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Universidade Nova de Lisboa, Portugal
joao.lourenco@di.fct.unl.pt
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ABSTRACT
The emergence of multi-core processors is promoting the use
of concurrency and multithreading. To raise the abstrac-
tion level of synchronization constructs is fundamental to
ease the development of concurrent software, and Software
Transactional Memory (STM) is a good approach towards
such goal. However, execution environment issues such as
the processor instruction set, caching policy, and memory
model, may have strong influence upon the reliability of
STM engines.

This paper addresses the testing of STM engines aiming
at improving their reliability and independence from execu-
tion environment. From our experience with porting and
extending a specific STM engine, we report on some of the
bugs found and synthesize some testing patterns that proved
to be useful at testing STM engines.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming — parallel programming ; D.2.5 [SOFTWARE
ENGINEERING]: Testing and Debugging — Diagnos-
tics; D.4.1 [OPERATING SYSTEMS]: Process Manage-
ment — Synchronization

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Software Transactional Memory, Testing, Debugging, Test-
ing Patterns, Concurrency

1. INTRODUCTION
With the advent of multi-core microprocessors, multithread-

ing moved from a wanted feature into a vital necessity. Pro-
gramming with multiple threads forces the programmer to
understand and deal with concurrency, and concurrent pro-
gramming is known to be difficult.
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The usual synchronization constructs (locks and condition
variables) while simple on the paper, may become unpre-
dictable and error prone in larger systems. Coarse grained
locks, on large data structures, do not scale to large sys-
tems and fine grained locks are prone to difficult problems
in larger systems, such as deadlocks and priority inversion.
Also, locks and condition variables do not compose [5]. An
example is a list implementation where all methods (get,
add, delete, etc) are internally synchronized with locks. The
composability problem appears when the programmer wants
to move an object from one list instance into another, with-
out exposing the intermediate state. Having the list imple-
mentation to expose the internal lock and unlock methods
breaks the list abstraction and introduces deadlock prob-
lems.

Software Transactional Memory (STM) may help to solve
these problems: it supports composability and is not subject
to deadlocks or priority inversion.

The following Section summarizes the main design and
implementation approaches to support STM. In Section 3
some of the most difficult bugs we diagnosed are described,
and the testing programs used are synthesized into testing
patterns and evaluated. We conclude with some more con-
siderations on the work ahead.

2. STM DESIGN AND IMPLEMENTATION
OPTIONS

All STM software engines rely on a set of design, imple-
mentation and execution environment options, that influ-
ence their behavior. Some of such options are analyzed in
the following sections.

2.1 Synchronization
STM engines make use of blocking [1,2,3] or non-blocking

[4, 7, 9] techniques to implement synchronization.
Non blocking synchronization techniques make private copies

of data as needed and use an atomic compare-and-swap to
replace the changed items/data when they are done. Threads
that try to update an item that was changed between the
first access and the commit, must restart the operation.
Blocking synchronization techniques use locks to prevent
other threads to access the same data, and release the locks
when the operation is complete. Threads that find a locked
item wait until the lock is released.

This paper focus on lock-based (with blocking synchro-
nization) STM engines.
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2.2 Recovery
When a transaction updates some data variable, the STM

system (as with other types of transactional systems) must
record in some way the previous value of the variable, in case
the transaction does a rollback. Blocking STMs use one of
two main recovery strategies:
• Undo log — When a write occurs, the shared variable

is locked (to prevent other transactions from accessing the
dirty data) and the value is replaced with the new tentative
value. The previous value is recorded on a transaction pri-
vate undo log. This kind of update is called in-place. Reads
check the variable lock status, and may access the variable
directly only if it is unlocked.
When a commit is performed, the undo-log is discarded
and locks are released. When an abort is performed the
shared variables are re-written with the values on the undo-
log and locks are released. Some authors call this strategy
“encounter mode”.
STM engines operating in undo-log mode include [2, 3, 6].
• Redo log — When a write occurs, the shared variable’s

value remains unchanged and the tentative value is written
on a transaction private write-set. This kind of update is
called out-of-place. Reads can’t look directly to the shared
variable as it may have already been written by the local
transaction; instead they must look aside to the transaction
write-set. When a commit is performed, the shared variables
values are locked and then replaced with the values on the
write set. When a rollback is performed only clean-up work
needs to be done. Some authors call this strategy “commit
mode”.
STM engines operating in redo-log mode include [1, 2].

