Tool Integration Issues for Parallel and Distributed Debugging®

José C. Cunha

Jodo Lourencgo

Vitor Duarte

Departamento de Informética

Faculdade de Ciéncias e Tecnologia

Universidade Nova de Lisboa

Portugal

E-mail: {jcc,

Abstract

This paper describes our experience with the design and
implementation of a distributed debugger for C/PVM pro-
grams within the scope of the SEPP and HPCTI Coper-
nicus projects. These projects aimed at the development
of an integrated parallel software engineering environ-
ment based on a high-level graphical parallel programming
model (GRAPNEL) and a set of associated tools support-
ing graphical edition, compilation, simulated and real par-
allel execution, testing, debugging, performance monitor-
ing, mapping, and load balancing. We discuss how the de-
velopment of the debugging tool was strongly influenced
by the requirements posed by other tools in the environ-
ment, namely support for high-level graphical debugging
of GRAPNEL programs, and support for the integration of
static and dynamic analysis tools. We describe the func-
tionalities of the DDBG debugger and its internal architec-
ture, and discuss its integration with two separate tools in
the SEPP/HPCTI environment: the GRED graphical edi-
tor for GRAPNEL programs, and the STEPS testing tool for
C/PVM programs.

1. Introduction

Due to the increased interest in exploiting parallel and
distributed applications, the development of adequate soft-
ware engineering environments became a very important
issue in recent years. This goal was the main motivation
of the partners involved in the SEPP [1] and HPCTI [2]
projects of the Copernicus Programme. Although each part-
ner was responsible for the development of individual tools,
a major concern aimed at their coherent integration into
the GRADE environment. The whole development cycle

*Submited to “The 3" d SEIHPC Workshop, Madrid, Spain.”

jml, vad}@di.fct.unl.pt

is supported, including graphical editing, compilation, sim-
ulation and real parallel execution on top of PVM [3]. As-
sociated tools for testing, debugging, performance monitor-
ing, mapping, and load balancing are also supported.

In this paper we discuss the main issues involved in the
design and implementation of the DDBG distributed debug-
ger, and its integration into the GRADE environment.

The GRADE environment [4] consists of a set of devel-
opment tools built around the GRAPNEL model for graph-
ical parallel programming. GRAPNEL [5] is a graph-based
visual programming model supporting the structured design
of parallel applications. In order to provide an adequate
view to the user, all development tools should refer to the
abstractions provided by GRAPNEL. For example, as far as
debugging is concerned, the inspection and control of the
computation state should refer to the GRAPNEL program
components and structures, and should be integrated with
the graphical user interface supported by GRADE. How-
ever, at the same time, debugging at a lower level should
also be supported, allowing the user to inspect and control
the C/PVM-based components that are part of the GRAP-
NEL program. This requires that the debugging tool should
provide an interface to the GRED graphical editor, while
at the same time it should also allow direct access to the
C/PVM debugging functionalities.

Another important aspect of a parallel software engi-
neering environment is the possibility of a close integration
between static analysis and testing tools, and the dynamic
analysis and debugging functionalities. In fact, due to the
great complexity of parallel computations, a tool is required
to allow the user to generate adequate testing scenarios, de-
pending on the parallel program structure and the dynami-
cally established process interactions. One can obtain fur-
ther information on program behavior and inspect specific
computation paths in greater detail, if a debugging tool can
be coupled to a testing tool.

The above interfacing requirements were satisfied by a

distributed process-level DDBG debugger. The prototype of
the DDBG system allows the inspection and control of dis-
tributed C/PVM processes. The DDBG architecture can be
extended to support further functionalities, such as thread-
based models, and can be adapted to other intermediate-
level platforms such as MPI[6].

In section 2 of this paper, we describe the DDBG debug-
ger. In section 3 we discuss its integration into the GRADE
environment, and with the STEPS testing tool. Finally we
conclude by identifying ongoing research directions.

2. The DDBG debugger
2.1 Design Issues

The basic functionalities which are required by a de-
bugging service concern state inspection and control of a
computation. This includes abstractions related to individ-
ual processes or threads, and coordination-level abstractions
such as deterministic re-execution, global distributed break-
points, and evaluation of global predicates. Such function-
alities strongly depend upon each programming and com-
putational model, but it is possible to identify a set of basic
debugging mechanisms (e.g. [7]), and use them in order to
implement higher level functionalities.

