
Using Program Closures to Make an Application
Programming Interface (API) Implementation Thread Safe∗

Eitan Farchi Itai Segall
IBM Research Labs at Haifa

Israel
farchi@il.ibm.com
itais@il.ibm.com

João M. Lourenço Diogo Sousa
Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

joao.lourenco@fct.unl.pt
dm.sousa@campus.fct.unl.pt

ABSTRACT
Consider a set of methods implementing an Application Pro-
gramming Interface (API) of a given library or program
module that is to be used in a multithreaded setting. If those
methods were not originally designed to be thread safe, races
and deadlocks are expected to happen. This work introduces
the novel concept of program closure and describes how it
can be applied in a methodology used to make the library or
module implementation thread safe, by identifying the high
level data races introduced by interleaving the parallel exe-
cution of methods from the API. High-level data races result
from the misspecification of the scope of an atomic block, by
wrongly splitting it into two or more atomic blocks sharing
a data dependency.

Roughly speaking, the closure of a program P , clos(P), is
obtained by incrementally adding new threads to P in such
a way that enables the identification of the potential high
level data races that may result from running P in parallel
with other programs.

Our model considers the methods implementing the API
of a library of program module as concurrent programs and
computes and analyses their closure in order to identify high
level data races. These high level data races are inspected
and removed to make the interface thread safe. We illustrate
the application of this methodology with a simple use case.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Validation; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

∗This research was partially funded by the European
Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement 257574 (FITTEST) and the
Euro-TM EU COST Action IC1001, and by the Por-
tuguese National Science Foundation in the research projects
RepComp (PTDC/EIA-EIA/108963/2008), Synergy-VM
(PTDC/EIA-EIA/113613/2009), and the research grant
SFRH/BD/41765/2007.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD ’12
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Languages, Reliability, Verification

Keywords
Atomicity Violation, High-Level Data Race, Debugging, Static
Analysis, Concurrency

1. INTRODUCTION
With the introduction of multicore platforms, concurrent

programming is becoming mainstream. Libraries are thus
commonly required to make their API (Application Pro-
gramming Interface) thread safe. The implementation of
the thread-safe version of an API is expected to be efficient
and correct. Given an efficient thread-safe API implementa-
tion, the applications using the library can take advantage
of the multicore setting to improve performance1. To make
the library API thread safe, potential data races, deadlocks,
and high level data races [1] need to be analysed. Intuitively,
a high level data race is a non-atomic access to sets of vari-
ables, for which the relations between them actually call for
atomic access. Note that the access to each set may be pro-
tected and atomic, but accesses to the different sets are not
atomic.

An API is composed of a set of methods exposed to the
API users. Each method may create new threads during
its execution. As a result, concurrent anomalies, such as
data races, high level data races and deadlocks, are possi-
ble regardless of the requirement for thread-safety between
methods. Our analysis will address the detection of high-
level data races in such settings, as well as those introduced
by the parallel execution of the API’s methods.

Adapting an existing implementation of an API to become
thread safe involves three important stages: i) eliminate all
data races caused by concurrent accesses to shared variables
using a fine grained locking strategy, i.e. protect small blocks
of code by locks (as opposed to rough protection of entire
methods); ii) eliminate any deadlocks originated from the
locking policy implemented in the first stage; and iii) elimi-
nate the high-level data races existing in the implementation
after stage ii) is concluded. Classical deadlock and data race
identification tools can be applied to an existing sequential
API implementation to help in the first two stages of the
process of making the API thread safe. This work focuses
on the third stage, i.e., on the analysis of high level data
races in order to make the API thread safe.
1Another problem that is addressed in [5] is the correctness
of the application implementation.

To facilitate the discussion, we make some simplifying as-
sumptions. In the conclusion we discuss how to remove
them. The simplifying assumptions are: i) the data races are
eliminated using a fine grain locking strategy over a single
global lock; ii) we know a priori the set of shared variables;
iii) we know a priori the order by which the atomic blocks
(code blocks protected by a lock/unlock pair) are executed;
iv) we know all subsets of shared variables accessed under
the scope of a lock during the execution of one of the meth-
ods in the API; and v) all API methods have a fixed number
of internal threads.

