
SUPPORTING ON–LINE DISTRIB UTED MONIT ORING AND DEBUGGING

VITOR DUARTE†, JOÃO LOURENÇO†, AND JOSÉC. CUNHA†

Abstract. Monitoring systemshave traditionally beendevelopedwith rigid objectivesandfunctionalities,and
tied to specificlanguages,librariesandrun-timeenvironments.Thereis a needfor moreflexible monitoringsys-
temswhich canbeeasilyadaptedto distinct requirements.On-linemonitoringhasbeenconsideredasincreasingly
importantfor observation andcontrol of a distributedapplication. In this paperwe discussmonitoring interfaces
andarchitectureswhich supportmoreextensiblemonitoring andcontrol services. We describeour work on the
developmentof adistributedmonitoringinfrastructure,andillustratehow it easestheimplementation of acomplex
distributeddebuggingarchitecture.We alsodiscussseveral issuesconcerningsupportfor tool interoperabilityand
illustratehow thecooperationamongmultipleconcurrenttoolscaneasethetaskof distributeddebugging.

Key words. On-lineMonitoring, DistributedDebugging,Tool Interoperability, SoftwareEngineeringEnviron-
ments.

1. Intr oduction. Everybodyrecognizesthe difficulties in developing parallelanddis-
tributedapplicationsand the need for tools that canhelp the programmerin that process.
The observation of the behavior of a distributed application(the target application)plays
animportantrole duringits developmentandalsoduringits execution.Monitoring toolsare
complementaryto theuseof performancemodelsandsimulationtools,asthey allow to obtain
informationon the realexecutionof anapplication.Monitoring is alsocritically important
in distributedapplicationswhereunpredictablechangesmayoccur in asystemconfiguration,
which may requiresomereactionto achieve specific goalssuch asload balancing or fault
tolerance.

Many monitoring tools and supportsystemshave beendeveloped in the recent past,
usually eachonededicatedto a particularpurpose,for a specific programminglanguage or
library, andfor specific operatingsystemandhardwareplatform.Only few of suchtoolscan
beconsideredof general use,but even thosearenoteasy to adapt to new computingplatforms
or userrequirements.

Recently, therehasbeen an increaseduseof parallelanddistributedcomputingmodels
in a wide rangeof applications. This hasmotivatedan increasedconcernon how to design
monitoringandcontrol tools which canbeusedto supporta diversity of functionalitiesfor
observationandcontrolof parallelanddistributedapplications, asillustratedin thefollowing
list: � To analyze applicationperformance;� To observe applicationbehavior;� To controltheexecution of anapplication;� To support integratedsoftwareengineering environmentsandcollaborativeworking

environments, wheremultiple concurrent tools mustbecoordinated,so that global
consistency constraintsmustbeimposed.

Ononehand,it wouldnotbefeasiblenorevenefficient to try to implementamonolithic
systemencompassing all of theabove uses. Instead,amodulardesign should bepromoted:� To enabletheon-lineinteractionbetween atool userinterfaceandthetargetapplica-

tion. This shouldguaranteesomedegreeof independenceof theuserinterfaceand
thetool functionalitywith respectto thelow level systemarchitecture;� To allow anincrementalextension of theenvironmentby providing mechanismsto
integratenew toolsinto thesystem,eachtool providing aspecific user interfaceand
service;

†Departamentode Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
({vad,jml,jcc}@di.fct.unl.pt).

1



2 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

� To support thelaunchingof therequiredservicesfor observation,configuration,data
gatheringor specific dataprocessing;� To allow the modularcomposition of simpleindividual tools, asa way to achieve
morecomplex functionalities;� To manage andcoordinate theinteractionsamongmultiple concurrenttools,having
on-lineaccessto thesametargetapplication.

From our pastwork we have identifiedthe needto developa distributedframework to
support monitoringandcontrolservices,thatcouldallow theintegrationof multiple concur-
renttools.Fromourearlierprototypesof theDDBG [7] andPDBG [8] distributeddebuggers,
we have identifiedseveral requirementsto support theabove objectives. This hasled to the
designandimplementationof theDAMS [5,8] architectureandthedevelopmentof theFid-
dle [16] debugging tool.

In Sec.2 we discuss differentapproachesfor monitoringandcontrol architectures.In
Sec.3, themaincharacteristicsof DAMS arereviewed. In Sec.4, wefocusonthedescription
of Fiddle, andcompare to previouswork. In Sec. 5 we discuss debugging tools interaction
whenusingFiddle andhow suchconceptscanbesupportedin termsof DAMS functionalities,
to improve tool cooperationin a parallelsoftwareengineering environment. In Sec.6 we
reporton thecurrentimplementationstatus.Finally, in Sec.7, we present someconclusions
andongoing work.

2. Monitoring and Control Interfaces. Traditionalsolutionshadrigid objectivesand
functionalities,andweretied to specificrun-timeenvironments(Fig. 1 a). They couldn’t use
morethanonetool at a time,andcouldn’t adapt to distinctobjectivesor addnew functional-
ities.

applicationmonitor
target

application

targettool
monitortool

trace file

a) b)

FIG. 1. a)Monolithic tool; b) Tracebasedtool

2.1. Tool interaction basedon tracefiles. A simpleandveryusualapproachto achieve
tool interactionfor monitoringandperformanceevaluationhasbeentheuseof commontrace
file formats(Fig. 1 b). Thisallows theuseof post-mortemvisualizationandevaluationtools.
If new toolsaredesigned compatible with thoseformats(or if they allow usingsomeconver-
sionstep)they canquickly beintegratedinto themonitoringenvironment.

Themosttypicalexampleof a “standard”tracefile is theformatused by thePortableIn-
strumentedCommunicationLibrary (PICL) [9,28], whichhasbeenusedby severalmonitors
andtools, directly or with conversionprograms.Most of its successis relatedto its visu-
alizationtool, ParaGraph[11], andthemoreor lessneutralsemanticsof the tracefile. The
importanceof theapproach is illustratedby thefact that this traceformathasbeen extended
to anew versionfor theMPI [21] systemcalledMPICL, whichusesthestandard MPI Profiling
Interfaceto instrumenttheapplication.