Recently we have been working on the implementation
of the DDBG distributed process-level debugger for C/PVM
programs [8]. It allows an user or another tool to control
and inspect multiple distributed processes. There are the
following classes of debugging primitives:

e Control of the debugging session. This includes com-
mands to start or finish a debugging session, to put a
process under debugger control, and to remove a pro-
cess from the debugging environment.

e Control of the process execution. This includes com-
mands that directly control the execution path followed
by a process, once it is under debugger control.

e Process state inspection and modification. This in-
cludes commands to inspect the state of a process in
well-defined points which are reached due to the oc-
currence of breakpoints or other types of events (pro-
cess stopped or terminated). The information that can
be accessed includes process status, variable and stack
frame records. and source code information.

This interface is used to implement the debugging ser-
vices which are required by the integration with GRED and
STEPS tools, as illustrated in section 3.

In order to support easy experimentation with debugging
services for distinct computational models, a flexible soft-
ware architecture is required. This architecture should be

able to integrate and manage distinct types of process-level
or thread-level debuggers, which depend on each hardware
and operating system platform, and on each programming
model. In the following, we describe the DDBG architec-
ture, and discuss alternative designs in order to obtain in-
creased flexibility.

2.2 The DDBG Architecture

The DDBG (Distributed DeBuGger) [8] tool provides
a set of debugging functionalities for distributed programs
written in C and using the PVM system [3] to support con-
currency and interprocess communications. The main fea-
tures of DDBG are:

o Simultaneous access from multiple (high-level) client
tools. Multiple tools can (independently) issue debug-
ging commands over the same target application.

e Dynamic attach and detachment of client tools to the
debugging engine. Client tools can “enter” and “leave”
the debugging process dynamically, having their own
life cycle independent of the DDBG debugger life cy-
cle.

o Global view of the system being debugged. All the
client applications share the same information con-
cerning the program state and have the same abilities
to issue inspection and control commands.

o Support for heterogeneity. Heterogeneity is supported
at multiple levels: hardware, operating system, pro-
gramming language and model, as a process-level de-
bugger is used to access each individual target applica-
tion process.

o Easy integration with client tools. Tool integration fea-
tures and functionalities have been included in the de-
bugger specification, from the architecture design until
the effective implementation.

Three different types of processes can take part in a de-
bugging session with DDBG (as presented in Figure 1):

1. Client Processes (CP). These processes use a Debug-
ging Library (DL) that provides access to all DDBG
debugging functionalities.

2. DDBG processes. The DDBG debugger consists of the
following components:

e Main Daemon (MD). The MD acts as a master or
coordinator, and is responsible for receiving the
CP requests, convert them into a set of commands
and send them to the relevant Process-level De-
buggers (PLDs) (see below). The MD is also re-
sponsible for receiving and processing the PLD

Debugging

Client Processes | . Library

Graphical .

Interface

Machine A

Process
Level

/ Debugger

Local
Daemon

Main
Daemon

Text Interface
(console)

—— > Service call (and reply)

[Process |
Level
Debugger

Process
Level
Debugger

Local

|
|
Machine B I
|
|

Daemon

Figure 1. The DDBG distributed debugger

replies, sending them back to the CP through re-
turn parameters of the DL.

e Local Daemons (LD). There is a LD in each
machine, doing some local interpretation of the
debugging commands and working as a multi-
plexer, forwarding these commands and control-
ling all the PLDs running on that machine.

e Process-level Debugger (PLD). A system-
dependent sequential debugger, that supports the
programming language and the underlying hard-
ware. There is a PLD attached to each process
of the Target Application, issuing the inspection
and control commands to that process.

o Debugging Library (DL). This component is not
a process by itself, but it’s included into any
client process in order to provide a set of func-
tions that give access to the DDBG functionali-
ties.

o Graphical and Text-oriented debugging user in-
terfaces (UI). These are two examples of CP (not
being part of DDBG by themselves, but are in-
cluded in the distribution), that were developed
and integrated into DDBG, providing two dif-
ferent interfaces (one graphical and the other
command-line oriented) to the DDBG debugger.

3. Target Application Processes. The application being
debugged. This application can have multiple pro-
cesses spread on multiple machines, with different
hardware and operating systems.

There are alternative designs to DDBG, depending on
how the responsibilities are distributed among its processes.