We are given a concurrent program P . The program is
assumed to use a fine grained single lock strategy. The pro-
gram region delimited by the lock/unlock pair is called an
atomic region. Each program thread ti in P is assumed to
access a set of shared variables that may also be accessed by
other threads. A view v of some atomic region of thread ti
is the set of shared variables accessed by ti in that atomic
region. A maximal view of some thread ti is a view of ti
that is not contained in any other view of ti. There is a
high level data race between two threads ti and tj in P , if
the sets resulting from the intersection of a maximal view
v in ti with the views of tj , V (tj), do not form a chain.
They form a chain if ∀u,w ∈ V (tj), v ∩ u ⊆ v ∩ w or vice
versa. This concept of high level data races regarding the
program’s runtime was introduced in [1].

In this paper, we also take into account the control flow
graph and dependencies between views when considering
high level data races. In other words, we consider only views
that may be executed one after the other in some execution
of the program and that have shared variables in common.
This increases the chance that a high level data race actu-
ally represents an intended transaction and subsequently a
real concurrent anomaly, hence reducing the so called false
positives. Other view dependencies could also be consid-
ered, such as an indirect data dependency between views
through an auxiliary variable that does not appear in any of
them. However, in this paper, we focus on the non-empty
view intersection for simplicity, and discuss further options
in Section 6.

An API is defined by a set of methods. We model a
method as a concurrent program with a single point of en-
try. Given a set of methods m1, . . . ,mn modeled as the set
of concurrent programs P1, . . . , Pn, the high level data races
that may result by executing any subset of methods con-
currently are analysed to tackle the thread-safety challenge.
We refer to the new program that may execute any subset of
P1, . . . , Pn concurrently as P . Instead of analysing the high
level data races of P , the closure operation is introduced and
applied to each Pi, thus obtaining a new program clos(Pi).
We then analyse the high level data races of clos(Pi), in or-
der to identify anomalies associated (in a manner that will
be defined in the paper) with all of the high level data races
of P .

For each of the programs Pi, the analysis of clos(Pi) is
local to Pi and also points to potential problems that are
currently not occurring in P but may occur in future ver-
sions of P . For example, if Pi has the following views, {x, y},
{y, z}, belonging to the same thread and executing consec-
utively, but in P there is no other view with {x, y, z}, then
no high level data races are reported in P concerning the
consecutive access of {x, y} and {y, z} in Pi. Alas, in a fu-
ture versions of P , the programmer might introduce a new

thread with the view {x, y, z}, resulting in a high level data
race. This potential future anomaly is highlighted by the
high level data race analysis of clos(Pi), but not by the high
level data race analysis of P .

The rest of this paper is organised as follows. First, in
Section 2, the concept of a program closure, clos(P), for a
concurrent program P is motivated and developed. In Sec-
tion 3 we discuss how program closures can be used to solve
the API thread safety problem. A detailed use case illus-
trating the process is covered in Section 4. Related works
are discussed in Section 5, and conclusion and future work
are covered in 6, including some considerations on how to
remove the simplifying assumptions introduced in this Sec-
tion.

2. PROGRAM CLOSURE
Consider the concepts of a view and a maximal view as de-

fined in [1] and in the introduction above. Further consider
a concurrent program P that has m threads {t1, . . . , tm}2.
The views associated with thread ti (1 ≤ i ≤ m) are denoted
by V i

1 , . . . , V
i
ni

, where V i
j , 1 ≤ j ≤ ni is a view in thread ti.

We say that two views associated with ti, V i
j and V i

k , are

dependent if there is some execution of P for which V i
k is

executed after V i
j , and V i

j ∩ V i
k 6= ∅. For ti we denote the

directed graph obtained by that relation as Di.
If the intersection of some maximal view in tj , V

j
k , with

the views of a maximal length path in Di, p = (V i
1 , . . . , V

i
l),

does not form a chain, then a high level data race exists
between thread tj and thread ti. They form a chain if,
∀u,w ∈ p, V j

k ∩ u ⊆ V j
k ∩ w or vice versa.