2.3 Concurrency Control
Most STM systems use optimistic concurrency control for

reads and versioned write locks. Each object has a version
number that is incremented for every commit that updates
it. When a transactional read is performed the version num-
ber of the object is stored in a transaction local data struc-
ture. On commit of every transaction, it is verified if the
versions of every object read have not changed. If any of
the objects has changed, the transaction is in an invalid
state and must be rolled back and retried. This prevents
non-serializable orderings from being committed.

This concurrency control approach does not preclude some
other execution hazards. While the transaction is being run,
it may see an incoherent state as a result of an unfortunate
interleaving. As a result it may enter an endless loop or
dereference invalid pointers. Such transactions are invalid
and must be aborted. The transactional engine may detect
this incoherence by re-validating the whole read set at every
transactional load, periodically or at commit time. Figure 1
shows an example of a transaction observing an invalid state
and, consequently, entering an infinite loop.

TL2 [1] uses a slightly different algorithm to avoid this
problem. It uses a global version clock instead of a version
counter per variable. When a transaction starts, it reads
the global clock. When a transaction commits, the written
variables are updated to the current number of the global
clock. On a transaction load, the transactional engine checks
whether the current version of the variable is greater than
the value read on the beginning of the transaction. If it is the
transaction immediately aborts. With this algorithm TL2
prevents transactions from running in inconsistent states.

T1 T2
1 // x=0 && y=0 // x=0 && y=0

2 atomic {
3 a=x;

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 atomic {
6 x++;

7 y++;

8 }
9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 b=y;

11 if (a!=b)

12 while (true) {}
13 }

Figure 1: Infinite loop caused by improper ordering

2.4 Transactional Granularity
Transactional shared variables may have different levels of

granularity. Granularity may be at the object level (object-
based STMs [7]) or block level (word-based STMs [4]). With
block level granularity, the block may have the size of a
memory word or the size of a cache line.

In object based STMs, all the object fields share the same
metadata—they have a coarser granularity than word based
STMs. Concurrent accesses from different transactions to
different fields of the same objects will conflict. The trans-
actional API must be called once for every object.

Word based STMs have more room for concurrency as
the granularity is finer, each word has its own metadata,
and collisions are less frequent. However the overhead is
also higher, as the transactional API must be called once
for every field the transaction accesses.

Object based STMs are less suitable for accesses to trans-
actional variables that are not objects—like single variables
and arrays. Word based STMs, on the other hand, can
access single variables and access arrays word-by-word but
incur in higher overhead.

2.5 Lock Placement
There are two main strategies for lock placement on lock

based STMs. One is to place the lock next to the data. The
other is to place the lock on a lock separate table.

2.5.1 Lock Adjacent to Data
Placing the lock adjacent to the data has the advantage

of having a higher chance that both, the lock and the data,
stay in the same cache line. This may yield to a better
performance by reducing the number of cache misses.

However, placing the lock and data near to each other,
requires changes to the internal representation/structure of
the objects in the heap and in the way they are handled. Fre-
quently, a pointer to the object points to the header meta-
data, and to access the object itself the pointer must be
explicitly incremented by the header size. This approach
usually limits the re-usage of existing libraries.

STMs that place locks adjacent to data include [1, 2, 3, 6]
place locks adjacent to data.

2.5.2 Lock Table
Placing the locks in a separate table does not require

changes to the object’s internal representation/structure,
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nor in the way objects are handled. This technique makes
it is easier to re-use existing libraries, as it only requires the
memory accesses (reads/writes) to be instrumented.

To map an object to the lock in the lock table, it is neces-
sary to have a hash function that maps the object’s address
to a lock table entry.

STMs that use a separate lock table to store locks include
[1, 2].

3. TESTING STM IMPLEMENTATIONS
From our experiments aiming at porting, extending and

testing a specific STM engine, we have synthesized some
testing patterns which increase the probability of triggering
wrong (buggy) behaviors.

3.1 Experiment Setup
Our work was based on TL2 implementation [1]. TL2

is word based STM with a redo-log strategy. TL2 has the
option of keeping locks adjacent to the data or in separate
lock table. It uses optimistic reads and versioned write locks,
with a global version clock algorithm to prevent transactions
from running in inconsistent states.

