
On Monitoring C/C++ Transactional Memory Programs?

Jan Fiedor1, Zdeněk Letko1, João Lourenço2, and Tomáš Vojnar1

1 IT4Innovations Centre of Excellence, FIT, Brno University of Technology, Czech Republic
{ifiedor, iletko, vojnar}@fit.vutbr.cz

2 CITI, Universidade Nova de Lisboa, Portugal
joao.lourenco@fct.unl.pt

Abstract. Transactional memory (TM) is an increasingly popular technique for
synchronising threads in multi-threaded programs. To address both correctness
and performance-related issues of TM programs, one needs to monitor and ana-
lyse their execution. However, monitoring concurrent programs (including TM
programs) may have a non-negligible impact on their behaviour, which may ham-
per the objectives of the intended analysis. In this paper, we propose several ap-
proaches for monitoring TM programs and study their impact on the behaviour
of the monitored programs. The considered approaches range from specialised
lightweight monitoring to generic heavyweight monitoring. The implemented
monitoring tools are publicly available to the scientific community, and the im-
plementation techniques used for lightweight monitoring of TM programs may
be used as an inspiration for developing other specialised lightweight monitors.

1 Introduction

Due to the widespread use of multi-core and multi-processor computers in the last
decade, the number of programs utilising many threads working in parallel is rising sig-
nificantly. This switch from sequential to multi-threaded programming aims at achiev-
ing maximum speed-up by utilising all of the available cores of a multi-core computer.
However, the development of multi-threaded programs is far more demanding than the
development of common single-threaded programs, as the programmer must ensure
a proper synchronisation of all the threads running in parallel. Failing to do so may
lead to various problems including performance degradation and program malfunction.
Therefore, there is ongoing research on developing new techniques for thread synchro-
nisation that ease the development of multi-threaded programs.

One of the current approaches aiming at facilitating the development of multi-
threaded programs is transactional memory (TM) [4, 5], which is both easy to use and

? The work was supported by the ESF COST Action IC1001 (Euro-TM), the COST
project LD14001 and the Kontakt II project LH13265 of the Czech ministry of ed-
ucation, the BUT project FIT-S-14-2486, the EU/Czech IT4Innovations Centre of Ex-
cellence project CZ.1.05/1.1.00/02.0070, the EU/Czech Interdisciplinary Excellence Re-
search Teams Establishment project CZ.1.07/2.3.00/30.0005, and the research project
PTDC/EIAEIA/113613/2009 of the Portuguese National Science Foundation (FCT).



2 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

provides good performance. When using TM, the threads are synchronised by defining
transactions that may be executed optimistically in parallel and will succeed if they do
not interfere with each other. Even though using TM may be easier, there are still var-
ious opportunities to make mistakes that lead to performance degradation and errors,
which rises a clear demand for tools for analysing and debugging TM programs.

In order to be able to implement various dynamic analyses of the behaviour of TM
programs, one first needs to monitor their execution. However, the monitoring code may
influence the monitored program’s behaviour and hamper the results of some analyses.
That is why, in this paper, we propose several different ways of monitoring C/C++ TM
programs and then experimentally study their influence on the behaviour of the mon-
itored programs. Our monitoring approaches range from lightweight to heavyweight
monitoring. The monitored programs are taken from the well-known STAMP bench-
mark [1].

As our primary metric for evaluating the influence of the different monitoring ap-
proaches, we use the number of transactions that aborted during the execution of the
monitored TM programs as this metric gives a good insight into their contention level,
i.e., into the number of conflicting concurrent transactions. The more conflicts and
aborts the more work for the TM system.

In this paper, we present an experimental evaluation of the influence of different
kinds of lightweight and heavyweight monitoring approaches for TM programs, both
in terms of global numbers of aborts as well as numbers of aborts for different types
of transactions. Moreover, we also show that the obtained results can be significantly
influenced by the environment in which the monitoring is performed.

The results presented in this paper can be used in several ways. First, they can show
researchers or developers interested in monitoring TM programs how the behaviour of
these programs can be influenced by different monitoring techniques as well as the en-
vironment. Second, the proposed and implemented monitoring techniques are available
to the scientific community and can be used in other settings, which is especially easy
for the case of heavyweight monitoring since we implemented a quite generic TM mon-
itoring platform on top of the ANaConDA framework [3]. The lightweight monitoring
approaches are rather specialised; however, the described implementation techniques
can be useful if there is a need for implementing yet another lightweight monitor.

Related work. To the best of our knowledge, there are only a couple of works dealing
with monitoring of TM programs, namely the works [2, 6]. These works aim at provid-
ing the users with a variety of interesting data about the execution of a TM program
by tracing its operations. However, only the authors of [2] discuss how their monitor-
ing influences the monitored programs, and this discussion is rather brief and addresses
only the global number of aborts. We provide a much more detailed study of the influ-
ence of monitoring on the monitored programs, using more and/or different monitoring
approaches and considering other metrics besides the global numbers of aborts.