While the definitions discussed in this paper hold for max-
imal length paths in general, for practical usage the paths
must be finite. Therefore we refer only to maximal length
paths that do not include repeating views.

For each maximal length path p = (V i
1 , . . . , V

i
l) in Di that

does not include repeating views, we create a new thread tp
that is associated with a single view Cp = V i

1 ∪V i
2 ∪ . . .∪V i

l .
Cp is also referred to as the closure set associated with the
maximal path p and the thread ti. Intuitively, the maximal
path reflects a set of variable accesses that should be atomic,
due to the dependencies between each pair of consecutive
views.

Note that each thread we are adding to the program has
only one view. As a result, the interaction of any two newly
added threads will never add new high level data races to
the program.

We define the closure of P , clos(P), to be the program
obtained from P by adding such threads, tp, for each maxi-
mal length path p in Di, for each thread i in P . The set of
high level data races in P is contained in the set of high level
data races in clos(P). If the set of high level data races in
P and clos(P) are equal we say that P is a closed program.

To motivate the above definition a sequence of several
examples is given.

2.1 Examples
In the following examples we use the keyword atomic and

the associated block to denote the scope of the lock.

2For simplicity we assume that the number of program
threads is fixed and known.

2.1.1 Example 1

T1

atomic { x = y ; }
i f (cond 1)

atomic { z = x ; }
e l s e

atomic { z = y ; }
i f (cond 2)

atomic { t = z ; }
e l s e

atomic { r = t ; }

Dependency graph for T1

!"#$#

%"#!# %"#$#

&"#'#'"#%#

C2 = {x, y, z, t}
C3 = {x, y, z, t}

Consider a program P1 with a single thread executing
the code T1 above. The closure sets associated with this
thread are C2 = C3 = {x, y, z, t}. So, to close the program
we must add a new thread T2 accessing the variables in C2.

T1 T2

V 1
1 = {x, y} C2 = C3 = {x, y, z, t}

V 1
2 = {z, x}

V 1
3 = {t, z}

V 1
4 = {z, y}

V 1
5 = {r, t}

Note that according to our definition of dependency be-
tween views, as the intersection of {r, t} with {z, x} and with
{z, y} is empty, then there is no dependency between {z, x}
and {r, t}, neither between {z, y} and {r, t}, although they
have a control flow relation.

This example shows how the program closure captures
potential high level data races that do not currently exist,
but that may exist if further threads are to be introduced
to the system. It also illustrates that multiple equal closure
sets will be associates with a single new thread in the closed
program.

2.1.2 Example 2

T1

atomic { x = y ; }
i f (cond 1)

atomic { z = x ; }
e l s e

atomic { w = y ; }
atomic { r = t ; }

Dependency graph for T1

x,	 y	

z,	 x	 w,	 y	

r,	 t	

C2 = {x, y, z}
C3 = {x, y, w}

Consider a program P2 with a single thread executing
the code T1 above. clos(T1) has two new threads T2 and T3,
with views C2 and C3 respectively.

T1 T2 T3

V 1
1 = {x, y} C2 = {x, y, z} C3 = {x, y, w}

V 1
2 = {z, x}

V 1
3 = {w, y}

V 1
4 = {r, t}

The new program clos(T1) has now two high level data
races: one is obtained from V 1

1 + V 1
2 and C2, and the other

is obtained from V 1
1 +V 1

3 and C3. Each newly added thread
in the program closure represents a set of threads that in the
future may be introduced in the system, hence potentially
triggering the identified high level data race.

2.1.3 Example 3

T1

atomic { x = y ; }
i f (cond 1)

atomic { z = x ; }

Dependency graph for T1

!"#$#

%"#!#

C2 = {x, y, z}
Consider a program P3 with multiple threads executing

the code above. This program has no high level data races.
As all the threads in P3 execute the same code, they all
share the same views V 1

1 = {x, y} and V 1
2 = {z, x}, and

have the same maximal path in their control flow (V 1
1 , V

1
2),

so to close the program we will add only one single thread
with the view C2 = {x, y, z}. The new program clos(P3) has
a high level data race, as V 1

1 ∩ C2 = V 1
1 and V 1

2 ∩ C2 = V 1
2

and neither V 1
1 ⊆ V 1

2 nor V 1
2 ⊆ V 1

1 , i.e., V 1
1 and V 1

2 do not
form a chain.

