Tempus project [11].
In these very short courses (two-weeks) both the theoreti-
cal and the practical sessions have focused on a single spe-
cific topic (distributed algorithm design and implementa-
tion). Again, we have used the PVM system for the practical
sessions, with success.

Conclusions

We discussed our experience with a course based on an in-
tegrated view to present multiple dimensions found in so-
called concurrent, parallel and distributed systems. This
will enable the student to understand both conceptual and
practical design and implementation issues that are found in
real applications and systems, where multiple heterogeneous
and autonomous hardware and software components estab-
lish complex interactions affecting both the performance and
correctness of the whole system.

We have shown how this course has allowed the students
to pursue further successful actions, at undergraduate and
master levels, towards a more deep development of parallel
and distributed processing topics within the university envi-
ronment. We plan to pay particular attention to the proposal
of more industry-oriented final student projects.

Acknowledgements

Thanks are due to all the students that have participated in
these activities.

This work was partialy supported by the EC TEMPUS
Project S JEP 07989-94.

References

[1] G. R. Andrews. The Distributed Programming Lan-
guage SR — Mechanisms, Design, and Implementa-
tion. Software: Practice and Experience, 12(8), 1982.

[2] J. Bacon. An Integrated Approach to Operating Sys-
tems, Database, and Distributed Systems. Addison-
Wesley, 1993.

4



[3] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek,
and V. S. Sunderam. A User’s Guide to PVM Par-
allel Virtual Machine. Technical Report ORNL/TM-
118266, Oak Ridge National Laboratory, 1991.

[4] N. Carriero and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4), April 1989.

[5] K. M. Chandy and J. Misra. Parallel Program Design.
Addison-Wesley, 1988.

[6] J.C. Cunha. Distributed systems. Lecture notes, Depar-
tamento de Informática, Faculdade de Ciências e Tec-
nologia, Universidade Nova de Lisboa, 1991.

[7] E. Dillon, C.G. Santos, and J. Guyard. Teaching an En-
gineering Approach for Network Computing. In Pro-
ceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education, volume 28, pages 229–
232, Philadelphia, Pennslvania, March 1996. ACM.

[8] B. S. Elenbogen. Parallel and Distributed Algo-
rithms:Laboratory Assignments in Joyce/Linda. In
Proceedings of the 27th SIGCSE Technical Symposium
on Computer Science Education, volume 28, pages 14–
18, Philadelphia, Pennslvania, March 1996. ACM.

[9] L. Jim and L. Yang. A Laboratory for Teaching Paral-
lel Computing on Parallel Structures. In Proceedings
of the 26th SIGCSE Technical Symposium on Com-
puter Science Education, pages 71–75, Nashville, Ten-
nessee, March 1995. ACM.

[10] D. J. John. NSF Supported Projects: Parallel Computa-
tion as an Integrated Component in the Undergraduate
Curriculum in Computer Science. In Proceedings of
the 25th SIGCSE Technical Symposium on Computer
Science Education, volume 26, pages 357–361. ACM,
1994.

[11] J. Kwiatkowski, M. Andruszkiewicz, E. Luque,
T. Margalef, J. C. Cunha, J. Lourenço, H. Krawczyk,
and S. Szejko. Teaching Parallel Processing: Develop-
ment of Curriculum and Software Tools. In Proceed-
ings of International Conference on Integrating Tech-
nology into Computer Science Education, volume 28,
Barcelona, Spain, June 1996. ACM.

[12] E. Luque, J. Sorribes, R. Suppi, E. Cesar, J. L.
Falguera, and M. Serrano. Parallel Systems Devel-
opment in Education: a Guided Method. In Proceed-
ings of International Conference on Integrating Tech-
nology into Computer Science Education, volume 28,
Barcelona, Spain, June 1996. ACM.

[13] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[14] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic
Transactions. Morgan Kaufmann, 1994.

[15] D. May. OCCAM. SIGPLAN Notices, 18(4), April
1993.

[16] N. Plouzeau and M. Raynal. Elements for a Course on
the Design of Distributed Algorithms. SIGCSE Bul-
letin, 24(2), 1992.

[17] M. Raynal. Distributed Algorithms and Protocols.
John Wiley & Sons, 1988.

[18] N. C. Schaller and A. T. Kitchen. Experiences
in Teaching Parallel Computing: Five Years Later.
SIGCSE Bulletin, 27(3):15–20, September 1995.

[19] C. Stewart. Distributed Systems in the Undergraduate
Curriculum. SIGCSE Bulletin, 26(4):17–20, December
1994.

[20] W. E. Toll. Decision Points in the Introduction of Par-
allel Processing into the Undergraduate Curriculum. In
Proceedings of the 26th SIGCSE Technical Symposium
on Computer Science Education, volume 27, pages
136–140, Nashville, Tennessee, March 1995. ACM.

5


