
An Experiment in Tool Integration: the DDBG
Parallel and Distributed Debugger

José C. Cunha a, João Lourenço a, Tiago R. Antão a

aUniversidade Nova de Lisboa, Faculdade de Cîencias e Tecnologia, Departamento de
Informática, 2825 Monte de Caparica, Portugal

(jcc, jml, tra) @ di.fct.unl.pt

Abstract

This paper discusses the development of a debugging tool for parallel programs showing
how the requirements posed by high-level tools for parallel program development have
influenced the design of the debugging system since its early stages of development. We
concentrate our attention upon the interfacing of the debugger with other tools of a parallel
software engineering environment, namely a graphical programming language and a testing
and debugging tool. This is illustrated with the results of our experimentation with the
design and implementation of DDBG, a debugger for the PVM environment.

Key words: Debugging, monitoring, parallel programming environments.

1 Introduction

Our work is part of an ongoing European project which aims at the development of
a software engineering environment for parallel applications [34,33]. This project
concerns the design and implementation of visual programming components for
graph-based design of parallel programs, mapping components for specific hard-
ware target distributed-memory architectures, simulation support tools, real parallel
execution with monitoring and load-balancing support, and testing and debugging
tools.

Integration means the provision of a suitable degree of consistency among the mul-
tiple views that are offered by the multiple tools in the environment. Specifically,
consistency should apply to several aspects: multiple user interfaces, tool behavior,
tool interaction, and tool composition. It is very difficult to support a completely
coherent environment because this requires all the tools to be developed anew from
the beginning of the project. This requirement conflicts with the constraints put
both by the users, and the vendors of parallel computing platforms. Even if all the

Preprint submitted to Elsevier Preprint 9 December 1997

tools in a programming environment could be jointly developed from the begin-
ning, a successful integration is a difficult goal to achieve because it requires a
collaborative effort involving experts from multiple domains including the users,
the machine vendors, the computer experts, and the human computer interaction
experts.

The main goal of our project is to provide an integrated environment for program
development centered on the graphical programming model of the GRAPNEL lan-
guage [14,18,19]. This means that all of the above mentioned tools must refer to the
abstractions that are defined by the graphical entities of the GRAPNEL model. Here
we discuss design and implementation issues for one component of such parallel
programming environment: the debugging tool called DDBG.

In the following sections, we first identify some requirements for the design of
the DDBG debugging tool. Then we discuss the interface library and the user in-
terface offered by DDBG, as well as its internal architecture. Finally we discuss
the interfacing of the DDBG debugging tool with high-level tools and languages,
namely the GRAPNEL graphical editor [14,18], the STEPS testing tool [21], and
the PVM-Prolog parallel logic programming system [28]. Finally we present some
conclusions and an outline of our ongoing work.

2 Providing Basic Debugging Support to other Tools

In this section we identify the requirements put upon a debugging tool based upon
its interfacing with high-level tools. We also discuss the main requirements for the
design of a portable, scalable, and adaptable architecture for a parallel and dis-
tributed debugger.

2.1 Requirements to Support Tool Integration

The functionalities that are required in a parallel and distributed debugger are as
follows:

� For individual processes, support must be provided for inspection and control
commands that allow to observe and to modify the execution state of each appli-
cation process;

� For the distributed program, commands must be provided to monitor and control
the execution of multiple processes as well as interprocess communications.

Even if we have a parallel and distributed debugger with the above mentioned func-
tionalities, we still have to address the more difficult issues of handling the non-
deterministic and nonreproducible behavior of parallel and distributed programs,

2

as well as the intrusion effect due to the debugging system. Many proposals have
been made in this regard for the past years [22,1,6,2,13,26,3,32]. Namely, the In-
stant Replay technique [22] was a significant contribution to allow efficient im-
plementations of a facility for deterministic program re-execution. By forcing the
same ordering of events as occurred during execution, the replay system gives a
great help in the identification of program bugs.

However, due to the large number of internal states that is (in a non-deterministic
way) exhibited by a parallel program, it is very important that the programmer has
also the possibility of specifying the parts of the program that should be put under
test, such as a part of a process or a subset of processes. This requires a more flex-
ible and expressive approach that is typically supported by a testing tool. Further
expressiveness can be achieved through a well-designed integration between a test-
ing tool and a debugging tool, as we explain in a section ahead. But this raises the
problem of supporting easy integration of the debugger with other tools in a par-
allel software engineering environment. A well-defined debugging interface must
be provided to be used by high-level tools, namely graphical editors, graphical
interfaces, runtime support systems for distinct parallel and distributed language
models, and testing and high-level debugging tools.