2.1.4 Example 4

T1

atomic { x = y ; }
atomic { z = x ; }

T2

atomic { x = y + z ; }

Consider a program P4 with two threads T1 and T2. In this
example, clos(P4) would include one extra thread with the
view C3 = {x, y, z}, which is already in P4 (in T2). Hence
P4 is already closed and P4 and clos(P4) have the same
(possibly empty) set of high level data races.

2.1.5 Example 5

T1

atomic { x = y ; }
i f (cond 1)

atomic { z = x ; }
e l s e

atomic { z = y ; }
i f cond 2)

atomic { t = z ; }
e l s e

atomic { r = t ; }

T2

atomic {
x = y + z + t ;

}

T3

atomic {
x = y + z + t ;

}

Consider the program P5 above obtained from the ex-
ample in Section 2.1.1 by the closure process, i.e., P5 =
clos(P1). All the closure sets introduced in clos(P5) would
be equal to an already existing view in P5, hence no new
views nor threads are introduced for clos(P5). This is an
example of Lemma 2.1 below (“clos(P) is always closed”).

2.2 Properties of Program Closure

Lemma 2.1. For any program P , clos(clos(P)) = clos(P).

Corollary 2.2. The closure of a program P is always
closed.

Proof. Clearly, clos(P) ⊆ clos(clos(P)). Every thread
in clos(clos(P)) that was not in P is either a result of apply-
ing closure to a thread in P or to a thread in clos(P) − P .
When we apply the closure to a thread in P we clearly re-
main in clos(P). On the other hand, when we apply the
closure to a thread t in clos(P) − P it does not result in a
new thread as threads in clos(P)−P have a single view.

3. MAKING AN API IMPLEMENTATION
THREAD SAFE

Given an implementation of an Application Programming
Interface (API), we would like to make it thread safe, i.e.,
let each method in the API execute in parallel to the others
correctly. We expect that the API methods will need to
be modified, and appropriate protection added, in order for
them to execute correctly in parallel. In this section we
demonstrate how the closure of a concurrent program can
aid in identifying the modifications required in order to make
the API thread safe.

We consider each API’s method call to be a spawn of a
new thread that will execute this method. Note, however,
that an API’s method can create more threads as it executes,
thus it does not necessarily have just one thread.

Let V be the set of views belonging to any of the API
methods. Each API method can therefore be viewed as a
concurrent program Pi that is a set of set of views, hence
Pi ∈ P(P(P(V))). As a result, for our purpose, the set
of API methods is a set of concurrent programs API =
{P1, . . . , Pk}, and executing them in parallel creates a new
concurrent program PAPI = P1 ∪ . . . ∪ Pk. For example, if

P1 = {{{x, y}, {y, z}}, {{x}, {x, y}, {y}}}

has two threads, and

P2 = {{{x}, {y, z}}, {{x}, {y}}}

has two threads as well, then

PAPI = {{{x, y}, {y, z}}, {{x}, {x, y}, {y}}}
∪ {{{x}, {y, z}}, {{x}, {y}}}

= {{{x, y}, {y, z}}, {{x}, {x, y}, {y}},
{{x}, {y, z}}, {{x}, {y}}}

and has four threads.
The set of high level data races that arise from the ex-

ecution of PAPI is denoted by HLDR(PAPI). We are
interested in analysing the relation between this set and the
sets of high level data races of the closure of the API meth-
ods, i.e., the sets HLDR(CLOS(Pi)), i = 1, . . . , k. We will
show that focusing on the high level data races of the clo-
sure of each API method, HLDR(CLOS(Pi)), i = 1, . . . , k,
is sufficient for the purpose of making PAPI a thread safe
program.

Lemma 3.1. Any high level data race in PAPI between
threads ti and tj is either a false alarm, or there is a cor-
responding high level data race in HLDR(clos(Pi)) or in
HLDR(clos(Pj)).