A morepowerful approach wastaken by the Pablo [25] projectby designing the Self
DefinedDataFormat (SDDF) [1], a meta-formatwhosephilosophy wassimilar to the one
followedlaterby theXML standard.



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 3

2.2. Instrumentation/Control Interfaces. Monitoring systemsrely on low level inter-
facesfor instrumentingandcontroll ing atargetapplication.Thesefunctionscanbesupported
throughseveralapplicationprogramminginterfaces(API), possiblyat differentlevels in the
system(libraries,OSandhardwarearchitecture).Thestandardization of theseinterfacesin-
creases the portability of the distributed infrastructureand,asa consequence, of the tools
by decoupling the low level dependencies from the monitoringinfrastructure.In theseap-
proaches,someinstrumentation/controlfunctionsareseparatedfrom themonitoringsystem,
andneutralinstrumentationfacilitiesareprovidedfor distinctrun-time/OSplatforms(Fig.2).

monitortool
target

application

FIG. 2. Instrumentationandcontrol interfaces

Within the Parallel Tools Consortium Projects(PTOOLS) thereareseveral efforts tar-
getedat thelower level of themonitoringinfrastructure.For example,thePerformanceAPI
(PAPI) [2] for obtainingthevaluesof hardwarecounters,whichareusually available in mod-
ernCPUs.Also thePortableTiming Routines(PTR) [24] for measuring programexecution
intervals,in termsof wall clock,user CPU,andsystemCPUtimes.

Oneof themostpowerful proposals is theDynInst library [3], which wasstartedwithin
theParadyn project[20], aimingat building a dynamicandconfigurablemonitoringsystem.
Thelibrary supports thedynamiccodeinstrumentationof a runningprocess. It usestheOS
facilitiesfor inspecting andcontroll ing processes,allowing theuserto browsetheobjectcode
andinstall codepatchesatparticularpoints.Thosecodepatchesaredefinedusinganabstract
description andtranslatedby the DynInst into thenative codefor the particulararchitecture
whereit’s running.As severalarchitecturesaresupportedthis allows tool portability regard-
ing thisaspect.

Suchapproacheshave thebenefit of providing moreor lessstandardinterfacessupport-
ing low level instrumentationfunctions,which canthenbe integratedinto full distributed
monitoringarchitectures.

2.3. Monitor/Contr ol APIs and Distrib uted Monitoring Ar chitectures. The trace-
based approachis adequatefor theanalysis of execution tracesafterprogramtermination,but
it cannot support on-line interactionwith a runningapplication.Thelatter requiresspecific
protocolsto be established for asynchronousor synchronousinteractionbetweenthe tools
andtheapplication,libraries,OSandhardwarearchitecture(Fig. 3). This requiresa precise
interfacedefiniti on anda flexible architecturefor monitoringandcontrolwhich satisfiesthe
mainrequirementsdiscussedin Sec.1.

target
application

monitortool

FIG. 3. Decouplingtool andmonitor

A relatedeffort on improving theaccessibility to low level instrumentationandcontrol
interfacesis theDynamicProbeClassLibrary (DPCL) [22]. DPCL definesanAPI thatuses



4 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

DynInst for process instrumentation.DPCL is basedon astandard client/server infrastructure
that allows an individual tool to interactwith severalDPCL servers(oneon eachmachine).
This allows the tool to control all theprocessesof theapplication.Also, eachDPCL server
canacceptmorethanoneclient,allowing severaltoolsto usetheDPCL infrastructuresimul-
taneously (Fig.4). Thereis nosupport to solvepossible interferencesandconflictsamongthe
tools,or for coordinatingtheir cooperation.Anotherexample is givenby FIRST [23] which
reliesuponCORBA [10] to implementa distributedmonitoringsystem.FIRST alsousesthe
DynInst library for processinstrumentationandusesthePTR routinesfor time measuring.

monitor
target

application

tool

tool

FIG. 4. Flexiblemonitor infrastructure

OMIS [19] is a systematiceffort towardssupportinga standardmonitoringinterfaceand
an openframework for developing monitoring tools andservices.The OMIS specification
definesageneric interfacelibrary for inspectingandcontrollingdistributedprocessesandfor
thetoolsto interactwith themonitoringsystem. Theinspectioncanbecustomized for each
particularuse/tool,by definingtheinterestingeventsandtheactionseachoneshouldtrigger.
Thereis provision for extensionsto the supported events andactions. A distributedmoni-
tor andcontrol systemcansupport morethanonesimultaneousclient tool andallow some
interoperability. An implementationof theOMIS specificationwasdevelopedasa monitor-
ing architecture(OCM/OMIS) [18]. It hasbeen usedasa basisto develop debugging and
visualizationtools(new versionsof theDETOP andVISTOP [27] tools)andto support their
interoperability.

In thefollowing section,wedescribe theDAMS approachfor distributedmonitoring.

3. DAMS: A Distrib uted Application Monitoring System. TheDAMS [5,8] approach
proposesadistributedinfrastructurefor monitoringandcontrolof parallelanddistributedap-
plications.Its distinctivecharacteristicis beingbasedonasoftwarearchitecturewhichallows
aclearseparationbetweenthelow-level mechanismsfor distributedobservationandcontrol,
and the high-level servicesprovided by monitoring andcontrol tools, suchas debuggers,
performanceanalyzersor resourcemanagers(Fig. 5).

3.1. Ar chitecture. Insteadof definingarigid monitoringinterface,DAMS onlyprovides
the mechanismsto integratenew servicesinto its distributedarchitecture,handlingservice
identification,registrationandlocalization,communication,services activation andcontrol,
andconcurrenttool interaction.

TheDAMS architectureis neutralconcerningthecomputationalmodelof thetargetappli-
cation,andalsoconcerningeachtool specific functionalities(Fig. 6). A DAMS configuration
is built of a setof serviceswhich canbeaccessedby thetoolsin orderto implementthetool
specific functionalities.