Concerning such interface to high-level tools, the following aspects must be taken
under consideration:

� A bidirectional interaction scheme supporting an aynchronous operation mode.
� A mapping service of high-level process names onto low-level system process

identifiers.
� Access to information that is internally generated by the high-level language

compilers, e.g. concerning program variables, and which must be passed to the
debugging system.

� A command line user interface giving access to all the debugging functionalities.
� A graphical user interface that is consistent with the user views being offered by

other tools in the environment.
� Multiple simultaneous client connections should be supported by the debugging

system so that multiple cooperating tools can be accessing the debugging envi-
ronment for inspection and control of the distributed program execution.

The first aspect concerns the fact that many user tools such as editors and graphi-
cal interfaces exhibit an event-driven behavior. If we provide a debugging interface
through a library of primitives that are invoked by each high-level tool, such prim-
itives must support non-blocking semantics because some debugging commands
don’t provide an immediate answer. A communications interface must support the
passing of the output information coming from such delayed debugging commands
back to the user tool (e.g. a grahical editor). A simple solution to this problem is to
provide a library function that allows the user tool to poll a communication chan-
nel that is associated to this interaction with the debugging system. Alternatively,

3

it would be better to provide a facility for the handling of asynchronous events by
the user tool such that the invocation of a previously specified routine could be
triggered by the arrival of the debugging information.

The second aspect relates to the need of supporting high-level symbolic process
identifiers at the user tool level, while typically the debugging tool is required to
name processes using their system level identifiers. A solution to this problem re-
quires the support of a process naming service.

The third aspect requires the debugging interface to be able to access information
concerning variable names in the distributed program. In order to provide this in-
formation, well-defined interfaces should be supported by the compiler writers so
that access to such information is allowed without having to expose the compiler
internals. This is one of the critical issues in current efforts towards parallel tool
integration, and it is expected that the new generations of compilers will be able to
offer such interfaces to low-level runtime debugging and performance monitoring
tools.

Finally, requirements concerning the support of user interfaces correspond to the
recommendation of offering a command line console giving access to all the func-
tionalities of the debugging interface library. Concerning the support of graphical
user interfaces the consistency requirement should apply, as far as other tools in the
environment are concerned.

2.2 Architecture of the Debugging Tool

A well-defined interface must be provided to the underlying operating system and
hardware platform, assuring portability and adaptability of the debugging support
architecture, while still allowing efficient implementation on top of each specific
physical environment. However, the debugging commands supporting the inspec-
tion and control of the execution of each individual process are typically depen-
dent upon the hardware/operating system platform as they must access very low-
level representations of the information. However, the architecture of the debugging
system has a distributed organization consisting of multiple monitor/debugger in-
stances which are scattered on the nodes of a parallel and distributed platform.

The goal is to design such architecture in such a way that it is amenable to be
adapted to different machines, operating systems, and even to support different
process-level debugging commands. This requires a distinction between what we
call the process-level debugger and the distributed debugger.

The process-level debugger is responsible for the actual application of the low-level
state inspection and control commands to each individual application process. This
may correspond to a proprietary machine-specific debugger or to a widely-used,

4

portable, and public debugger like the GNU gdb.

The distributed debugger is responsible for the coordination of the actual operation
of a collection of process-level debuggers associated with the distributed program.
It interprets the user interface commands and forwards them (after possible conver-
sions) to the process-levels debuggers.

The main components of the distributed debugger architecture are the following
ones:

� The main daemon (MD). It is responsible for the global interpretation of the
commands of the debugging interface library. It acts as a master or coordinator
of the other components in the architecture.

� The local daemons (LD). Each local daemon is responsible for the local inter-
pretation of the commands received from the MD. There is (at least) one LD on
each node of the parallel platform that is responsible for the management of all
interactions with the process-level debuggers which are local to that node.

� The process-level debuggers (PD). This was explained above. We are assuming
that for each application process under debugging there is one associated PD.

Besides these main components there may be others, such as the ones supporting
some of the requirements we have presented above. An example is given by a name
server that supports the mentioned process name mapping. For simplicity we just
discuss the basic components of the architecture.