In a pure hierarchical design the MD is responsible for the
interpretation of debugging commands received from the
CP, i.e. it performs all the necessary conversions, it for-
wards the actual PLD-level commands to the corresponding
LD and sends the replies back to the CP. In this solution, the
LD processes are just gateways with very limited responsi-
bilities: contacting the right PLD and send its answer back
to the MD. The MD does all the work. There are several
disadvantages in such kind of design:

e High MD complexity. The MD process becomes very
complex, as it must also support multiple concurrent
client connections and so it needs to manage a lot of
information concerning pending requests.

e Hard to support heterogeneity. It is more difficult to
support heterogeneous systems, consisting of distinct
types of PLD processes. In heterogeneous distributed
computing one can have an application decomposed
into multiple parts, each running on distinct sequen-
tial or parallel machines, with distinct PLD processes.
This design requires the MD process to process all
command and data interpretations.

o Reduced flexibility. As the MD program becomes very
complex, it is more difficult to integrate new services
into the architecture, such as performance monitoring
and debugging.

A more flexible design would distribute the responsibil-
ity for actual command and data interpretation to each LD,
and would let the MD do only the interfacing to the client
tools. Each LD can then independently perform its tasks,
depending on the specific characteristics of each local PD.

This is a better solution to support heterogeneous debug-
ging, as well as to support extended services, because the
required modifications are associated with specific LD pro-
cesses. The functions left to the MD are the interfacing with
client tools, the management of multiple connections to the
debugging system, and the presentation of global views to
the user concerning the global state of the distributed com-
putation. As a result of our past experience in the SEPP and
HPCTI projects, a new architecture that reflects the above
design options is under development where the MD is a
multi-threaded process with associated services.

3. Using DDBG in SEPP/HPCTI
3.1. Experiences With Tool Integration

It is very difficult to provide full integration among a
large set of development tools such as the ones found in
the SEPP/HPCTI projects. This is due to the need to offer
consistent views at several levels: multiple user interfaces,
tool behavior, tool interaction, and tool composition. Even
in our project, where many of the tools were jointly devel-
oped from the beginning, a full integration was a difficult
goal to achieve because it required a tight collaborative ef-
fort between the involved partners, concerning their design
options, and the associated working environments (e.g. with
distinct graphical user interfaces, and operating system plat-
forms). However, we have obtained a reasonable degree of
integration between several tools, and have opened the way
to possible further integrations [2, 1, 9, 10, 11]. Concern-
ing the debugging tool[12], one of the distinctive goals of
our approach when designing and implementing the DDBG
system was to provide a platform supporting easy experi-
mentation with tool integration as far as debugging is con-
cerned. Two main experiments were performed concerning
the interfacing of DDBG with other parallel software devel-
opment tools which exhibit very distinct functionalities. In
the next two sections (3.1.1 and 3.1.2) two successful inte-
grations of DDBG with other tools are presented.

3.1.1.Integrating DDBG into the GRADE Programming
Environment

The GRADE (GRApnel Development Environment) is an
integrated environment for the development of parallel pro-
grams in the GRAPNEL programming language. The
GRAPNEL language is a graph-based visual parallel pro-
gramming language, that supports a structured style for de-
signing parallel applications, and is supported by the GRED
graphical editor [5, 4]. in this section we will concentrate
in the close integration of DDBG and GRED (GRapnel
EDitor) in order to support debugging of GRAPNEL pro-
grams.

In such integrated environment the user involved in the
debugging process should work at the same level and with
the same abstractions that were used in program develop-
ment' highlighting the entities in the graphical representa-
tion and their corresponding lines of source code in the tex-
tual program representation.

For such high-level debugging process for GRAPNEL
programs, each debugging action at the GRED-level is
mapped into a set of debugging actions at DDBG-level.
Such commands are then sent and processed by DDBG,
which in turn replies with DDBG-level answers that must be
converted into the corresponding action in the GRED visual
editor. In order to support potential long-execution com-
mands, such as “proceed until next breakpoint is reached”,
an asynchronous (event) notification feature has been inte-
grated into DDBG and used by GRED to detect the comple-
tion of such kind of commands.

The integration of DDBG into the GRADE program-
ming environment is detailed in [13].

3.1.2. Integrating DDBG with STEPS

The STEPS testing tool [14, 15], developed by our part-
ners at the Technical University of Gdansk, allows to iden-
tify potential critical paths and critical sections in a C/PVM
program. The DDBG debugging tool can inspect and con-
trol the program behavior, helping in the localization of pro-
grams bugs and their causes.

When composing both tools, one must ensure that the
program will run and behave as expected, and so the com-
position of the testing and the debugging tools starts by re-
executing the target applications and forcing each process to
follow some specific path and until a pre-determined point.
It is necessary to ensure that the application will reach the
critical points previously identified by the testing tool and
will stop in a consistent state (also called a “Global Break-
point”). At this potential critical point, the user can enter
an interactive debugging session, using both the graphical
and the command-line debugging environments, and issu-
ing typical inspection and control commands directed at any
of the target application processes.