In orderto integrateanew serviceinto theDAMS agivenServiceModulemustbedefined
andregisteredasan available service. From the clientspoint of view, the ServiceModule
providesaninterfaceto asetof functions(entrypointsinto themodule)andis namedthrough
anuniqueglobalidentifier. FromtheDAMS pointof view, theServiceModuleis responsible



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 5

tools

monitor
infrastructure

services

...proc.
targets or sources of
information

interface APIs

instrument./control.

proc.

FIG. 5. Layerview of a monitoring andcontrol environment

for the implementationof the servicewhich canhandle requestsfrom multiple concurrent
clients.It is responsiblefor theinterpretationof eachrequest, thesupervisionof theexecution
of therequiredactions,andthe sending of thecorrespondingrepliesbackto theclient. For
suchpurpose, a ServiceModule can rely uponother services, possiblylocatedat remote
machines. An internal DAMS communication layer supports the communicationsbetween
servicesandwith thetools.

3.2. Built-in Services. In orderto support theabove aspects,theDAMS includesbuilt-
in ServiceManagement. It providesfunctionsfor registeringnew servicesandfor service
identificationandlocalization. TheServiceManagementallows the tools to requestaccess
to theinterfacesof theregisteredservicesby connecting to instancesof theServiceModules.
Thisaccesscanbemadethroughspecificclient level librarieswhichmayprovidetransparent
userinterfaces.

DAMS alsooffers a built-in Resource Managementservicethat is usedto managethe
hostsandprocessesconfiguration.This includesaddingandremoving hostsfrom theDAMS
environment, launchingprocessesandgettingstatusinformation.

DAMS providesa built-in Event Servicefor asynchronousevent notificationbased on
a publisher/subscribermodel. This mechanism can be used to detectand reactto events
generatedby thetargetapplication,for example, to reactto executionlevel exceptions. This
mechanismcanalsobetriggeredby theprocessing of requestsmadeto theDAMS services,
wheninvokedby a client tool, in orderto enable asynchronousinteractionsat the tool user
interfacelevel (e.g.,non-blocking, event-drivensemanticsfor client requestsin a graphical
userinterface).

3.3. Tool Interaction. Supportfor concurrenttoolscanimprovetheexpressivenessof a
parallelsoftwareengineeringenvironment,by allowing theuserto exploit thecomplementary
rolesof distincttools,havingaccessto thesametargetapplication.Whenmultipleconcurrent
tools have accessto the sametarget applicationthereis the problemof interferenceamong
tools.At thelevel of theDAMS architecture,somesupport for tool synchronizationis ensured
dueto theuseof commonservicemodulesto accessthesametarget-processes. This corre-
sponds to theso-called structural conflicts [27]. Additionally, it maybenecessaryto ensure
consistency amongmultiple concurrent toolsat a logical level. Theeventmechanismcanbe



6 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

proc.

...

hardware

tools

proc.

proc.

host B

host C

of
 in

fo
rm

at
io

n
ta

rg
et

s 
or

 s
ou

rc
es

services

services

services
basic

infrastructure

host A

FIG. 6. DAMS architecture

usedto helpthecoordination of suchconcurrenttools. Eventsgeneratedby a targetapplica-
tion canbedisseminatedto thesetof toolswhich areinterestedin observing theapplication
evolution, sothosetoolscancoordinatetheir actionsaccordingly.

Additionally, toolsthemselvescanexplicitly generateevents,allowing othertoolsto be
awareandadaptto suchevents. For example,the usercanselectin onetool to observe a
differentaspect of theapplication, thenothertoolscanfollow thatchange.

3.4. Conclusion. DAMS basic architecturecanbeusedto develop specific services for
observationandcontrol. In general,it is possible to developspecific toolsandservices(e.g.,
theonesbasedon Fiddle) in a stand-alone fashion,i.e., without requiringany basic support.
However, we claim it is preferableto rely upona low-level infrastructureproviding a mini-
mal setof functionalitiesfor monitoringandcontrol. In suchanapproach, the tool/service
developer canconcentrateon specific design issuesof eachfunctionality, thusbenefitting
from increasedsoftwaredevelopmentproductivity. On theotherhand, by having a common
underlyingplatform,it becomeseasierto support multiple concurrenttoolsandmanagetheir
interactions. In the following sectionswe first discuss the functionalitiesandarchitecture
of a complex debugging service(Fiddle), andthenwe discusshow it mapsinto the DAMS
framework.

4. Fiddle: a Tool for Distrib uted Debugging. Someparalleldebuggershave evolved
into commercialtools, e.g.,TotalView [26], madeavailable throughparallelmachineand
toolsvendors.Thearchitecturesof suchparalleldebuggersusually follow a monolithicap-
proach,combininga debugging engine andthe user interfaceinto a single large program.
More flexible paralleldebuggersusea client/server model,e.g.,p2d2[12], which separates
the userinterfacefrom the debugging engine. This approach improvesthe ability to adapt
to differentrequirementsandenvironments,andto customizethe userinterfaceto betterfit
a specific environment.Thegenerality of theparalleldebuggersalsouseconsiderably small
anddumbagentsin eachmachinenode,to support the distribution of the debugging func-
tionalities,relying in acentralserver to doall theprocessing.

Prior to describingFiddle, we will summarizeour previous work on distributeddebug-
gingandhow it motivatedthedesignof thisnew system.

4.1. Previous Work on Distrib uted Debugging. Previouswork on DDBG [7] allowed
to experimentwith two tool integrationscenariosconcerningthe distributeddebuggingac-



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 7

tivity: integration of a GraphicalParallel Application Editor and the Debugger [13]; and
integrationof TestingandDebuggingtools[17].

Wedescribethemaincharacteristicsof eachcasestudy, concerning tool interactionsand
their coordination,themostrelevantlimi tationsthatwerefoundin theDDBG prototypeand
themajorimprovementsrequired.