There are several alternative designs, depending on how the responsibilities are
distributed among the MD and PD processes. A hierarchical or master-slave design
lets the MD assume all interpretation of debugging commands, taking care of all
necessary conversions, and forwarding the actual PD-level commands to the corre-
sponding LD. In this solution, the LD processes are just slaves with very limited
responsibility: just contacting the right PD and get their answer back to the MD.
The MD does all the work. There are several disadvantages in this design:

� It makes the MD process very complex, mostly when it must also support multi-
ple client connections and keep a lot of information concerning pending requests
to the PD processes;

� It makes it more difficult to support heterogeneous systems, i.e. consisting of
distinct types of PD processes. This is actually an important issue related to het-
erogeneous distributed computing. One can have an application decomposed into
multiple parts, each running on distinct sequential or parallel machines, with dis-
tinct PD processes. Assuming that the debugger user interface library is able to
support such an environment, then it is not a good idea to have all necessary
command and data interpretations be performed by the MD process.

As an alternative, more flexible design, we propose to distribute the responsibility
for actual command and data interpretation to each LD, and let the MD do only the

5

interfacing to the client tools. This allows each LD to perform the above mentioned
tasks in an independent way, and according to the specific characteristics of each
local PD. We argue this design is a better one to support heterogeneous debugging,
as well as more easily adaptable. Indeed, the possible modifications are more local-
ized into specific LD processes. The only possible functions left to the MD (besides
interfacing with client tools) are the ones related to the presentation of global views
to the user concerning the state of the distributed program. It is also responsible for
the management of the multiple connections to the debugging system.

An additional aspect of the design of the distributed debugger architecture concerns
the communication interactions between its components:

� User tool - MD;
� MD - LD;
� LD - PD

Ideally, one would like to use an uniform communication mechanism for all the
above interactions, but typically one is faced with specific constraints and limita-
tions due to the underlying operating system platforms.

2.3 Related Work

Only a few experiments have been made towards meeting the above goals, as well
as to support integrated environments fully satisfying the above mentioned require-
ments. A component based approach is often used to alllow the interaction be-
tween distinct tools but usually there is no specific methodology or infrastructure
to support tool composition using well-defined interfaces as tool building blocks.
Exploitation of an object-oriented framework is very interesting in this regard. Re-
cent research shows great concern in addressing tool integration issues, and a very
good survey can be found in [30]. The development of computational steering en-
vironments has also been providing interesting lessons concerning tool integration
[15].

A significant and very broad effort has recently been launched towards meeting the
above mentioned goals [24] through a careful definition of interface libraries. We
are currently pursuing a similar goal, as far as debugging support is concerned.

In the following sections we will illustrate how we have faced the above men-
tioned problems when designing the interfaces of the GRAPNEL editor [18] and
the STEPS testing tool [21] to our distributed debugging system DDBG [9,12]. A
distinctive aspect of our work is that the development of the debugging tool was
greatly influenced by its use and interfacing with the other mentioned software de-
velopment tools.

6

3 The DDBG Parallel and Distributed Debugger

In this section we briefly describe the functionalities, architecture, and user inter-
faces which are currently supported by the DDBG distributed debugger. The DDBG
system supports the debugging of parallel and distributed programs written in C us-
ing the PVM programming model. It has also been successfully interfaced with the
graphical editor of the GRAPNEL programming system, and with the STEPS test-
ing tool.

3.1 Functionalities

The debugging functionalities may be summarized as follows:

� Dynamic attachment and detachment of debugger instances to already running
distributed processes; control of remote debugger instances from a central de-
bugging user interface;

� An interface library that gives access to such control of remote debuggers, and
which can be used by high-level tools, like graphical editors, testing tools, and
graphical user interfaces ;

� An event trace is collected with minimal information to support program replay
in PVM programs. This allows reproducible behavior and will make the debug-
ging control commands available during a replay session; a checkpoint facility
under replay mode will support execution replay from an intermediate point, in-
stead of from the beginning of the program only.

The program replay mechanism has already been implemented but it is currently in
a testing stage. The checkpointing facility is still under development. The prototype
runs on the PVM environment, and relies upon a well known debugger—the GNU
gdb—to act as a process-level debugger, i.e. to provide conventional debugging
commands within each sequential process.

3.2 Architecture

We have developed two prototypes that implement the debugger functionalities
based on two different designs for the distributed debugger architecture, as dis-
cussed in the previous section.

The first developed prototype is based on a hierarchical master-slave organization
where the main daemon (MD) manages all the interactions with the client process,
by forwarding the debugging commands to the machines where the application pro-
cesses are placed, and gathering their corresponding answers. This is achieved by

7

having a local daemon (LD) on each machine that is responsible for the activation
and control of multiple debugger instances (PD), based on the GNU gdb, located
in that machine. Each application process can be dynamically attached (detached)
to (from) a distinct debugger instance.