TL2 original source code was developed with the SUN-
PRO C compiler, for SPARC machines and the SOLARIS
operating system. Our prototype began with porting TL2
to compile with the GCC compiler, and targeting Linux sys-
tems with Intel x86 32 and x86 64 microprocessor architec-
tures. Afterwards, several modifications were made to al-
low the usage of both, object- and word-based modes, with
undo- and redo-log strategies. These were core changes to
the STM engine, which caused several bugs to show up.

3.2 Terminology
Before showing a sample of the problems found during the

development of our version of the STM engine, we describe
the terminology used in the examples. Figure 2 describes the
operations made by the transactions at the transactional
level: start, load, store, commit, and abort. Figure 3 de-
scribes the operations made by the STM engine at the lock
and data level: read variable’s lock version, read variable’s
value, etc.

Symbol Meaning
TxStart() Start transaction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxCommit() Commit transaction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxAbort() Abort transaction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxLoad(x) Transactional operation to read the

value of variable x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxStore(x, a) Transactional operation to write the

value a to variable x

Figure 2: Transaction Construct Glossary—
Transactional Level

Figure 4 shows a simplified transformation of transactional-
level operations (listed in 2) into lock-level ones (listed in 3).
With “simplified” we mean that some internal operations,
like adding elements to read and write sets or internal ver-
ification and maintenance operations, were omitted in the

Symbol Meaning
a = RV (x) Read the value of transactional variable x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v = RL(x) Read the lock version of the transactional

variable x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WV (x, a) Write the value a to the transactional vari-

able x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acq(x) Acquire the lock of the transactional vari-

able x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rel(x) Release the lock of the transactional vari-

able x

Figure 3: Transaction Construct Glossary—Lock
and Data Level

Operation Decomposition
for a redo-log
STM

Decomposition
for a undo-log
STM

TxStart() ts = clock; ts = clock;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a = TxLoad(y) v1 = RL(y); v1 = RL(y);

a = RV (y); a = RV (y);
v2 = RL(y); v2 = RL(y);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxStore(x, a) Acq(x);

WV (x, a);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxCommit() Acq(x); RL(y);

RL(y); Rel(x);
WV (x, a);
Rel(x);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxAbort() WV (x, old);

Rel(x);

Figure 4: Simplified decomposition of transactional-
into lock-level operations in undo- and redo-log
mode STMs

transformation. The omitted operations are not relevant to
the illustration of the bugs reported in this paper.

TxStart —In both, redo- and undo-log based STMs, a time-
stamp will be associated to the transaction. The time-
stamp will be the value of the current global version
clock.

TxLoad —In both, redo- and undo-log based STMs, load-
ing a variable (memory location) is, basically, a three-
step operation: i) load the variable’s version counter;
ii) load the variable’s value; iii) load again the vari-
able’s version counter. After these steps it is checked
whether that variable’s version number hasn’t changed
between the first and the third step. If it did the trans-
actions must abort immediately, otherwise the address
is added to the read set. These checks are not relevant
for the bugs analyzed in this paper and were, therefore,
omitted in the decomposition of the operation.

TxStore —In redo-log mode, changes are made out-of-place.
The new variable’s value will be stored in the redo
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log, and no memory changes are actually made at this
point. The new value will only overwrite the original
during transaction commit, if it succeeds. If commit
fails then the redo-log is simply discarded.

In undo-log mode, changes are made in-place. Once
the lock of the variable has been acquired, the current
variable’s value will be stored in the undo-log and then
overwritten with the new value.

TxCommit —In redo-log mode, all the pending updates
should now become effective. In this case, commit is
a four-steps operation: i) acquire (write) locks for all
variables that will be updated; ii) validate the trans-
action read-set. Validating the read-set ensure that
all variables read by the transaction satisfy two con-
ditions: they are not currently locked by any other
transaction; and they were not changed since the mo-
ment they were first read until all the write locks have
been acquired; iii) apply all pending changes to mem-
ory locations (overwrite the memory locations with the
values kept in the redo-log); iv) release all acquired
locks, increasing the version number.