2 Monitoring Transactional Memory Programs

In this section, we briefly recall general principles and properties of both lightweight
and heavyweight monitoring techniques, and we propose several ways to use these ap-



On Monitoring C/C++ Transactional Memory Programs 3

proaches in monitoring TM programs. The influence of these techniques on the moni-
tored programs is then experimentally studied in the next section.

2.1 Lightweight and Heavyweight Monitoring

Lightweight monitoring [6] strives to minimize the impact of the monitoring activity
on the behaviour of the monitored TM program. To achieve this goal, only a limited
amount of information is collected, mainly the kind of information that can be obtained
fast enough and with minimal intrusion. This makes lightweight monitoring particu-
larly suitable for analysing a program for performance issues. To achieve the highest
performance, the monitoring code is usually embedded into the monitored program it-
self by modifying its source or intermediate code, or even its binary. In all these cases,
the monitored program is modified and differs from the original one.

Besides the limited amount of information provided, another disadvantage of the
lightweight approach is its lack of automation and/or versatility. The program must
be modified again and again for each change in the information to be collected, no
matter how small that change is. Sometimes, the required information can be acquired
by modifying only some of the libraries used by the program (such as the TM run-time
libraries in our case), but then the monitoring will be restricted to those programs that
use this specific library. Moreover, embedding monitoring code into a library may be
problematic if it is being shared with other programs running on the system, requiring
one to manage and maintain multiple versions of the same library.

Heavyweight monitoring [7] trades performance for versatility. It frequently uses
a specific run-time environment, such as some kind of a low-level virtual machine,
to execute the code of the given program and to monitor its execution. Executing the
program in such an environment slows down its execution considerably but enables
the acquisition of nearly any information required about the execution of the program.
Moreover, environments supporting dynamic instrumentation are able to insert (or re-
move) the monitoring code during the execution of the program, leaving its original
code untouched. Finally, by having full control of the code being executed, these envi-
ronments are able to monitor even self-modifying or self-generating code.

2.2 Lightweight Monitoring of TM Programs

In order to study the impact of monitoring on the behaviour of monitored TM programs,
we proposed and implemented several lightweight monitoring approaches. These ap-
proaches differ in how much information they are collecting and how they are collecting
this information. TM libraries usually provide information about the global numbers of
started, committed, and aborted transactions. We take the possibility of obtaining this
information as a starting point, and our monitoring approaches allow one to obtain var-
ious refinements of this information.

Our lightest monitoring approach (denoted as the statistics collector or sc in the
experiments) allows one to obtain not only the global numbers of started, committed,
and aborted transactions, but also all of these numbers separately for each thread and
each type of transaction. In order to be as lightweight as possible, this information is
obtained in such a way that the monitoring code maintains two counters for each thread



4 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

and each type of transaction: the first one tracking the number of started transactions
and the second one recording the number of committed transactions. These counters are
stored in a two-dimensional array so that each combination of a thread and a type of
transaction has its own exclusive set of counters. As each thread is accessing a different
part of the array, no additional synchronization is introduced. Further, to achieve the best
performance, the array is static with a defined maximum number of supported threads
and types of transactions, and no boundary checks are done during the monitoring—the
monitoring code just accesses a counter and increments it. The numbers of aborts are
then computed from the numbers of started and successfully committed transactions.

Our next monitoring approach (denoted as the event logger or el in the experiments)
is based on registering TM operations (events) in an event log (list) during a program
execution, followed by a post mortem processing of these events. An event is generated
(and stored in the event log) only when a transaction starts or successfully commits,
and the number of aborts is computed later. In order to minimize the probe effect, each
thread has its own event log which resides in the main memory, and hence no additional
synchronization between the threads or interaction with the file system is needed3.

Finally, we have implemented several variants of the event logger. The el-a variant
differs from the basic event logger in that it is explicitly tracking the aborts and does
not compute them from the number of started and successfully committed transactions.
The el-arw variant does additionally track transactional reads and writes, which signif-
icantly increases the number of events collected. Further, we extend all the three above
mentioned event logger approaches by collecting and associating a time stamp for each
logged event (leading to variants denoted as el-ts, el-a-ts, and el-arw-ts in the experi-
ments). The time stamp is retrieved from the Intel TSC (Time Stamp Counter) register,
and storing the time stamp doubles the data size of each event.

The implementation of all of our monitoring approaches is available4 and can be
used either directly or serve as an inspiration for implementing other specialized moni-
tors. The current implementation is restricted to the TL2 library and requires a modifica-
tion of the source code of the program to be monitored. Since the TL2 library provides
a set of macros representing the TM operations and these macros are used by the testing
programs, our implementation inserts the monitoring code into the programs by modi-
fying these macros. Thus, the source code of the programs is modified at compile time
when the modified macros are being expanded by the compiler. Still, we need to recom-
pile the programs with a different set of macros every time we need to change the way
the monitoring is done or the type of information to be acquired.