Proof. Consider a high level data race in PAPI be-
tween threads ti and tj . Assume w.l.o.g. that the high
level data race is between a maximal view V j of thread tj
and a set of views V i

1 , . . . , V
i
r of thread ti. By definition,

{V i
1 ∩V j , . . . , V i

r ∩V j} do not form a chain, i.e., there exists
a, b s.t. V i

a ∩ V j 6⊆ V i
b ∩ V j and V i

b ∩ V j 6⊆ V i
a ∩ V j , which

implies that V i
a 6⊆ V i

b and V i
b 6⊆ V i

a .
Consider views V i

a , V i
b as above. If V i

a and V i
b are con-

tained in a maximal path in Di, then by construction clos(Pi)
contains a maximal view V ′ s.t. V i

a ∪ V i
b ⊆ V ′, therefore

V i
a ∩ V ′ 6⊆ V i

b ∩ V ′ and V i
b ∩ V ′ 6⊆ V i

a ∩ V ′, therefore a cor-
responding high level data race exists in HLDR(clos(Pi)).

Otherwise, V i
a and V i

b are not contained in a maximal
path in Di. This can be either because no control flow exists

between them (i.e., there is no run in which V i
a runs after V i

b

or vice versa), or because they are disjoint. In either case,
we consider the high level data race a false alarm.

To illustrate the case when V i
a and V i

b are not contained
in a maximal path in Di, consider the following example:

T0

I f (cond1)
atomic { x = y ; }
e l s e
atomic { z = x ; }

T1

atomic { x = y + z ; }

Intersecting the maximal view of T1, {x, y, z}, with the
views of T0, {{x, y}, {z, x}} results in a non chain {{x, y},
{z, x}} and thus in a high level data race. But this is a false
alarm, as such high level data race can never actually occur
at runtime as only {x, y} or {z, x} may occur in a run of T0,
but never both.

Note that Lemma 3.1 makes no assumptions about the
threads being different from each other. Therefore the Lemma
covers also the case where the same API’s method is called
twice, i.e., when it runs in parallel to itself.

4. A DETAILED USE CASE
In this section we introduce a step-by-step description of

the proposed methodology to make an API implementation
thread-safe. To clearly highlight the approach, the example
is intentionally kept simple, and we will assume the original
implementation of the API was single-threaded.

As described before, for the first two steps the programmer
applies standard race detection and deadlocks techniques to
synchronize the API methods. The added synchronization
can be fine grained and may lead to high level data races.
Next, the third step, applying the closure analysis techniques
proposed in this paper, is applied to find the potential high
level data races introduced in the first steps.

4.1 Making the Account API Thread Safe
This example, inspired by the example in [4], describes

a possible implementation of a bank account API. At any
given time, the account state includes how much the cus-
tomer has in USD and EUR, and a transaction serial num-
ber. The API methods are getBalanceUSD(), getBalanceEUR(),
setBalanceUSD(), setBalanceEUR() and transferUSDtoEUR(), im-
plemented as depicted in Figure 1.

In the first step of the proposed methodology to make
an API implementation thread-safe, a trivial adaptation of
the API, is to enforce a single global lock on program state-
ments accessing the shared variables, namely balanceUSD,
balanceEUR, and serialNumber, as depicted in Figure 2. In a
more complex program this adaptation could be hinted by
race detection tools. As we are using fine grained locking on
a single lock, no deadlocks are introduced by this transfor-
mation. Again, in a more complex program, the detection
of deadlocks could be hinted by deadlock detection tools.
Hence, after applying the first two steps, the new version of
the API is both deadlock and data race free.