4.1.1. Visual Programming and Graphical Debugging. In a parallelsoftwareengi-
neeringenvironment,agraphicaleditorfor avisualprogramminglanguagecanhelptheuser
in thedesign of a parallelor distributedapplication.In suchanenvironment,theuserdevel-
opsthedistributedapplicationby specifyinggraphical high-level entitiesandtheir composi-
tion. A graphicalprogram,consisting of suchgraphical entities,for example,representing
processesandcommunication channels,will thenbe automaticallycompiledinto a textual
sourcecodewhich may be amenable to a parallelexecution. The usageof a classical dis-
tributeddebugger, operatingwith theautomaticallygeneratedcode, provideslittl ehelpto the
userin theunderstanding of the(graphical)programbehavior.

To overcomethesedifficulties thedebuggershould allow the user to work mainly with
thegraphicalprogramconstructsandtheabstractionsthatwereused duringapplicationde-
velopment. Thisrequires,for example,to highlighttheentitiesin thegraphical representation
andtheir correspondinglinesof (thegenerated) sourcecodein thetextual programrepresen-
tation,andto allow theuserto stepthroughboththegraphicalentitiesor thesourcecode.

Within the SEPP/HPCTI[6] Europeanprojects,a successfulexperimentinvolving the
integrationof theGRED [13] graphical editorandDDBG wasachieved[13]. In thisprototype,
GRED andDDBG couldestablisha two-way interaction,correspondingto theinvocationof
the DDBG debuggingmethodsby GRED, andits repliesreportingthechanges in the target
applicationstate.However, in orderto enable asynchronoususerinteractionat thegraphical
editor level, it wasnecessaryto extendtheGRED/DDBG interactionwith anad-hocscheme
for deferreddeliveryof therepliesfrom thedebuggerto thegraphicalenvironment.

4.1.2. Integrating Testingand Debugging. A distributeddebuggermaycontribute to
thedetection, localizationandcorrectionof bugsin anapplication,but still stronglydepends
uponthe user interpretationof programcorrectness. The useof an interactive testingtool,
which partially automatestheidentificationandlocalizationof suspect programregions,can
improve theprocessof developingcorrectprograms.

STEPS [15] is atestingtool developedatTechnical Universityof Gdansk, Poland,within
theSEPP/HPCTI[6] Europeanprojectsandis ableto identify potentialcritical programflow
pathsin a C/PVM program. Whenintegratingsucha tool with a distributeddebugger, one
mustensurethattheprogramwill behave aspredictedby thetestingtool.

Within theabove mentionedprojects,another successfulexperiment involving the inte-
grationof STEPS andDDBG wasachieved [17]. In this prototype,the compositi on of the
testingandthedebuggingtoolsallows thefollowing iterative steps:

1. STEPS generatesspecific testingscenarios;
2. An intermediatetool, Deipa, readsa scenario andbuilds a semantic treewith its

contents;
3. By interactingwith Deipa, the usermay select oneof the pointsin thescenario (a

globalbreakpoint) for testing;
4. Deipa [17] generatesa setof debugging commands, which aresentto DDBG, to

enforceeachtarget-processto follow a specific pathuntil the globalbreakpointis
reached;

5. DDBG drivestheexecutionof thetarget-processesaccordingto Deipa directives;
6. At that global breakpoint (a suspect programlocation), the usermay useDDBG



8 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

to enteran interactive debugging session, to inspectand fine control the target-
processes;

7. Finally, thetestingmayberesumedby selecting anotherpoint (step3).
In this case, thereis a one-way interactionbetweenSTEPS andDDBG, throughan in-

termediatefile which containsthe testingscenarios. This experimentillustratedtheneedto
includeanintermediatetool to managetheinteractionbetweenthetestingandthedebugging
tools, andthe needof this tool to coexist with other (lower-level, in this case) debugging
interfaces.

4.1.3. Major Impr ovements Required. Theabove experiencessuggested theneedto
providesupport for:� Asynchronousinteractionsbetween thedebuggerandtheothertools,supportedby

events;� Theinclusionof new tools,to providecomplementaryfunctionalitiesfor application
developmentandpossibly actasintermediariesbetween thedebuggerandtheother
tools;� Synchronizationof theclient toolssharingtheaccessto thetargetapplication.

4.2. Overview of Fiddle. Theexperimentsdescribedabove have motivatedthedesign
of a moreadvanceddebugging tool: Fiddle. Its softwarearchitecturewasdesigned to be
able to fulfill the major improvementsidentifiedabove and, being functionally backwards
compatiblewith DDBG, it couldreplacethelatter in thoseexperiments,with benefits.

Themainfunctionalitiesof Fiddle are(theentriesmarkedwith (†) arenew to Fiddle):� Debuggingof multipletargetapplicationprocesses, executingin thelocalor remote
machines;� (†) Debugging of multi-threadedprocesses, if suchfunctionalityis supportedby the
nodedebuggersbeingusedby Fiddle to actuponthetarget-processes;� Simultaneousaccessbymultipleclienttoolsto thesametargetapplication processes;� (†) Support for multi-threadedclient tools, to easethecontrolof theasynchronous
interactionsbetweenthedebuggerandthoseclients;� (†) Deferredreplies to theservicesrequestedby client tools,basedonanevent/call-
backmechanism, for improvedsupport for asynchronousinteractions;� (†) Eventnotification, providing basicsupportfor tool interoperabilityandtool co-
ordinationservices;� (†) Tool synchronizationevents, to support sharedviewsof thetargetapplicationby
themultiple client tools.

Fiddle softwarearchitectureimprovements(over DDBG) include:� A layeredsoftware architecture, to provide limited debugging functionalitieswith
reducedoverhead;� A many-clients/many-servers model, with theclientsactingasglobaldebugging in-
terfaces,andthesmartlocal serverson each nodehaving full local debuggingcapa-
biliti es;� Thecentral server is usedonly to supportmultiple clientssimultaneously andto
providesomeglobaldebuggingfunctionalities.