2.3 Heavyweight Monitoring of TM Programs

For versatile heavyweight monitoring of TM programs, we have proposed and imple-
mented an extension of the ANaConDA framework [3]. The ANaConDA framework
is based on PIN [7], a dynamic binary instrumentation tool from Intel. ANaConDA

3 Eliminating the interaction with the file system is very important as writing to a file introduces
a significant intrusion to the execution of a program.

4 http://github.com/fiedorjan/lightweight-stm-monitoring



On Monitoring C/C++ Transactional Memory Programs 5

enables monitoring of multi-threaded C/C++ programs and allows one to obtain infor-
mation about common synchronisation operations, such as memory accesses or lock
acquisitions and releases. In order to support (heavyweight) monitoring of TM pro-
grams, we extended the ANaConDA framework to include a support for monitoring
TM operations as described below.

The C/C++ programming languages usually include a support for TM by making
use of a software library. In this setting, monitoring the TM operations implies intercept-
ing the calls of the functions in this library. As there are many libraries implementing
TM for C/C++, our extension is not restricted to a specific library and may be easily
instantiated for any TM library. This allows one to analyse a broad variety of TM pro-
grams, not only a subset of programs using a specific library. Regardless of the concrete
implementation/library used, TM is supported by five basic operations: three opera-
tions for managing transactions (txStart, txCommit, and txAbort); and two operations
for managing the transactional accesses to the main memory (txRead and txWrite).

To be able to monitor the five basic TM operations of a concrete TM library with
ANaConDA, the user has to identify which library functions implement these oper-
ations and which of their parameters reference memory locations. After that, the ex-
tended ANaConDA framework is able to monitor any TM program that uses that par-
ticular TM library. Currently, we instantiated the extended ANaConDA framework with
a support for monitoring programs that use the TL2-x865 or the TinySTM6 libraries.

We implemented all of the approaches described in the previous sections as plug-
ins for the extended ANaConDA framework. The framework monitors the execution
of a TM program and sends notifications of the relevant TM events to the plug-in.
The plug-in then processes the events in the same way as the lightweight monitoring
approaches. Unlike in the case of lightweight monitoring, the heavyweight monitoring
does not require customized versions of the monitored program specifically tailored for
a particular monitoring strategy. Based on the type of information requested by each
plug-in, the framework instruments the original code of the monitored program upon
loading it into the main memory with the code which collects the required information.

3 Experimental Evaluation of the Impact of Monitoring

We will now present a set of experiments that evaluate the influence of the monitoring
approaches described in the previous section on the behaviour of a set of benchmark
TM programs from several different points of view. For our experiments, we used 6 out
of 8 programs from the STAMP benchmark suite [1], namely genome, intruder,
kmeans, scca2, vacation, and yada. These programs utilise transactional mem-
ory to solve a wide variety of problems. In case of the kmeans and vacation pro-
grams, we also distinguish the high and low variants that use respectively the high and
low contention configurations available in the benchmark. The remaining two bench-
marks, bayes and labyrinth, were excluded due to technical problems unrelated
with the work described in this paper.

5 http://stamp.stanford.edu/releases.shtml#tl2-x86
6 http://tmware.org/tinystm



6 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

Table 1. Average number of aborts in original runs and runs with lightweight monitoring.

genome intruder kmeans ssca2 vacation yada

variant high low high low

L
ig

ht
w

ei
gh

t

orig 2.6 ·104 4.3 ·107 5.6 ·106 5.2 ·106 2.6 ·102 4.9 ·105 2.6 ·104 2.7 ·106
sc 2.8 ·104 4.3 ·107 5.4 ·106 5.1 ·106 3.5 ·102 4.9 ·105 2.7 ·104 2.6 ·106
el 2.3 ·104 3.8 ·107 4.3 ·106 4.0 ·106 2.7 ·102 4.6 ·105 2.5 ·104 2.6 ·106
el-ts 2.2 ·104 3.5 ·107 3.7 ·106 3.4 ·106 2.0 ·102 4.4 ·105 2.4 ·104 2.3 ·106
el-a 2.3 ·104 3.7 ·107 4.0 ·106 3.7 ·106 2.0 ·102 4.4 ·105 2.4 ·104 2.5 ·106
el-a-ts 2.1 ·104 3.4 ·107 2.9 ·106 2.7 ·106 2.2 ·102 3.9 ·105 2.1 ·104 2.1 ·106
el-arw 2.1 ·104 1.1 ·107 3.2 ·106 3.4 ·106 1.9 ·102 0.5 ·105 0.8 ·104 1.8 ·106
el-arw-ts 2.5 ·104 0.8 ·107 2.3 ·106 2.7 ·106 2.5 ·102 0.5 ·105 0.8 ·104 1.5 ·106

For the experiments, we used two different environments. The first environment,
which we will refer to as x5355-64GB, consists of a single machine with 4-core In-
tel Xeon X5355 2.66 GHz CPU and 64 GB of memory, running Linux with the 3.2.0
kernel. The second environment, which we will refer to as x3450-8GB, is a cluster con-
taining three identical nodes with 4-core Intel Xeon X3450 2.66 GHz CPUs and 8 GB
of memory, running Linux with the 2.6.26 kernel. As all of the CPUs which we used
support Hyper-threading, up to 8 threads may run seemingly simultaneously on any of
these machines. To achieve maximal concurrency, all of the benchmarks were config-
ured to use 8 threads. For lightweight monitoring, programs were compiled with -g
and -O3 flags.