Next, in the third step, the closure analysis is used to alert
the programmer of existing or possible high level data races.
Each API method, mi, is modeled as a concurrent program
Pi. The analysis of the closure of Pi, clos(Pi) is used to
identify the potential high level data races in the methods

pub l i c c l a s s Account {

pro tec ted i n t balanceUSD ;
pro tec ted i n t balanceEUR ;
pro tec ted i n t s e r i a lNumbe r ;

pub l i c Account (){
t h i s . balanceUSD = 0 ;
t h i s . balanceEUR = 0 ;
t h i s . s e r i a lNumbe r = 0 ;

}

// op e r a t i o n on USD ba l ance
pub l i c i n t getBalanceUSD () {

s e r i a lNumbe r++;
r e t u r n balanceUSD ;

}
pub l i c i n t setBalanceUSD (i n t valUSD) {

s e r i a lNumbe r++;
balanceUSD = valUSD ;

}

// op e r a t i o n on EUR ba l ance
pub l i c i n t getBalanceEUR () {

s e r i a lNumbe r++;
r e t u r n balanceEUR ;

}
pub l i c i n t setBalanceEUR (i n t valEUR) {

s e r i a lNumbe r++;
balanceEUR = valEUR ;

}

// t r a n s f e r USD to EUR
pub l i c vo id transferUSDtoEUR (i n t valUSD) {

// withdraw the money
i n t tmp = getBalanceUSD () ;
tmp = tmp − valUSD ;
setBalanceUSD (tmp) ;
// conv e r t c u r r e n c y
i n t valEUR = cambioUSDtoEUR(valUSD) ;
// d e p o s i t i n the new cu r r e n c y
tmp = getBalanceEUR () ;
tmp = tmp + valEUR ;
setBalanceEUR (valEUR) ;
// u n t i l now we execu ted 4 sub−t r a n s a c t i o n s
// transferUSDtoEUR () i s on l y one t r s a c t i o n
// so we need to s u b t r a c t 3 from se r i a lNumbe r
s e r i a lNumbe r = se r i a lNumbe r − 3 ;

}
}

Figure 1: The unprotected implementation of the
Account API

pub l i c c l a s s Account {

// No need to p r o t e c t the c o n s t r u c t o r
pub l i c Account () { . . . }

pub l i c i n t getBalanceUSD () {
s y n c h r o n i z e (t h i s) {

s e r i a lNumbe r++;
r e t u r n balanceUSD ;

}
}
pub l i c vo id setBalanceUSD (i n t valUSD) {

s y n c h r o n i z e (t h i s) {
s e r i a lNumbe r++;
balanceUSD = valUSD ;

}
}

pub l i c i n t getBalanceEUR () {
s y n c h r o n i z e (t h i s) {

s e r i a lNumbe r++;
r e t u r n balanceEUR ;

}
}
pub l i c vo id setBalanceEUR (i n t valEUR) {

s y n c h r o n i z e (t h i s) {
s e r i a lNumbe r++;
balanceEUR = valEUR ;

}
}

// ”transferUSDtoEUR ” c a l l s ge tBa l ance ∗ ()
// and s e tBa l an c e ∗ () , and both a r e a l r e a d y
// p ro t e c t ed , so no need to p r o t e c t aga in .
// However , we need to p r o t e e c t s e r i a lNumbe r
pub l i c vo id transferUSDtoEUR (i n t valUSD) {

. . .
// u n t i l now we execu ted 4 sub−t r a n s a c t i o n s
// transferUSDtoEUR () i s on l y one t r s a c t i o n
// so we need to s u b t r a c t 3 from se r i a lNumbe r
s y n c h r o n i z e (t h i s) {

s e r i a lNumbe r = se r i a lNumbe r − 3 ;
}

}
}

Figure 2: The fine grain locking-based protected im-
plementation of the AccountTest API

mi of the API.
For this API we shall consider five programs P1 to P5,

corresponding to methods getBalanceUSD(), setBalanceUSD(),
getBalanceEUR(), setBalanceEUR(), and transferUSDtoEUR() re-
spectively. Table 4.1 summarises the views for each program
Pi (corresponding to each method mi) of this API.

Each program Pk, (1 ≤ k ≤ 4) either reads or writes one of
the balance fields (for USD and EUR currency), and updates
the transaction serial number. Hence, each contains a single
view with its corresponding balance field and serial number.
As P5 resorts to the usage of the getBalanceUSD/EUR() and
setBalanceUSD/EUR() methods, it has two views, each con-
taining one of the balance fields and the serial number. P5

has a third view resulting from the access to serialNumber in
an atomic region.

Each program Pk(1 ≤ k ≤ 4) has a single maximal path
that includes their corresponding unique view. P5 also has
a single maximal path that include two views {V 5

1 , V
5
2 , V

5
3 }.