In its currentversion,a language-dependent library providesaccessto Fiddle methods.
Thesemethodsarecategorizedas:� Management methods. Observeand/orchangeFiddle internalstate;� Inspection methods. Observebut donot changethetargetapplicationstate;� Control methods. Changethetargetapplicationdataand/orexecutionstates.

A Fiddle client tool is a possiblymulti-threaded program,that waslinked to theFiddle
library, andusesFiddle to interactwith the target application. A Fiddle methodinvocation



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 9

followsa remoteprocedurecall (RPC)semantics,blockingthecallingthreaduntil theservice
is executed.

Fiddle manages multiple client tool connections simultaneously, allowing themto act
uponthesametarget application. These concurrenttools mayprovide distinct views of the
target applicationandwill, typically, explore complementary approachesto the debugging
activity, suchasasource codegraphical debugging interfaceanda3D datavisualizer.

4.3. Fiddle Software Ar chitecture. Fiddle is structuredasa hierarchyof 5 functional
layers,which implementanincrementalsetof functionalities,assummarizedin Tab. 1.

Layer 0s Layer 0m Layer 1m Layer 2m Layer 3m

Multiple target-processes Yes Yes Yes Yes Yes
Multi-thr eaded target-processes Yes Yes Yes Yes Yes
Multi-thr eaded clients No Yes Yes Yes Yes
Number of nodes 1 1 Any Any Any
Number of clients 1 1 1 Any Any
Eventsand call-back No No No No Yes

TABLE 1
Fiddle layersandtheir functionalities

Theinterfaceprovidedby each layer
�

i is usedby thelayerimmediatelyabove
�

i � 1, in
orderto implementhigherlevel functionalities.A client tool canalsodirectly useany layer�

i , but thisusageis exclusivewith theusageof theupperlayers
�

j � j � i � , thelowerlayers
�

k � k � i �
areusedimplicitly by

�
i .� Layer0s. The softwarearchitectureof Layer 0s is presented in Fig. 7. It providesa

function-based interfaceto access a setof nodedebuggers.A nodedebuggermaybea text-
orientedsequential debugger, suchastheGNU GDB or DBX, or any otherlibrary with debug-
gingcapabilit ies,suchasDynInst [3].

Node Debugger Target Process

Node Debugger Target Process

Layer−0s Library

Client Process

�	��
������

FIG. 7. TheLayer 0s architecture

Thislayermanagesonlyonesingle-threadedclient,but is abletocontrolmultiple(single-
or multi-threaded) target-processesrunningin thelocalmachine. It allowsthestartingof new
instances of the nodedebugger asneeded, to generate the commands for the nodedebug-
gersin theappropriateformat, andto collect,parseandextract the relevant datafrom their
responses.

SinceLayer 0s clientsaresingle-threadedprograms,the invocation of a methodblocks
theclient until its completion.� Layer0m. This layer extendsLayer0s to supportmulti-threaded client tools (Fig. 8).
Methodinvocationat Layer 0m alsoblocksthecalling threadbut, astheremainingthreadsin
theclient stayactive, it maystill interactwith theuseror with Fiddle.



10 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

Node Debugger Target Process

Node Debugger Target Process

�	��
������

Client Process

Layer−0s Library
Layer−0m Library

FIG. 8. TheLayer 0m architecture

In this way, concurrent requests to distinct target-processes are processedin parallel,
while concurrentrequests to thesametarget-processesareserializedandperformedoneafter
another.� Layer 1m. This layerextendsLayer0m, sothat thetarget-processescanalsoexecute in
remotemachines, andnot only in the local machine(Fig. 9). Thesoftwarearchitecturefor
Layer1m contains, in each node,aninstanceof Layer0 m andadaemon(L0m server) which is
aLayer 0m client.

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

Client Process

�������������

Layer−1m Library

Layer−0m Library
Layer−0s Library

Layer−0s Library
Layer−0m Library

L0m Server

L0m Server

FIG. 9. TheLayer 1m architecture

� Layer 2m. This layer extendsLayer 1m to support multiple simultaneous client tools
(Fig. 10). Thesetools may be concurrently issuingdebugging commands to the sameset
of target-processes. The software architecturefor Layer 2m containsan instanceof Layer
1m anda daemon(L1m server) which is a Layer1m client. Besidesthe implicit structural
coordinationwhichresultsfrom thesharingof thesameservers(L0m server andL1m server)
whenaccessing thesametarget-processes,this layerdoesnot provide any othersupport for
thecoordinationamongclient tools.� Layer 3m. This layeraddsevent-basedTool–Fiddle–Target-processesinteractionsand
call-backcapabilit ies to Layer 2m. In contrast to the previous layers, the invocationof a
methodin this layer doesnot block the calling threadand immediatelyreturnsa request



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 11

Client Process

Layer−2m Library

Client Process

Layer−2m Library

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

L1m Server

�! #"%$%&('�)

Layer−1m Library
L0m Server

Layer−0s Library
Layer−0m Library

L0m Server

Layer−0m Library
Layer−0s Library

FIG. 10. TheLayer 2m architecture

identifier. Uponcompletionof therequest,a previouslyspecified handler(call-back) will be
triggeredby Fiddle andinvokedto processthereply. The requestidentifier is alsopassedto
thehandleron its activation, allowing a singlehandlerto beusedto process differentkinds
of events.

5. Tool interaction in Fiddle. In this section we first discusstool interoperabilityas-
pectsconcerningFiddle, andthenwerelatethemto severaltool integrationscenarios.

5.1. Interaction events in Fiddle. As Fiddle accepts multiple clientssimultaneously,
eachproviding a possiblydifferent interface/view to the target application,theremay exist
thefollowing classes of interactionevents:� Method invocation eventsareassociatedwith Fiddle methodinvocation. This cor-

responds to aclient tool callingaFiddle methodwhichmayactor notuponatarget-
process;� Method reply events areassociatedwith the repliesand/orsuccessstatusof the
methodexecution, which is reportedto theclient tools;� targetapplication eventsareassociatedwith changes in thedataor executionstate
of a target-process.