3.1 Comparison of Lightweight Monitoring Approaches

First, we evaluate the impact of the different variants of lightweight monitoring that we
proposed on the behaviour of the monitored programs. As a metric, we use the global
number of transactions aborted during the program run. The presented experiments
were performed in the x5355-64GB environment.

Table 1 shows the average global number of aborts (out of 100 runs) for each of the
tested programs when executed with the different variants of lightweight monitoring
described in Section 2.2. The variant orig represents a run without any monitoring, i.e.,
the execution of the original program with no modifications. The parameters of each of
the programs were set to the values recommended for the so-called standard runs of the
programs in the STAMP benchmark suite7.

When performing the most lightweight monitoring (sc), the global number of aborts
does not change much and stays almost always within a range of 5 % from the original
runs. The only exception is the ssca2 benchmark which gets near 35 % more aborts
than in the original runs. This is caused by the so-called outliers, i.e., rare runs that
achieve a number of aborts much higher than usual, which distorts the results. This

7 These parameters are recommended by the STAMP authors when running the benchmarks na-
tively, i.e., directly on a concrete operating system, not in a simulator or another tool negatively
affecting its performance.



On Monitoring C/C++ Transactional Memory Programs 7

Table 2. Average aborts in original runs and runs with lightweight monitoring without outliers.

genome intruder kmeans ssca2 vacation yada

variant high low high low

L
ig

ht
w

ei
gh

t

orig 2.6 ·104 4.3 ·107 5.6 ·106 5.0 ·106 2.6 ·102 4.9 ·105 2.5 ·104 2.6 ·106
sc 2.7 ·104 4.4 ·107 5.4 ·106 5.0 ·106 2.5 ·102 4.9 ·105 2.6 ·104 2.6 ·106
el 2.2 ·104 3.8 ·107 4.2 ·106 3.9 ·106 1.7 ·102 4.6 ·105 2.5 ·104 2.6 ·106
el-ts 2.1 ·104 3.5 ·107 3.7 ·106 3.3 ·106 1.6 ·102 4.3 ·105 2.4 ·104 2.3 ·106
el-a 2.3 ·104 3.7 ·107 3.9 ·106 3.6 ·106 1.9 ·102 4.4 ·105 2.4 ·104 2.5 ·106
el-a-ts 2.1 ·104 3.4 ·107 2.9 ·106 2.6 ·106 1.6 ·102 3.9 ·105 2.1 ·104 2.1 ·106
el-arw 2.1 ·104 1.1 ·107 3.2 ·106 3.2 ·106 1.8 ·102 0.5 ·105 0.8 ·104 1.8 ·106
el-arw-ts 2.4 ·104 0.9 ·107 2.3 ·106 2.6 ·106 1.7 ·102 0.5 ·105 0.8 ·104 1.5 ·106

effect is more noticeable in the cases where the global number of aborts is relatively
low and even one of such outlying runs may change the average values considerably.
For example, the results for the ssca2 benchmark using the sc monitoring approach
contained two runs with 4300 and 3800 global numbers of aborts. When we look at the
global number of aborts and remove the 10 runs identified as outliers, we get close to the
original global number of aborts even for the ssca2 benchmark. These results can be
seen in Table 2. In particular, we take as outliers the runs which achieved a significantly
different global number of aborts than the rest of the runs based on their Euclidian
distance from the 10 runs with the closest global number of aborts.

When we try to obtain the same information as above using the event logger ap-
proach (el), we see that the global number of aborts drops much more than when using
the sc approach—changing up to 25 % of the original value. This is because logging the
events in a list is more intrusive than just incrementing a counter. This demonstrates that
it is indeed quite important how the monitored information is acquired and registered as
even slightly different methods that obtain the same information may have considerably
different impact on the behaviour of the monitored TM programs.

When we start collecting more information (events) than just the number of started
and committed transactions, we get an even lower global number of aborts. When log-
ging the number of aborts as well (using the el-a approach), the drop in the number
of aborts is not that significant yet (up to 30 % of the original value) as the number
of events of this type is not that high. However, when we start tracking the read and
write operations as well (using the el-arw approach), the global number of aborts often
suffers large drops (the change is up to 90 % of the original value). This is related to
the fact that the number of reads and writes is usually much higher than the number of
starts and commits.

If we also start collecting the time stamps (using the el-ts, el-a-ts, and el-arw-ts ap-
proaches), the global number of aborts does also drop when compared with the variants
not collecting the time stamps. However, in general, despite collecting time stamps is
usually more intrusive than tracking the aborts, it is less intrusive than tracking the reads
and writes.