In this design, communication between the master and the local daemons is based
on the PVM primitives. Communication between the master daemon and the user
client process is based on UNIX sockets. Although in our current implementation
we use UNIX domain sockets requiring the master daemon to run on the same
machine as the user client process, this limitation can be removed by using UNIX
Internet sockets instead. Communication between the local daemons and the de-
bugger instances on each machine is currently based on UNIX pipes.

The first distributed debugger architecture is illustrated in the figure 1.

(local deamon)

debugger

debugger

debuggerfront-end

process

process

process

front-end
library

controller

(main deamon)

Central
controller

library
debugging

Other processes

library
debugging

User Tool

library
debugging

Graphical
Interface

Answer (delayed)
Request / Answer (immediate)

Other MachinesUser Machine

Fig. 1. The Distributed Debugger Architecture

The second prototype is based on the alternative distributed design that we have
previously discussed. It pushes the responsibilities for the actual interpretation of
the debugging commands to the local daemons. It also uses an architecture indepen-
dent communication model to support the interactions between the master daemon
and the local daemons. This model can be mapped onto different communication
mechanisms such as TCP/IP sockets, PVM messages, UNIX pipes, etc.

3.3 Distributed Debugger Interface Library

Any user tool can access the DDBG system as a client process that uses an interface
library to interact with the main debugging daemon. The interface library supports
functions for the control of the DDBG system and for supporting the interfacing
with other tools, and functions supporting distributed process control and state in-
spection. The latter type of functions are currently adapted from identical functions
provided by the GNU gdb debugger, but they operate upon multiple distributed
processes. A detailed definition of these functions is presented in [11,12].

8

There are functions to support, respectively, the initialization and the cleanup of the
debugging environment. The initialization also establishes a connection between
each user tool and the main daemon, that is used for further interaction with DDBG.
It also sets up an interprocess communication channel that is used for the passing of
delayed output information between the DDBG and the user tool. This channel can
be inspected by invoking another interface function with a non-blocking semantics,
corresponding to a design requirement that was discussed in a previous section.

An user application or tool may use specific Process ID’s (strings) to identify the
processes. In order to support the mapping between the user processes symbolic
names and the PVM task names, a name mapping function is provided allowing
to associate a tid, a PVM task identifier, to a given process identifier. This allows
any of the library primitives, as well as the corresponding user consoles, to refer to
string process identifiers, besides PVM task ID’s (integers). This solution currently
solves the name mapping problem and it is used by the current interface of the
GRAPNEL and DDBG (described in a section ahead).

There are also functions supporting the dynamic attachment and detachment of
application processes to new debugger instances, as well as to obtain information
about new components (e.g. newly spawned application processes) in the debug-
ging environment.

The functions for distributed process control and state inspection include support
for debugging commands that control the execution of each individual process in
a detailed way, including step by step execution, handling breakpoints and watch-
points, and displaying or modifying local process information (variables, status,
stack frames, current breakpoints).

3.4 DDBG User Interfaces

Currently DDBG supports a command line console that gives access to all the inter-
face library functions. Additionally it is possible to interface any kind of graphical
user interface to the main daemon of the DDBG system. The current prototype
provides an X-based window interface that allows the interactive display of pro-
cess variables. Although this is still in development, we illustrated it on the figure
2. This interface requires the user to select the processes of interest in the main
window provided by the interface. An individual window is then provided for each
selected process so that the user can individually select the names of the variables
that should be displayed.

9

Fig. 2. The DDBG User Interfaces

4 Tool Composition Using the DDBG Debugger

In this section we briefly discuss our experimentation with the interfacing of the
DDBG system and two high-level tools of a parallel software engineering envi-
ronment: the STEPS and the GRAPNEL tools. More detailed descriptions of these
tools and interfaces is given in [21,14,18–20,9,23].