Eachtool cansubscribeto certainclassesof eventsin which the tool is interested,by
specifying anhandlerto processthoseevents. An handler in aclient tool * a maybeactivated
in oneof thefollowing situations:� Whenany tool * invokesa method;� Whentheprocessing of amethodinvokedby atool * is terminated;� Whenoneof thetarget-processes changesits internaldatastate(e.g.,datavalue);� Whenoneof thetarget-processes changesits execution state(e.g.,stops).

In this way, a Fiddle’s methodinvocation may originatedifferent typesof events. For
example,whenaclient tool * i callsthe“continue()” method,thefollowing eventsaregenerated
by Fiddle andsentto all client tools * j which havesubscribedto thatclassof events (maybe
including * i itself):

1. A methodinvocation event to inform about the servicerequested,namelywho in-



12 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

vokedwhich method,andwhich is thetarget-process;
2. A methodreplyeventwith the reply from Fiddle, in this casejust reportingif the

servicerequestedwasacceptedor not by thenodedebugger;
3. A target applicationeventreportinga changefrom + stopped , to + running , execu-

tion state;
4. Another target application event event will eventually be generated, reportinga

changefrom + running , to + stopped , executionstate.

5.2. Supporting Fiddle servicesover DAMS. In orderto develop adistributedapplica-
tion, cooperationamongmultiple distinct tools is needed. Suchtoolsmustbeableto access
thestateof the target-processesaswell asactaccordingto their evolution. Typical tools in
a softwareengineering environment canactasobserversor controllersof theapplication,so
their coexistencerequiresthecoordinationof their interactions.

DAMS providesbasicmechanismsallowing multipletoolsto connect to commonService
Moduleinstances, thusenablingtheir accessto thesametarget-processes.Thestatechanges
of thoseprocessescanalsobeobservedby thetoolsthroughtheDAMS eventmechanism.

tools
infrastructure

monitor

proc.

proc.

local services

local services

host A

host B

host C

global services

proc.

1m / 2m
Layers

0s / 0m
Layers

0s / 0m
Layers

Layer 3m

FIG. 11. Fiddle asa DAMS service

Oneof thegoalsof our work is to evaluatehow DAMS canbeusedto supporttheinclu-
sionof Fiddle functionalitiesasDAMS services. Thispromotesthecoexistenceof Fiddle with
otherserviceswhich maysupport complementarydevelopmenttools,otherthandebugging.
It alsoexploits theDAMS mechanismsto easetheimplementationof someof Fiddle concepts
andhelp themanaging of theinteractionsestablished amongtools. In this section we show
how Fiddle architecturecanbemappedontotheDAMS framework.

As shown in Fig.11bothLayer0s andLayer 0m aremappedontoaDAMS nodedebugging
service. As DAMS by default acceptsmany clientsfor eachservicesupported,Layer1 m and
Layer2m are collapsed into just one ServiceModule which becomes a global distributed
debugging service. Layer3 m is alsomapped to a servicewhoseimplementationis strongly
simplified,asit canmake extensive useof DAMS eventdisseminationcapabiliti es,needing
only to concentratein their applicationto thedistributeddebuggingservice.

5.3. CaseStudies. Fiddle–DAMS is beingexperimentallyevaluatedthroughthreecase
studies,concerningdistinct scenariosof the debugging activity in a parallelsoftwareengi-
neeringenvironment.

1. Integrationof GraphicalApplicationDesignandDebugging;



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 13

2. Integrationof TestingandDebugging;
3. Integrationof Execution VisualizationandDebugging.

Althougheachcasestudywasdevelopedseparatelyfrom theothers,they all aim at im-
proving thesupport for developing correctparallelanddistributedapplications,asillustrated
by theglobalpicturein Fig. 12.

and on−line
trace generation

Monitoring

Code
generation

Graphical
Application

Design

Graphical

Interface
Debugging

Visualization

Program
Execution

DeipaFiddle

Target

Application
Testing
Tool

Generation of
testing scripts

Program
analysis

Inspection
and control

FIG. 12. Casestudies

Previously, we have developedprototypesfor thefirst two scenarios, based on theearly
prototypesof theDDBG/PDBG debuggers[8,13]. This pastexperimentationhasshown the
benefits of tool composition [6], but it alsoshown the needof developingmorerobust and
flexible prototypes.

In thefollowing, webriefly summarizehow Fiddle andDAMS mayimprove tool interop-
erability supportfor each case study, whencomparedto previous work.

5.3.1. Visual Programming and Graphical Debugging. Fiddle-DAMS functionalities
canhelpdeveloping a bettertool integrationthanthepreviously developedprototypebased
onDDBG/PDBG debugger:� Threadsupport in theclient toolseasesthecontrolof theasynchronousinteractions

with thegraphical user interface;� Support for tool management allowsa clearcontrolof theconcurrentactionsof the
graphicaluser editoranddebugginginterfaces,anda text-orientedconsole,whenit
is necessaryto inspect theapplication behavior at thelevel of thegeneratedsource
code;� Tool synchronizationevents ease themanagementof consistent views andtheir up-
datesat thegraphical user interfacelevel, accordingto thedebuggeractionsandthe
applicationexecution statetransitions.

5.3.2. Integrating Testingand Debugging. Thereis ongoingwork in improving this
prototypeby usingFiddle-DAMS insteadof theDDBG. Thenew prototypefacilitatestheinte-



14 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

grationof Deipa asanew DAMS servicewhichinteractswith STEPS andFiddle. It alsoeases
thecoordinationbetweentheglobalviewsandtheactionsperformedby Deipa andFiddle.

5.3.3. Integrating Execution Visualization and Debugging. Programvisualizersare
commonlyusedto help understandingthe behavior of a distributed application. Most of
thesevisualizersdisplay(at least)the statusandcommunication events of the application
processes. Pajé [14], developedat ID-I MAG, France, is a threadvisualizerfor the Atha-
pascan [4] programminglanguage. Athapascan is based on a distributed memorymodel
consistingof multipleprogramnodeswhichcommunicateusingmessage-passing, eachnode
consisting of multiple threads.