8 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

Table 3. A comparison of average number of aborts for lightweight and heavyweight monitoring.

genome intruder kmeans ssca2 vacation yada

variant high low high low
L

ig
ht

w
ei

gh
t

orig 67.6 22850.0 3804.7 1626.1 6.5 23.4 4.9 9362.3
sc 73.3 22013.1 4115.7 1721.5 7.2 23.3 5.3 11659.3
el 63.1 17663.5 2722.9 1245.9 12.2 25.2 5.3 9354.7
el-ts 61.3 16797.2 2402.7 1236.4 13.0 22.6 4.7 8118.7
el-a 65.8 16504.1 2204.3 1091.0 16.6 22.6 4.0 8096.3
el-a-ts 64.3 16112.9 1696.8 942.8 15.6 19.7 3.8 6846.7
el-arw 72.7 8238.9 2891.2 1877.0 18.0 19.9 3.7 5804.0
el-arw-ts 107.1 9499.4 3463.6 2121.3 22.0 22.6 4.7 4458.0

PI
N

orig 3.7 85.8 0.2 0.1 0.0 2.1 0.2 595.1
sc 3.4 81.1 0.4 0.1 0.0 2.0 0.3 584.4
el 8.6 92.2 7.2 6.7 0.5 2.4 0.5 589.3
el-ts 9.4 106.9 9.0 7.8 0.7 2.5 0.3 571.2
el-a 7.0 101.6 14.9 12.2 0.5 2.1 0.2 580.2
el-a-ts 7.4 95.7 17.5 14.6 0.6 2.4 0.3 576.6
el-arw 13.2 476.8 36.6 28.6 0.9 10.1 1.6 715.2
el-arw-ts 24.1 1567.1 213.2 139.3 1.0 14.6 2.8 902.4

A
N

aC
on

D
A

orig 10.8 71.4 0.3 0.1 0.0 1.9 0.2 595.6
sc 9.3 109.8 0.2 0.1 0.0 3.4 0.6 729.6
el 13.7 109.7 8.6 7.8 0.6 4.0 0.5 704.3
el-ts 11.3 119.2 9.8 8.6 0.8 4.0 0.4 687.4
el-a 12.3 126.0 20.8 16.7 0.9 3.6 0.7 702.4
el-a-ts 11.0 133.8 24.5 18.0 0.9 4.0 0.5 682.3
el-arw 20.8 1653.4 178.5 126.9 1.3 17.4 2.8 1100.1
el-arw-ts 34.4 3132.9 480.8 305.8 1.5 19.1 3.7 1260.8

3.2 Comparison of Lightweight and Heavyweight Monitoring

In this section, we compare the impact of the lightweight and heavyweight implementa-
tions of the considered monitoring approaches. Since heavyweight monitoring greatly
slows down the tested programs, for these experiments the parameters of the bench-
marking programs were set to the values recommended by the STAMP authors for the
so-called simulation runs, which are suitable when executing a program in a simulator
or another tool that negatively affects its performance. Since the simulation runs gener-
ate much less aborts than the standard ones, meaning that the results might be negatively
influenced by the outliers, we remove 10 (out of 100) runs marked as the outliers dur-
ing the evaluation. Due to the higher time cost of these tests, the experiments were
performed in the x3450-8GB environment.

Table 3 shows the average global number of aborts for each of the tested programs
for the lightweight and heavyweight implementations of the monitoring approaches
described in Section 2.2. The heavyweight implementations come in two different ver-
sions. The first version, called PIN, does the monitoring by executing the lightweight
monitoring implementation, i.e., the modified versions of the programs, in the PIN



On Monitoring C/C++ Transactional Memory Programs 9

framework without doing any instrumentation of the program. The purpose of this ver-
sion is to show how the use of PIN’s low-level virtual machine changes the behaviour
of the monitored program even without the influence of the instrumentation needed to
capture the monitored events. The second version, denoted as ANaConDA, is the true
heavyweight implementation where the counter incrementation and event collection is
done through the callbacks provided by the extended ANaConDA framework.

First of all, let us note that compared with the results of the standard runs (Table 2),
the results of the simulation runs exhibit the same tendencies when monitored using
the lightweight approaches (and hence we can consider their use instead of the standard
runs meaningful). The main difference is that the simulation runs are more prone to
problems with outliers as their execution time is quite short and even a very short dis-
ruption during the execution may change significantly the overall results. For example,
the results obtained for the yada benchmark using the sc monitoring approach contain
several runs with significantly greater global number of aborts even after the 10 outliers
have been removed (in fact, in this batch of runs there were 14 runs with a very high
global number of aborts).

When we start monitoring the programs using the heavyweight versions of the mon-
itoring approaches, we can see a massive drop in the global number of aborts (more than
95 %). This drop is mainly caused by PIN’s low-level virtual machine as just running
the original (non-modified) version (orig) of a program in PIN leads to an extreme
drop in the global number of aborts (more than 95 %). The additional disruption in-
troduced by the monitoring code does not influence much the behaviour. In fact, rather
than having the effect of decreasing the global number of aborts, like in the case of
the lightweight monitoring, inserting the monitoring code actually helps to increase the
number of aborts a little in the heavyweight monitoring. This effect increases as we
collect more information while monitoring, which is a completely opposite tendency
compared to the lightweight monitoring. Also, the monitoring code inserted by ANa-
ConDA has a greater effect on increasing the global number of aborts than using the
lightweight monitoring code executed in PIN.