In undo-log mode, the locks overwritten variables were
already acquired in the TxStore operation and new
values written into variables. It is only necessary to
validate the read-set and, if successful, release all ac-
quired locks, increasing their version number.

TxAbort —In redo-log mode, abort simply discards the redo-
log, so it is a null operation in what concerns to changes
to shared memory locations.

In undo-log mode, new values were written in-place.
So, when aborting a transaction, the original variable
values must be restored from the undo-log, and the
previously acquired locks released.

TxSterilize —This function is called before releasing any
transactional variable. Both in undo and redo log
mode, it prevents all transactions from doing any fur-
ther reads or writes to that variable. It does so by
increasing the lock version of the variable to the cur-
rent global clock number.

3.3 Sample of Bugs Found
In the following section we describe interleavings that trig-

gered wrong behaviors in the STM.

3.3.1 Bug 1: Reference to Non-Transactional
Memory

Figure 5 shows a problem where transaction T1 is ac-
cessing a piece of transactional memory already released by
another transaction T2. The transactions are operating on
a list with three nodes: x, y, and z. T1 is iterating the list
reading the nodes keys and T2 is deleting node y from the
list.

The bug arises when T1 does not detect that its read set
is not consistent when performing step 8. In such case, it
will run in inconsistent state, as the memory freed in step 7
may have already been recycled for other uses.

The original TxSterilize function only waited for all writes
to variable y to drain, allowing this harmful interleaving. To
correct the problem, TxSterilize was made to also increment
the version lock of variable y to the current value of the

T1 T2 Description
1 y = TxLoad(x.n) get the

pointer to
node y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 y = TxLoad(x.n)
3 z = TxLoad(y.n)
4 TxStore(x.n, z)
5 TxCommit()
6 TxSterilize(y)
7 free(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 TxLoad(y.k) access to

freed
memory

Figure 5: Undo/Redo-log mode: Reference to Non-
Transactional Memory.

for each i in write−s e t {
i f ( i i s not locked ){

i f ( i i s a l s o in read s e t ){
// read/wr i t e v a r i a b l e
i f ( g e t l o c k v e r s i o n ( i ) > tx timstamp )

abort ;
else

l o ck ( i )
} else {

// wr i t e only v a r i a b l e
l o ck ( i )

}
}

}

Figure 6: Lock acquisition in redo-log mode—buggy
version

global clock. In this way, transactions that accesses y after
the sterilization will detect that the version clock has been
updated and will, therefore, abort.

3.3.2 Bug 2: Lost Update with Small Lock Table
As depicted in Figure 6, commit starts by searching every

variable in the write set. If the variable is also in the read
set then it’s a read/write variable, otherwise it’s a write
only variable. For read/write variables, the lock version is
checked if it is greater than the transaction timestamp; for
write only variables, the algorithm didn’t find such check
necessary.

Figure 7 shows a possible interleaving on two transactions
T1 and T2. T1 is updating the write-only variable y and
the read/write variable x. T2 is only updating x.

When operating in redo-log mode, the original algorithm
didn’t work with the interleaving shown in Figure 7, which
includes a lock collision. If variable x and y have identical
hashes, there will be a lock collision and they will share the
same lock in the lock table. With this interleaving, when T1
commits, the lock acquisition of variable y will be successful,
because it is a write only variable, and the lock version val-
idation of variable x will be skipped, because the lock was
already acquired.

The correction to this problem is to always validate the
lock version of read/write variables, even if the lock is al-
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T1 T2 Description
1 TxLoad(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 TxStore(x, a)
3 TxCommit()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 TxStore(y, a) y is write only
5 TxStore(x, a) x is read-write
6 TxCommit()
7 →Acq(y) lock acquisition

phase
8 →Acq(x)
9 →RL(x) read set validation

phase

Figure 7: Redo-log mode: Lost Update with Small
Lock Table

for each i in write−s e t {
i f ( i i s a l s o in read s e t ){

// read/wr i t e v a r i a b l e
i f ( i i s not locked &&

g e t l o c k v e r s i o n ( i ) <= tx timstamp ) {
l o ck ( i ) ;
}

else i f ( i i s locked by t h i s thread &&
g e t l o c k v e r s i o n ( i ) <= tx timstamp )
continue ;

else
abort ( ) ;

} else {
// wr i t e only v a r i a b l e
l o ck ( i ) ;

}
}

Figure 8: Lock acquisition in redo-log mode—
correct version

ready held. Figure 8 shows a possible implementation for
the corrected algorithm.