The DEIPA (Deterministic (re-)Execution and
Interactive Program Analysis) tool was developed to
support the integration of the STEPS testing tool and the
DDBG debugging tool as presented above. DEIPA acts
as an intermediary between those tools, recognizing and
processing the output of the STEPS tool—the TeSS file,
with a set of global breakpoints—and converting it into
(a set of) commands for the DDBG tool. To support this
functionality, the DDBG capability of having multiple

I'This is a general concept, as it makes no sense to develop a program
using the C programming language and then debug this same program at
assembler level.

simultaneous client tools has been used, by having the
DEIPA tool controlling the execution of all the processes
of the target application and having the text user-interface
(DDBG console) and/or the graphical user-interface to
inspect and change each process state.

The DEIPA tool is mainly composed of 3 modules: the
Console, the Vid Database Manager, and the Replayer. The
architecture of the DEIPA tool and its relations with the
STEPS and DDBG tools are presented in Figure 2, and ex-
plained below.

STEPS
Tool
TeSS file I

DDBG
Console

DEIPA

Replayer

DDBG
Deamon

Process 1 Process 3

Process 2

Figure 2. The integration of STEPS and DDBG

e The Console module. This module acts as the user in-
terface to the DEIPA tool. Actually, this interface is
based on a console (command-line oriented user in-
terface), from which the user can load a TeSS file and
control the (re-)execution of the target application, pro-
viding some basic commands to: control the DEIPA
tool, e.g.load (to load a new TeSS file), or that are con-
verted into (a set of) debugging commands and applied
to the target application via the DDBG tool, e.g. step
(to proceed into the next Global Breakpoint).

o The Vid Database Management module During static
analysis, STEPS uses a symbolic naming schema (this
is mandatory, as process execution isn’t real but simu-
lated) and DDBG uses real process identifiers (as the
target application is actually running). This module
implements the mapping from symbolic to actual pro-
cess identifiers.

o The Replayer module. This is responsible for the map-
ping of the DEIPA console commands into DDBG
commands, e.g. converting a DEIPA step com-
mand into a set of DDBG set_breakpoint and con-
tinue_execution commands. It’s also responsible for
the required process control, e.g. setting variables in

an if-then-else statement, so that a process is forced to
follow the specific path as specified in the TeSS file.

In [16] one can find a complete discussion of the DDBG
and STEPS integration issues.

4. Conclusions and Future Work

In this paper we have discussed the DDBG debugger, and
how it was used to offer debugging functionalities to other
tools in a parallel software engineering environment. The
DDBG is a distributed process-level debugger,i.e. it allows
the control and inspection of distributed processes. Its func-
tionalities were adequate to support the requirements posed
by other tools in the GRADE environment.

This experience has allowed us to identify the following
main directions to improve current debugging functionali-
ties:

e Concerning computation state inspection and con-
trol. This includes the support of process-level and
thread-level debugging, as well as the support of
coordination-level services, such as distributed global
breakpoints, and evaluation of global predicates.

e Concerning tool interaction and integration. This in-
cludes more flexible support for interfacing the debug-
ger with distinct concurrent tools and user interfaces.

e Concerning heterogeneity. This includes the support of
other parallel and distributed platforms besides PVM,
such as MPI and WindowsNT systems.

With new kinds of requirements posed by highly inter-
active distributed programs, as for component integration
in meta-computing problem-solving environments, new ab-
stractions and interactions can be added to the traditional
ones, and new tools can be expected to emerge, that share
the same observation and control functionalities. A mon-
itoring system for a distributed application can serve sev-
eral purposes, from simple visualization of the interactions
between the distributed components to exhaustive run-time
information describing the program states during the exe-
cution, for performance evaluation (profiling) or debugging
purposes. Typical uses of a monitoring system in parallel
and distributed applications concern performance evalua-
tion and visualization/debugging.

There is the need for systems that can work with sev-
eral distribution support systems and be used by several
tools, and can be extended and adapted to new environ-
ments and functionalities. Systems like these can be used
for testing different support systems, new tools and to inte-
grate them. This guides us to define hierarchically layered
architectures that provide a well-defined interface between

levels, including tool interfacing. The ongoing work at the
OMIS project[17] is an attempt to define a standard that in-
cludes inspection and control functions, and allows a clear
separation between user level services and basic monitoring
functionalities.