Another effect that the heavyweight monitoring has on the considered programs is
that it suppresses the outliers. Table 3 contains the results evaluated from the runs not
marked as outliers, but the results are nearly identical even when considering all of the
runs.

3.3 Impact of the Monitoring on Different Types of Transactions

The global number of aborts is an important performance metric and hence also a good
basic metric of how the behaviour of the monitored programs is influenced by the mon-
itoring layer. However, one may want to get a more detailed information about the
behaviour of a program and also about the way how it is influenced by monitoring. To
go one step further in this direction, we now consider monitoring numbers of aborts
of different types of transactions and the influence of monitoring on these numbers.
Since TM libraries do not give us statistics for different types of transactions, we use
the information obtained using the sc monitoring approach as a baseline behaviour of
a program in this case. As the global number of aborts when using the sc monitoring
approach is very similar to the original global number of aborts, we may safely assume



10 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

Table 4. Average number of aborts for different types of transactions.

intruder kmeans-high

variant Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

L
ig

ht
w

ei
gh

t

sc 13.9 ·106 91.0 ·105 20.5 ·106 51.7 ·105 24.9 ·104 51.0 ·100
el 9.5 ·106 85.2 ·105 19.9 ·106 40.9 ·105 22.1 ·104 44.0 ·100
el-ts 8.1 ·106 83.5 ·105 18.9 ·106 35.1 ·105 21.8 ·104 36.0 ·100
el-a 9.5 ·106 86.0 ·105 19.0 ·106 37.8 ·105 21.9 ·104 37.0 ·100
el-a-ts 8.7 ·106 83.0 ·105 17.0 ·106 26.8 ·105 22.2 ·104 33.0 ·100
el-arw 5.1 ·106 23.6 ·105 3.3 ·106 31.3 ·105 8.3 ·104 12.0 ·100
el-arw-ts 5.1 ·106 22.3 ·105 1.1 ·106 22.6 ·105 7.7 ·104 11.0 ·100

that this behaviour is very close to the original one. The presented experiments were
again performed in the x5355-64GB environment.

Table 4 shows the average number of aborts for each type of transactions present
in the intruder and kmeans benchmarks (in the latter case, for the variant with
high contention). As can be seen, the various kinds of monitoring influence each type
of transactions differently. When looking at transactions of Type Tx2 and Tx3 for the
intruder benchmark or at transactions of Type Tx5 for the kmeans benchmark, one
can see that utilizing the event logger with or without direct tracking of aborts (el and el-
a, respectively) does not influence the average number of aborts much. The drop in the
number of aborts is around 10 % here. Also, the collection of time stamps (the el-ts and
el-a-ts approaches) changes these numbers minimally. However, when we start tracking
the reads and writes (the el-arw approach), the number of aborts drops considerably (by
around 65–85 %).

On the other hand, some types of transactions, like transactions of Type Tx1 for the
intruder benchmark and transactions of Type Tx4 for the kmeans benchmark are
more affected by the event logger (el) approach and exhibit a significant decrease in
the number of aborts (by around 20–30 %). The number of aborts does not drop much
when we add the direct tracking of aborts (el-a), but it lowers again (by around 10–
20 %) when we include the collection of time stamps (the el-ts and el-a-ts approaches).
When we start tracking the reads and writes in these types of transactions, the number
of aborts drops again (by around 10–30 %), but this drop is not that significant as in the
case of the previously described transaction types.

One may think that the abrupt drop in the number of aborts that we saw in the
transactions of Type Tx2, Tx3, or Tx5 when we started tracking the reads and writes is
connected to the number of memory accesses in these types of transactions since the
influence of the monitoring should be different for transactions with a high and low
number of memory accesses, respectively. However, our analysis of the data showed
no clear dependency between the number of accesses and the drops in the number of
aborts. For example, transactions of Type Tx2 perform on average 110 accesses to the
TM, while transactions of Type Tx3 just 3 and transactions of Type Tx5 only 2. Still, the
tendencies they exhibit for the various monitoring approaches are the same. The exact
cause of this behaviour remains an interesting direction for future work.