3.3.3 Bug 3: Dirty Read Not Invalidated when
Transaction Aborts

Figure 9 shows an example where transaction T1 reads
the variable x and commits, and transaction T2 writes to
the same variable and aborts. If the illustrated interleav-
ing occurs when operating in undo-log mode, the locks are
immediately acquired during the TxStore and the previous
value of x is stored in the undo log. In step 2, T1 reads the
lock version of variable x. Then T2 stores a new value on x.
In step 6, T1 (dirty-)reads the value of x after changed by
T2. In step 7, T2 aborts and the old value of x is restored.

The bug in this situation was that, when transaction T2
aborted (in undo-log mode) the value of variable x was re-
stored and the lock was simply being released with the old
version number. Transaction T1 was not detecting that it
read a dirty value because the lock version revalidation, in
step 10, returned the same value as in step 2, therefore as-
suming the value read in step 6 was valid. To correct this
problem, when aborting a transaction in undo-log mode, the
lock version of every variable in the write set must be incre-
mented.

T1 T2 Description
1 TxLoad(x) T1 loading variable

x.
2 →RL(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 TxStore(x, a)
4 →Acq(x)
5 →WV (x, a) new value is written

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 →RV (x) dirty value is read

by T1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 TxAbort() T2 aborts
8 →WV (x) old x value is

restored
9 →Rel(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 →RL(x) lock version

revalidation
11 TxCommit()

Figure 9: Undo-log mode: Dirty read not invali-
dated when transaction aborts

3.3.4 Bug 4: Lost Update on Lock Upgrade
Figure 10 shows a problem that happened on undo-log

mode, when reading a variable and then modifying its value.
Transaction T1 is incrementing the variable x and transac-
tion T2 is storing a new value in the same variable. The
problem was that TxStore was not validating if the lock ver-
sion was the same as the one obtained in the first TxLoad—it
was merely acquiring the lock and writing the value. The
correction was to force TxStore to validate the lock version
before writing to the variable.

T1 T2 Description
1 v = TxLoad(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 TxStore(x, w)
3 TxCommit()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 TxStore(x, v + 1) upgrade from

read access to
write access

Figure 10: Undo-log mode: Lost update on lock up-
grade

3.4 Testing Patterns
Testing the STM engine aims at incrementing the prob-

ability of generating harmful interleavings. Harmful inter-
leavings are those that improperly read and/or modify the
shared data, i.e., locks and transactional variables. Such
interleavings can occur during reads, writes/updates, com-
mits, aborts, and when adding and removing variables from
the transactional space.

Tests may target specific implementation options, such as
the bug described in Section 3.3.2 or concurrency control
errors, which depend on both implementation options and
execution environment. For concurrency control errors, we
want to maximize the function fR =

P
i

Ci
Ti

where Ci is the
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time a transaction i runs with the shared state changed and
Ti is the total run-time for the same transaction.

3.4.1 Very Short Transactions with Read/Write
Operations

This testing pattern aims at maximizing the interleav-
ings between the main transactional operations, i.e., reads,
writes, commits and aborts. This test also maximizes the
frequency of commits.

This pattern is very adequate for redo-log based STM en-
gines. Such systems only change the shared state on commit,
shortening the time-window in which the transaction runs
with its shared state changed and concurrency errors can
only be revealed once there are changes in the shared state.

This testing pattern was found useful at finding the bug
reported in Section 3.3.1. Since the bug only occurred when
releasing transactional memory and the release is made af-
ter the commit, a higher number of commits maximizes the
occurrence of the bug.

3.4.2 High Frequency of Variables Being Added and
Deleted from Transactional Space

A testing pattern aiming at stressing the variability of the
transactional space, by the repeatedly insertion and removal
of data to/from the transactional space.

Such pattern allows to detect bugs mostly related to trans-
actions holding pointers to variables being simultaneously
released by other transactions, such as the bug described
in Section 3.3.1. These bugs may cause invalid memory ac-
cesses and memory being read/written after data deletion.