Research is under way to coordinate theon-lineobservationof adistributedapplication,
asprovidedby Pajé, andthedebuggingactionsof Fiddle. Both tools werepreviously inde-
pendently developedsothey mustnow beadaptedasDAMS servicesandtheiruserinterfaces
mustbecomeDAMS clients.Thiswill enableto exploit theDAMS functionalitiesandservices
(seeSec.3).

Tool coordinationwill bebasedontheTarget-process/ Tool andTool / Tool interactions,
sothatbothtoolsmaybeawareof thetargetapplicationstateandof eachotheractions.Also,
coordinationof their individualactionsmustbeensuredasthey referto thesameshareddis-
tributedapplication.For example,whenever aprocessunder debugging reachesabreakpoint
andstops,thensuch astatetransitionmustbeaccordinglyupdatedby Pajé andreflectedonits
on-linevisualization.Ontheotherhand,if Pajé showsthatagivenprocessis blockedwaiting
for a message,wemaybeinterestedin selecting theprocessandhaving Fiddle automatically
stoppingtheprocess,andselectingthesourceline containingthemessagereceptioncode.

Themaindimensionsof this ongoingprojectareasfollows:� ThePajé tool is beingadaptedto support on-linemonitoringandvisualizationof an
Athapascanprogram;� Dueto its multi-threadandmulti-processsupport, Fiddle canbeusedasa debugger
for theAthapascanmulti-threaded distributedmodel;� Tool synchronizationrequiresconsistent updatesof Pajé displayswith respect to the
Fiddle actionsandtheexecutionevents.

5.3.4. Conclusion. Overall, thesethreeprojectsareillustratingthefeasibility of devel-
opingcomplex functionalitiesfor programdevelopment,throughthecompositionof separate
tools. They arealsoshowing the flexibility of a monitoring infrastructurelike the DAMS,
for supporting distincttypesof servicesandallowing thecoordinationof multipleconcurrent
cooperatingtools.

6. Implementation Status. TheFiddle developmentfollowedtwo distinctapproaches.
First, a Fiddle prototypewasdeveloped asa stand-alonetool, i.e., without relying on any
independentmonitoringandcontrol layer. This allowedtheindependenttestingof all Fiddle
layersfrom 0 to 2, which arenow fully operationalin thecurrentprototype.Eventnotifica-
tion, providedby Layer 3m, is currentlyunder development.

The secondapproach, is basedon implementingFiddle asa setof servicesover a new
prototypeof DAMS, currentlyunderdevelopment.Thisnew DAMS prototypeprovidesaclean
definitionandsupportfor ServiceModulesonany hostfrom theDAMS environment,andalso
a fully working eventdissemination mechanism.

7. Conclusionsand Ongoing Work. We discussedsolutionsfor the developmentof
flexible toolsfor on-lineobservation andcontrolof parallelanddistributedapplications.This
work is a continuationof our previous work on the developmentof the DAMS monitoring
architectureandtheDDBG/PDBG debuggers.As discussedin thepaper, our currentfocusis
on theimprovementof DAMS for supporting tool interoperabilityandcoordinationservices.



SUPPORTING ON–LINE DISTRIBUTED MONITORINGAND DEBUGGING 15

This work hasbeenguidedby experimentationwith casestudiesinvolving real software
developmenttools. We have shown how DAMS canincludea new complex service,such as
themultiple Fiddle layers.TheFiddle tool addressesseveral requirementsfor thedebugging
of multi-thread/multi-processdistributedapplications.Its suitability is evaluatedthroughthe
developmentof new prototypesfor thedescribedtool casestudies.

Thetool integratingscenariosareallowing usto assesstool interoperabilitywhenusing
theFiddle servicesandthisalsohelpsusimproving theDAMS eventnotificationmechanisms
andthedefinition of new servicesfor tool coordination.Furtherwork is requiredto address
still open issues concerning low-level interferencesbetweenconcurrent tools which access
thesameapplicationstate.

Currentandfuturework focuson theimprovementof theDAMS mechanisms,thecom-
pleteimplementationof the Fiddle versionasa DAMS service, andthe full implementation
of the threetool integrationprototypes, based on Fiddle andDAMS. In eachtool integration
casestudythereare interestingopenissues. Namely, testinganddebugging canevolve to
provide someautomatedsupport in verifying if the behavior of anapplicationis consistent
with abehavior specificationfile, andthenin activatingasetof Fiddle clientsto helptheuser
analyze theerroneoussituation.

Acknowledgments. Thanksto the anonymousreviewers for their commentsandsug-
gestionsto improve thepaper. Thework reportedin thispaperwaspartially supportedby the
PRAXIS XXI Programme(SETNA Project),by theCITI (Centrefor InformaticsandInfor-
mationTechnologyof FCT/UNL),andby the1999/2000cooperationprotocolICCTI/French
Embassy in Portugal. Previous work waspartially fundedby the SEPP/HPCTI European
Copernicus/KIT projects.

REFERENCES

[1] R. A. AYDT, SDDF: ThePabloSelf-DescribingData Format, tech.rep.,Departmentof ComputerScience,
Universityof Illinois, Apr. 1994.

[2] S. BROWNE, J. DONGARRA , N. GARNER, G. HO, AND P. MUCCI, A portableprogramminginterfacefor
performanceevaluationonmodernprocessors, TheInternationalJournalof High PerformanceComput-
ing Applications,(2000),pp.189–204.

[3] B. BUCK AND J. K. HOLLINGSWORTH, AnAPI for runtimecodepatching, TheInternationalJournalof High
PerformanceComputingApplications,14 (2000),pp.317–329.

[4] A. CARISSIMI AND M. PASIN, Athapascan:An experienceon mixing MPI commmunicationsand threads,
in 5th EuroPVM/MPI, vol. 1497of LNCS,Springer, 1998,p. 137.