As the intersection of these views is not empty, the closure of
P5 will contain an additional thread with a single view C5

4 =
V 5
1 ∪V 5

2 ∪V 5
3 = {balanceUSD, balanceEUR, serialNumber}

that includes all the variables accessed in the maximal path.
We now proceed by detecting the high level data races in

each clos(Pi) (1 ≤ i ≤ 5), separately. As no views were
added to clos(Pk) w.r.t. Pk (1 ≤ k ≤ 4), we have that
clos(Pk) = Pk contains a single view, hence the parallel ex-
ecution of the mk methods cannot generate high level data
races.

Next, we analyze clos(P5) for high level data races. The
set of views in clos(P5) is V 5 = {V 5

1 , V
5
2 , V

5
3 , C

5
4}, where C5

4

is a maximal view of one of the threads. Calculating, we
get I51 = V 5

1 ∩ C5
4 = {balanceUSD, serialNumber}, I52 =

V 5
2 ∩ C5

4 = {balanceEUR, serialNumber}, and I53 = V 5
3 ∩

C5
4 = {serialNumber}. As I53 ⊆ I51 and I53 ⊆ I52 , we know

I53 will not be part of a high level data race. However, as
neither I51 * I52 nor I52 * I51 , we may still conclude that the
execution of method transferUSDtoEUR() in a multithreaded
environment is not thread-safe and may lead to high level
data races.

The programmer may fix this anomaly by having two ver-
sions of each get and set balance methods, one that acquires
the lock and another that doesn’t. The transfer method can
then use the versions of methods that do not acquires the
lock and introduce a lock that covers the entire scope of the
transfer operation.

5. RELATED WORK
To our best knowledge, this work is the first to address

specifically the detection of high-level data races in sequen-
tial libraries transformed to be used in a multithreading
setup. However, several past works addressed the detection
of high-level data races in concurrent programs.

There are many previous works addressing the problem
of detection of atomicity violations, using static or dynamic
program analysis technique [2, 3, 4, 6]. Some even propose
strategies to mask or even eliminate the detected atomicity
violations, but this objective is out of the scope of this paper.
In this section we will only address some works that are
closely related to our approach.

Artho et al. [1] introduces the concepts of view of an
atomic block, that is a set containing all the shared variables
accessed within that block, the maximal view of a thread,
which are those views that are not a subset of any other

view of that thread, and the concept of view consistency,
which when violated indicates a potential high-level data
races. Our work builds on these concepts, but introduces
some additional concepts, like the dependency relation be-
tween views and the closure of programs, and addresses the
specific problem of high-level data races in APIs that are to
become thread safe.

Shacham et al. [5] propose a methodology for testing atom-
icity of composed concurrent operations. They propose a
technique that is based on modular testing of client code
in the presence of an adversarial environment, and use com-
mutativity specifications to reduce the number of executions
explored to detect a bug. Our approach is able to analyse a
program module without the client code, and reduces dras-
tically the space of states to be checked by applying the new
concept of program closure and analysing each method of
the API separately.

6. CONCLUSIONS
This paper addresses the problem of making an API im-

plementation thread safe. Data races and deadlocks can be
handled using standard tools, and in this paper we tackle
the problem of analyzing and avoiding potential high level
data races. We propose the new concept of program closure,
clos(P), and demonstrate that it is sufficient to separately
analyse the closure of each API method in order to identify
the high level data races of the API implementation. Us-
ing this approach, we avoid the analysis of the very large
space of combinations of API methods. Following this sug-
gested methodology, the high level data race anlaysis has to
be applied to n concurrent programs, clos(Pi). On the other
hand, if the high level data race would have been applied to
the API as a whole, it would have been applied to n choose 2
pairs of API methods occurring concurrently. The approach
is further elucidated with a simple use case.