3.4.3 High Number of Updates on a Small Number
of Variables

This testing pattern aims at generating a very high fre-
quency of collisions between transactional reads and writes,
also forcing transactions to abort very frequently. This pat-
tern can easily be instantiated with a list that can hold a
very small amount of nodes, e.g., ten or less, and with several
transactions trying to add/update/delete the list nodes.

This test produced very good results with undo-log based
STM engines, because they change the shared data on writes,
changing the locks and data values, on commits, changing
only the locks, and on aborts, changing the locks and data
values. Overall, this testing pattern was found to be one of
the most effectives.

This pattern was particularly useful to find the bugs re-
ported in Sections 3.3.2 and 3.3.3, as these bugs are related
to read/write collisions.

3.4.4 Small Lock Table
STM engines that use a lock table to store objects/data

locks, usually make use of an hashing function to map the
object address to its lock within the lock table. Such hashing
function may map several objects to the same table position,
originating a lock collision problem. Such lock collision may
cause an improper validation of the lock state, with trans-
actions never being able to commit and potentially running
into livelocks.

This pattern aims at maximizing the function fL = V ∗T
L

,
where V is the average number of transactional variables
being manipulated by each transaction, T is the number of
running transactions and L is the size of (number of entries
in) the lock table. The pattern can, therefore, be instanti-

ated by an adequate combination of i) using a smaller lock
table; ii) increasing the number of transactional variables;
and iii) increasing the number of running transactions.

This pattern contributed significantly to find the bug re-
ported in Section 3.3.4. Just by decreasing the size of the
lock table to a very small number it was possible have a sig-
nificant number of lock collisions and reproduce the harmful
interleaving.

3.4.5 More Concurrent Transactions than CPUs
If the number of transactions is less than the number of

CPUs, any transactions willing to run can be immediately
assigned to a CPU, and transactions will never be stalled
waiting for CPU. In such case, some interleavings will be
harder to reproduce, because they depend on transactions
being preempted and stalled for some time.

This pattern was useful to reproduce the bug reported in
Section 3.3.3. This bug depends on the transaction T1 being
preempted while executing the TxLoad operation.

4. CONCLUSIONS
We have elaborated on some of the most relevant options

taken while implementing a STM engine. From our work
with porting the TL2 engine to the Intel IA 32 and AMD64
processor architectures, and with validation the original TL2
implementation and our own port, we have synthesized a set
of testing patterns which fulfilled well their goal: the valida-
tion of the STM engine. For behavior cross-referencing, we
applied some our tests to other STM engines, with emphasis
LibLTX [3].

Our experiments suggest that some of the bugs found in
STM engines are directly or indirectly related to out-of-
order instruction execution hazards. They also suggest that
the execution environment has very strong implications on
the STM engine stability, making tests that were running
for hours or days without errors to fail in seconds. Tests
made on multicore computers may have substantially dif-
ferent results than tests made on multiprocessor computers.
Multiprocessors have one cache per CPU, while multicore
computers have one cache shared among all cores. On mul-
tiprocessors, since there is no cache sharing, a variable may
be in one CPU cache but not in another. This leads to a
higher frequency of out-of-order executions, supported by
the generality of the current processors to improve perfor-
mance [10].

Much work lays ahead of us concerning multiple facets of
STM. Deeper analysis of the behavior patterns subsumed in
our testing units is mandatory, as well as having a better
understanding on when, how and why a STM engine may
fails. To our best knowledge, Manovit et al [8] is the only
other published work involving testing STM engines. They
get “inspiration” from the analysis of algorithms originally
developed for checking traditional memory consistency and
propose an axiomatic framework to model the formal spec-
ification of a realistic transactional memory system which
may contain a mix of transactional and non-transactional
operations. This approach is much different from the work
reported in this paper.

It is our belief that testing packages should be annotated
with invariant tests. Such invariant tests should optionally
be verified at run-time, so that the errors could be detected
as early as possible, minimize Byzantine effects. Once an
error is detected, other tools, such as trace generators and
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analyzers and core dump debuggers, should be used to lo-
cate, isolate, refine and correct the error cause.

We felt a desperate need of libraries and tools providing
low-intrusion logging services for STM based applications
and STM engine behavior, of STM specific trace analyzers
and of source-level debuggers incorporating the concept of
STM.
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