[5] J. C. CUNHA AND V. DUARTE, Monitoring PVM programs using the DAMS approach, in 5th Euro
PVM/MPI, vol. 1497of LNCS,Springer, 1998,pp.273–280.

[6] J. C. CUNHA , P. KACSUK, AND S. WINTER, eds.,Parallel Program Developmentfor ClusterComputing:
Methodology, ToolsandIntegratedEnvironment, Nova SciencePublishers,Inc., 2000.

[7] J. C. CUNHA , J. LOURENÇO, AND T. ANTÃO, An experimentin tool integration: the DDBG parallel and
distributeddebugger, Journalof SystemsArchitecture,45 (1999),pp.897–907.Elsevier SciencePress.

[8] J. C. CUNHA, J. LOURENÇO, J. V IEIRA , B. MOSCÃO, AND D. PEREIRA, A framework to supportparallel
and distributeddebugging, in Proc.of the InternationalConferenceon High-PerformanceComputing
andNetworking (HPCN’98), vol. 1401of LNCS, Amsterdam,The Netherlands,Apr. 1998,pp. 708–
717.

[9] G. A. GEIST, M. T. HEATH, B. W. PEYTON, AND P. H. WORLEY, A User’s guide to PICL, a Portable
InstrumentedCommunicationLibrary, OakRidgeNationalLab., Tennessee,1990.

[10] O. M. GROUP, TheCommonObjectRequestBroker: ArchitectureandSpecification(v2.4), OMG, Inc.,2000.
[11] M. T. HEATH AND J. A. ETHERIDGE, ParaGraph: A tool for visualizingperformanceof parallel programs.

Univ. of Illinois andOakRidgeNationalLab., 1992.
[12] R. HOOD, Thep2d2project: Buildinga portabledistributeddebugger, in Proceedingsof the2nd Symposium

on ParallelandDistributedTools(SPDT’96),PhiladelphiaPA, USA, 1996,ACM.
[13] P. KACSUK , J. C. CUNHA , G. DÓZSA , J. LOURENÇO, T. FADGYAS, AND T. ANTÃO, A graphicaldevelop-

mentanddebuggingenvironmentfor parallel programs, ParallelComputing,22 (1997),pp.1747–1770.



16 V. DUARTE, J.LOURENÇOAND J.C. CUNHA

[14] J. C. KERGOMMEAUX AND B. O. STEIN, Pajé: An extensibleenvironmentfor visualizing multi-threaded
programsexecutions, in Proc.Euro-Par2000,vol. 1900of LNCS,Springer, 2000,pp.133–140.

[15] H. KRAWCZYK AND B. WISZNIEWSKI, Interactive testingtool for parallel programs, in SoftwareEngi-
neeringfor ParallelandDistributedSystems,I. Jelly, I. Gorton,andP. Crolll, eds.,London,UK, 1996,
Chapman& Hal, pp.98–109.

[16] J. LOURENÇO AND J. C. CUNHA, Flexible Interfacefor DistributedDebugging(Library andEngine):Ref-
erenceManual(V 0.3.1), DepartamentodeInformáticadaUniversidadeNovadeLisboa,Portugal,Dec.
2000.Underdevelopment.

[17] J. LOURENÇO, J. C. CUNHA , H. KRAWCZYK , P. KUZORA , M. NEYMAN, AND B. WISZNIEWSK, An
integrated testingand debuggingenvironmentfor parallel anddistributedprograms, in Proceedingsof
the 23rd EuromicroConference(EUROMICRO’97), Budapeste,Hungary, Sept.1997,IEEE Computer
SocietyPress,pp.291–298.

[18] T. LUDWIG, R. WISMÜLLER, AND A. BODE, InteroperabletoolsbasedonOMIS, in Proc.of theSIGMET-
RICSSymposiumonParallelandDistributedTools(SPDT-98),ACM Press,1998,pp.155–155.

[19] T. LUDWING, R. WISMÜLLER, V. SUNDERAM , AND A. BODE, OMIS– On-linemonitoringinterfacespec-
ification, tech.report,LRR-TechnishUniversiätMünchenandMCS-EmoryUniversity, 1997.

[20] B. P. M ILLER, J. K. HOLLINGSWORTH, AND M. D. CALLAGHAN, TheParadyn parallel performance
measurementtools, IEEE Computer, (1995),pp. 37–46. Specialissueon performanceevaluationtools
for parallelanddistributedcomputersystems.

[21] MPI FORUM, MPI-2: Extensionsto theMessage-Passing Interface, Univ. of Tennessee,1997.
[22] D. M. PASE, DynamicProbeClassLibrary (DPCL): Tutorial andreferenceguide, tech.report,IBM, 1998.
[23] R. PRODAN AND J. M. KEWLEY, A framework for an interoperable tool environment, in Proc.Euro-Par

2000,vol. 1900of LNCS,Springer, 2000,pp.65–69.
[24] PTRWorkingGroupHomePage. http://www.ptools.org/projects/ptr/.
[25] D. A. REED, R. A. AYDT, R. J. NOE, P. C. ROTH, K. A. SHIELDS, B. SCHWARTZ, AND L. F. TAVERA,

Scalableperformanceanalysis: ThePablo performanceanalysisenvironment, in Proc.of theScalable
ParallelLibrariesConference, IEEEComputerSociety, 1993,pp.104–113.

[26] D. TOOLWORKS, TotalView, Dolphin InterconnectSolutions, Inc.,Framingham,Massachusetts,USA.
[27] J. TRINITIS, V. SUNDERAM , T. LUDWIG, AND R. WISMÜLLER, Interoperabili ty supportin distributedon-

line monitoring systems, in Proc.of the InternationalConference on High-PerformanceComputingand
Networking(HPCN’2000), vol. 1823,Amsterdam,TheNetherlands,2000.

[28] P. H. WORLEY, A new PICL tracefile format, Tech.ReportORNL/TM-12125,OakRidgeNationalLabora-
tory, Tennessee,1992.