On Monitoring C/C++ Transactional Memory Programs 11

Table 5. Average aborts in runs with lightweight monitoring in the x3450-8GB environment.

genome intruder kmeans ssca2 vacation yada

variant high low high low

L
ig

ht
w

ei
gh

t

orig 3.0 ·104 3.0 ·107 5.7 ·106 4.1 ·106 6.3 ·102 3.6 ·105 3.1 ·104 5.0 ·106
sc 3.1 ·104 3.0 ·107 6.0 ·106 4.4 ·106 11.7 ·102 3.6 ·105 3.2 ·104 5.0 ·106
el 2.7 ·104 2.9 ·107 4.9 ·106 3.7 ·106 3.4 ·102 3.4 ·105 3.0 ·104 4.6 ·106
el-ts 2.6 ·104 2.9 ·107 4.5 ·106 3.3 ·106 1.9 ·102 3.3 ·105 2.8 ·104 4.4 ·106
el-a 2.8 ·104 2.8 ·107 4.2 ·106 3.1 ·106 5.2 ·102 3.3 ·105 2.7 ·104 4.3 ·106
el-a-ts 2.6 ·104 2.5 ·107 3.1 ·106 2.3 ·106 2.3 ·102 3.0 ·105 2.5 ·104 3.6 ·106
el-arw 2.4 ·104 0.8 ·107 3.4 ·106 3.7 ·106 5.1 ·102 timeout 3.5 ·104 2.9 ·106
el-arw-ts 2.8 ·104 0.7 ·107 2.5 ·106 2.2 ·106 2.4 ·102 timeout timeout timeout

3.4 Influence of the Environment

In the previous sections, we discussed that even a slight disturbance of the monitored
TM program’s execution by the monitoring code could impact its behaviour. However,
changes in the monitoring code are not the only factor that may influence the behaviour
of the monitored program. Other factors include changes of the environment in which
the monitoring is done. That is why we now compare both of our execution environ-
ments used for acquiring the experimental results.

In particular, Table 5 shows results of the same experiments with lightweight mon-
itoring as Table 1 but this time from the x3450-8GB environment instead of x5355-
64GB.8 We can see that the tendencies for the various monitoring approaches are simi-
lar to the ones presented before. However, the average global number of aborts changed
for some of the benchmarks. For example, the intruder benchmark achieved around
30 % less aborts on this machine regardless of the monitoring approach used. On the
other hand, the yada benchmark got twice as many aborts with any monitoring ap-
proach used.

Moreover, interestingly, some of the benchmarks seem to behave the same way as
on the previously used machine when looking at the global number of aborts only.
However, when looking at aborts for different types of transactions, one finds out that
the program is in fact behaving differently. When looking at the kmeans benchmark,
the average global number of aborts for the original run (orig) is nearly the same, but
this is not true when we compare the number of aborts per transactions type.

In particular, Table 6 contains the average number of aborts for each type of trans-
actions present in the intruder and kmeans (high contention variant) benchmarks.
When we look at the sc monitoring approach and compare transactions of Type Tx4 and
Tx5 with the results presented in Table 4, we see that the number of aborts for transac-
tions of Type Tx4 increases by about 20 % while the number of aborts for transactions
of Type Tx5 drops by more than 85 %. Moreover, the tendencies exhibited by trans-
actions of type Tx5 change: now, the number of aborts starts actually increasing when

8 The missing values for some of the benchmarks for the el-arw and el-arw-ts monitoring ap-
proaches in Table 5 are caused by all of the runs timing out due to the extensive swapping as
the main memory was rapidly filled out with the collected events.



12 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

Table 6. Average aborts for different types of transactions in the x3450-8GB environment.

intruder kmeans-high

variant Tx1 Tx2 Tx3 Tx4 Tx5 Tx6
L

ig
ht

w
ei

gh
t

sc 3.2 ·106 88.9 ·105 17.5 ·106 59.8 ·105 3.6 ·104 6.0 ·100
el 3.8 ·106 84.1 ·105 16.5 ·106 48.7 ·105 6.3 ·104 7.0 ·100
el-ts 4.2 ·106 85.9 ·105 16.5 ·106 44.0 ·105 7.6 ·104 8.0 ·100
el-a 3.9 ·106 85.9 ·105 15.4 ·106 41.0 ·105 6.4 ·104 7.0 ·100
el-a-ts 4.0 ·106 83.9 ·105 13.1 ·106 29.9 ·105 7.7 ·104 8.0 ·100
el-arw 3.7 ·106 15.3 ·105 2.3 ·106 33.4 ·105 6.9 ·104 7.0 ·100
el-arw-ts 4.4 ·106 14.6 ·105 1.1 ·106 23.5 ·105 10.1 ·104 14.0 ·100

more intrusive monitoring approaches are used. Also, the time stamp collection greatly
increases the number of aborts here.

We see a similar change in the behaviour in the intruder benchmark for transac-
tions of Type Tx1. While the other two types of transactions exhibit similar tendencies
and number of aborts, the number of aborts in transactions of Type Tx1 drops by more
than 75 % when using the sc monitoring approach. Using the more intrusive monitoring
approaches then increases the number of aborts.

4 Analysis of the Impact of Heavyweight Monitoring

It is hard to explain all the above presented changes in the behaviour of the monitored
TM programs since, for that, one would typically need some additional information
about their original behaviour. However, gathering such information is usually impos-
sible without monitoring and hence without again changing the behaviour.