The above aspects are being taking into account within
the scope of an ongoing project.

Acknowledgments

This work was partially supported by the EC within
COPERNICUS Programme, Research Projects SEPP (Con-
tract CIPA-C193-0251) and HPCTI (Contract CP-93-5383).

References

[1] S.Winter et al. Software Engineering for Parallel Pro-
cessing, copernicus programme. Final report, Univer-
sity of Westminster, March 1997.

[2] S.Winter et al. High Performance Computing Tools
for Industry, copernicus programme. Final report,
University of Westminster, September 1996.

[3] A.Beguelin,J.J. Dongarra, G. A. Geist, R. Manchek,
and V. S. Sunderam. A User’s Guide to PVM Par-
allel Virtual Machine. Technical Report ORNL/TM-
118266, Oak Ridge National Laboratory, USA, 1991.

[4] G.Dozsa,P. Kacsuk, and T. Fadgyas. Development of
graphical parallel programs in PVM environments. In
Proceedings of DAPSYS’96, pages 33—40, 1996.

[5] P. Kacsuk, G. Dézsa, and T. Fadgyas. Designing par-
allel programs by the graphical language GRAPNEL.
Microprocessing and Microprogramming, 41:625—
643, 1996.

[6] Message Passing Interface Forum. Document for a
standard message-passing interface. Technical Report
Technical Report No. CS-93-214 (revised), University
of Tennessee, April 1994. Available on netlib.

[71 J. Brown, J. Francioni, and C. Pancake.
White paper on formation of the high per-
formance debugging forum. Available in
“http://www.ptools.org/hpdf/meetings/mar97/
whitepaper.html”, February 1997.

[8] J. C. Cunha, J. Lourenco, and T. Antdo. A debug-
ging engine for a parallel and distributed environment.
In Hungarian Academy of Sciences-KFKI, editor,
Proceedings of DAPSYS 96, Ist Austrian-Hungarian
Workshop on Distributed and Parallel Systems, Mis-
ckolc, Hungary, October 1996.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Astalo” s L. Hluchy, M. Dobrucky. Hybrid ap-
proach to task allocation in distributed systems. In
Lecture Notes in Computer Science 1277, pages 210—
216. Springer, 1997.

T. Delaitre, G. Justo, F. Spies, and S Winter. Sim-
ulation modeling of parallel systems. In Hungar-
ian Academy of Sciences-KFKI, editor, Proceedings
of DAPSYS 96, 1st Austrian-Hungarian Workshop on
Distributed and Parallel Systems, Misckolc, Hungary,
October 1996.

E. Luque, A. Ripoll, A. Cortés, and T. Margalef. A
distributed diffusion method for dynamic load balanc-
ing on parallel computers. In IEEE CS Press, editor,
Proceedings of EUROMICRO Workshop on Parallel
and Distributed Processing, San Remo, Italy, January
1995.

J. Cunha and J. Lourenco. An experiment in tool in-
tegration: the DDBG parallel and distributed debug-
ger. EUROMICRO Journal of Systems Architecture,
274 Special Issue on Tools and Environments for Par-
allel Processing, 1997.

P. Kacsuk, J. Cunha, G. Dézsa, J. Lourenco,
T. Fadgyas, and T. Antdo. A graphical development
and debugging environment for parallel programs.
Parallel Computing, 1997(22):1747-1770, February
1998.

H. Krawczyk and B. Wiszniewski. Interactive Testing
Tool for Parallel Programs. In P. Crolll Chapman &
Hal: 1. Jelly, I. Gorton, editor, Software Engineer for
Parallel and Distributed Systems, pages 98—109, Lon-
don, UK, 1996.

H. Krwaczyk and B. Wiszniewski. Structural Testing
of Parallel Software in STEPS. In COPERNICUS Pro-
gramme, editor, Proceedings of the 1st SEIHPC Work-
shop, Braga, Portugal, 1996.

J. C. Cunha, J. Lourenco, H. Krawczyk, P. Kuzora,
M. Neyman, and B. Wiszniewski. An integrated test-
ing and debugging environment for parallel and dis-
tributed programs. In Proceedings of the 23"% EU-
ROMICRO 97 Conference, pages 291-298, Budapest,
Hungary, September 1997. IEEE CS.

T. Ludwig, R. Wismuller, V. Sunderam, and A. Bode.
OMIS — On-Line Monitoring Interface Specification
(Version 2.0). Technical report, LRR-TUM, Munich,
Germany, July 1997.