Several simplifying assumptions were made, which can be
mitigated or even eliminated. The closure analysis requires
the identification of the set of concurrent threads (Intro-
duction assumption v), the set of shared variables that are
accessed in atomic regions (Introduction assumption ii), the
order by which the atomic regions are executed within a
thread (Introduction assumption iii), and the variables in
each view (Introduction assumption iv). All this knowledge
can be approximated using static analysis. Alternatively,
the concurrent program execution can be monitored to iden-
tify the threads of a given run, and the shared variables that
were used under the scope of locks. This is the approach
taken in [1]. If the runtime approach is taken, then a test
suite may be developed for the API and the high level data
races analysis is applied to each test in the test suite.

The limitation of using a single lock (Introduction assump-
tion i) is a technical limitation aimed at simplification of the
presentation. It can be removed by analyzing the dependen-
cies as discussed in the paper for each of the program’s locks.

We have developed a static analysis tool that implements
the closure concept, assuming a pre-determined number of
threads in the concurrent program and a single thread per
API method. There is ongoing work to enhance this imple-
mentation and test it against larger real life programs.

The closure operation has merit in itself. It is probably
useful for program maintenance in general, as it identifies po-
tential high level data races that may be introduced in future
releases of a concurrent program, pointing out to the devel-

Table 1: The Views for the Account example.

Program Method Views

P1 getBalanceUSD() V 1
1 = {balanceUSD, serialNumber}

P2 setBalanceUSD() V 2
1 = {balanceUSD, serialNumber}

P3 getBalanceEUR() V 3
1 = {balanceEUR, serialNumber}

P4 setBalanceEUR() V 4
1 = {balanceEUR, serialNumber}

P5 transferUSDtoEUR() V 5
1 = {balanceUSD, serialNumber}, V 5

2 = {balanceEUR, serialNumber},
V 5
3 = {serialNumber}

clos(P5) transferUSDtoEUR() V 5
1 = {. . .}, V 5

2 = {. . .}, V 5
3 = {. . .},

C5
4 = {balanceUSD, balanceEUR, serialNumber}

oper that they may revise their code before deploying a new
version. Further work is needed to determine the effective-
ness of the approach in this general program maintenance
setting. This approach of relating the closure operation to
program maintenance operations can take interesting devel-
opments. Can a programmer get online indications that
her latest changes in a program module did not introduce
any high-level data races, but it introduced the potential
for high-level data races if the module API is used in ac-
cordance to a specific criteria? The program closure might
be able to support such an IDE (Integrated Development
Environment) feature.

The dependency graph, Di, can be defined in other ways.
Instead of the intersection between two views, one might
think of other criteria, e.g., a data dependency between the
two views through an auxiliary variable. A unifying theory
of high level data races that captures the different possible
dependencies and high lights the trade-off between them is
called for.

7. REFERENCES
[1] Artho, C., Havelund, K., Biere, A.: High-level data

races. Software Testing, Verification and Reliability
13(4), 207–227 (Dec 2003)

[2] Lourenço, J., Sousa, D., Teixeira, B.C., Dias, R.J.:
Detecting concurrency anomalies in transactional

memory programs. Comput. Sci. Inf. Syst. 8(2),
533–548 (2011)

[3] Pessanha, V., Dias, R.J., Lourenço, J.M., Farchi, E.,
Sousa, D.: Practical verification of high-level dataraces
in transactional memory programs. In: Proceedings of
the Workshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging. pp. 26–34.
PADTAD’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2002962.2002968

[4] von Praun, C., Gross, T.R.: Static detection of
atomicity violations in object-oriented programs.
Journal of Object Technology 3(6), 103–122 (Jun 2004),
http://www.jot.fm/contents/issue_2004_06/

article5.html, workshop on Formal Techniques for
Java-like Programs (FTfJP), ECOOP 2003

[5] Shacham, O., Bronson, N., Aiken, A., Sagiv, M.,
Vechev, M., Yahav, E.: Testing atomicity of composed
concurrent operations. In: Proceedings of the 2011
ACM international conference on Object oriented
programming systems languages and applications. pp.
51–64. OOPSLA ’11, ACM, New York, NY, USA
(2011),

http://doi.acm.org/10.1145/2048066.2048073

[6] Wang, L., Stoller, S.: Run-Time Analysis for
Atomicity. Electronic Notes in Theoretical Computer
Science 89(2), 191–209 (Oct 2003)