Nevertheless, the situation is a bit different for the specific case when one wants to
analyse differences between what happens within lightweight and heavyweight moni-
toring. In this case, the environment used for heavyweight monitoring has more influ-
ence on the behaviour than the actual collection of information about the monitored
program. Hence, one may come with a hypothesis why the behaviour changes in a cer-
tain way in heavyweight monitoring and then try to support the hypothesis by analysing
differences of suitable data collected about the behaviour of the monitored program
during lightweight and heavyweight monitoring processes. We follow this path below.

Our hypothesis why the behaviour of the monitored TM programs changes so sig-
nificantly during heavyweight monitoring is as follows. The run-time environment used
in heavyweight monitoring has to execute not only the code of the monitored program
but also the monitoring code that collects desired information about the execution of
the program as well as other essential code for managing the running threads, for de-
termining when and where to execute the monitoring code, etc. As a result, there is
more code to be executed inside each transaction block, but there is even more code
to be executed outside of the transactions. This, of course, influences the timing of the
transactions as their execution is moved further apart in the program’s execution, and
even though their execution is longer, their chances to overlap and possibly abort are



On Monitoring C/C++ Transactional Memory Programs 13

Normal execution
T1

T2

T3

Monitored execution

Fig. 1. Differences between normal and monitored execution.

Table 7. Average percentage of time spent in transactions.

genome intruder kmeans ssca2 vacation yada

variant high low high low

L
ig

ht el-a-ts 45.4% 71.6% 33.1% 26.9% 50.8% 96.2% 95.4% 89.0%
el-arw-ts 60.3% 95.3% 78.6% 75.0% 63.8% 99.0% 98.9% 97.2%

H
ea

vy el-a-ts 13.9% 15.6% 8.1% 6.3% 3.4% 29.7% 27.8% 56.3%
el-arw-ts 24.9% 29.9% 22.7% 23.4% 5.0% 65.1% 61.7% 74.1%

decreased. This phenomenon is illustrated in Figure 1 (where an abort of a transaction
within the normal execution is highlighted in red hatching).

To support the above hypothesis, we computed how much time is spent inside and
outside the transactional blocks (using recorded timestamps of starts, aborts, and com-
mits of transactions). The results are shown in Table 7. One can clearly see that the
relative time spent inside transactions is much lower when using heavyweight monitor-
ing than when using lightweight monitoring. This confirms our hypothesis and explains
why we get significantly less aborts during heavyweight monitoring. Moreover, the ta-
ble also shows that when we start registering transactional reads and writes, we spend
more time in transactions, and, correspondingly, we also get more aborts (cf. Table 3).

5 Conclusion

We have presented several approaches of lightweight and heavyweight monitoring of
TM programs. The proposed monitoring techniques are publicly available and can be
used directly or serve as an inspiration for implementing other specialized monitors.
We have also presented an experimental evaluation of the influence of these monitoring
approaches on the number of aborts, both at the global level and for each type of trans-
actions present in the monitored programs. Further, we have shown that not only the
monitoring process influence the number of aborts, but also the environment in which
the monitoring is performed has a great impact on the overall behaviour.

From our experiments we concluded that when using lightweight monitoring strate-
gies, the more information we monitor the less aborts we usually get, both globally and
per transaction type as well. However, one has to be careful of the role of outliers and
of the fact that the number of aborts does not decrease in the same way across differ-
ent types of transactions. Moreover, sometimes, the number of aborts can even increase
when we increase the amount of monitoring. Such a behaviour is easily observed when



14 Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar

the environment used causes a massive initial drop in the number of aborts. This is, in
particular, visible when using environments for heavyweight monitoring.

In the future, it would be interesting to find analytical explanations for the various
phenomena observed during the experiments reported in this paper. Such explanations
could then perhaps be used as a basis for finding means for neutralizing the influence
of the monitoring approaches on the monitored runs. Furthermore, one can use the
developed monitoring layer as a basis for developing various dynamic analyses allowing
one to detect errors in the monitored programs.

Acknowledgment

We would like to thank H. Pluháčková and B. Křena for the valuable discussions on
the topic of this paper as well as for a help with statistical processing of the considered
data.

References

1. C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Transactional
Applications for Multi-Processing. In Proc. of IISWC’08, 2008.

2. M. Castro, K. Georgiev, V. Marangozova-Martin, J.-F. Mehaut, L. G. Fernandes, and M. San-
tana. Analysis and Tracing of Applications Based on Software Transactional Memory on
Multicore Architectures. In Proc. of PDP’11. IEEE CS, 2011.

3. J. Fiedor and T. Vojnar. ANaConDA: A Framework for Analysing Multi-threaded C/C++
Programs on the Binary Level. In Proc. of RV’12. LNCS 7687, Springer, 2012.

4. R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Morgan and Claypool
Publishers, 2010.

5. T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Morgan and Claypool
Publishers, 2010.

6. J. M. Lourenço, R. J. Dias, J. a. Luı́s, M. Rebelo, and V. Pessanha. Understanding the Behavior
of Transactional Memory Applications. In Proc. of PADTAD’09. ACM, 2009.

7. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In Proc. of PLDI’05. ACM, 2005.