4.1 Tool Composition for Testing and Debugging

In our project we have given great consideration to the search of a close integra-
tion of static analysis and dynamic analysis methods in order to guarantee the final
quality of the parallel software. The development of a methodology and tool to aid
the user in the process of identifying the execution paths which should be generated
and tested, is a key component of an advanced testing and debugging environment.
This aspect has been investigated within the scope of the mentioned project [34,21],
by our partners of the Technical University of Gdansk that have independently de-
veloped a testing tool called STEPS that generates selected execution scenarios for
a given parallel (C/PVM) program. The description of STEPS is beyond the scope
of this paper but their authors have reached a very successful trade-off between
the systematic testing tool (that should generate all possible execution paths) and
the degree of supported user interaction that allows the user to direct the tools to-
wards interesting program parts. After the generation of a testing scenario by the

10

STEPS tool, and through a suitable integration with the debugger, it is possible to
submit to an user controlled execution of the paths under test, allowing the user to
inspect program behavior at the desired level of abstraction and with the guarantee
of the reproducibility of its execution. The user is allowed to run a complete test
scenario until the end or alternatively it is possible to follow a step by step exe-
cution controlled by breakpoints. This is achieved by converting the information
associated to the specification of each testing scenario onto corresponding infor-
mation and commands known to the DDBG debugger. Such conversion is easily
implemented as an interface component between the STEPS and DDBG tools, i.e.
no new debugging commands need to be implemented, and for this matter a low-
level instant reply facility is not necessary at the DDBG level. This illustrates an
interesting characteristic of tool composition that should be a goal in an integrated
environment. Given two distinct tools, each with its own functionality, we obtain a
new functionality as a result of their integration. Moreover this is achieved with no
change to each tool, by just developing an interfacing component, as illustrated on
the DDBG figure presented above.

4.2 Interfacing DDBG to a Graphical Editor

The GRAPNEL model, a graph-based parallel programming language [14,18], sup-
ports a structured style for designing parallel applications. In an integrated devel-
opment environment there is a requirement that the debugging commands and out-
put information must be directly related to the GRAPNEL model such that only
GRAPNEL abstractions should be handled by the user at this level. This requires
a high-level interface to the user, such that the information on specific debugging
commands is directly related to the GRAPNEL source program, e.g. by highlight-
ing corresponding entities in the graphical representation, and their corresponding
lines of source code in the textual program representation. The GRAPNEL system
is supported by a compiler that generates C code plus PVM calls to support parallel
program execution. It also includes a graphical editor called GRED [14,18].

For each debugging action at the GRAPNEL editor, corresponding DDBG prim-
itives are invoked, and process names are converted as previously explained. The
GRAPNEL editor, and its current implementation relies upon a TCP/IP socket-
based communication protocol to interact with the DDBG system, but this is hid-
den in the interface library functions that send commands to the debugger. Also,
delayed debugging information is passed back to GRAPNEL through a socket that
is polled by the editor, in an event-driven mode, and using an interface library func-
tion to get that information.

11

4.3 Interfacing DDBG to a High-level Programming Language

Currently, the DDBG system is being used to develop a distributed debugger for
PVM-Prolog [28], an extension to Prolog [7] that provides full access to the PVM
environment. The process-level debuggers (gdb) will be replaced with Prolog process-
level debuggers for Prolog, and the interfacing between the local daemons and these
debuggers will be adapted accordingly. As this requires a specific interpretation of
the PVM-Prolog level debugging commands this is a good test to evaluate the ben-
efits from the distributed design of the debugging system that we have previously
discussed.

5 Conclusions

We have shown how a distributed debugger has been designed under the influence
of specific interfacing requirements posed by high-level parallel software devel-
opment tools. There is already a working prototype that has been used to support
integration with the GRAPNEL and the STEPS tools. The DDBG is currently under
further development concerning a more flexible distributed architecture that should
more completely support the requirements for tool integration. Ongoing work con-
cerns the improvement of the existing DDBG architecture, and the development of
a MPI-based version, as well as its extension with performance monitoring func-
tionalities. Its evaluation is being made by real users both on our undergraduate
and master student projects, and on ongoing projects that use the PVM system for
applications in environmental sciences involving researchers in other departments
of our university. This will hopefully provide us with users’ feedback to improve
this tool.

Acknowledgments

This work was partially supported by the CEE COPERNICUS Programme, SEPP
Project (Contract CIPA-C193-0251) and HPCTI Project (Contract CP-93-5383), by
the Portuguese CIENCIA Programme.

References

[1] ACM Workshop on Parallel and Distributed Debugging. ACM SIGPLAN Notices 24,
1 (1988).

12

[2] ACM/ONR Workshop on Parallel and Distributed Debugging. ACM SIGPLAN
Notices 26, 12 (1991).

[3] ACM/ONR Workshop on Parallel and Distributed Debugging. ACM SIGPLAN
Notices 28, 12 (1993).

[4] A, Beguelin, J.J. Dongarra, G.A. Geist, R. Manchek, V.S. Sunderam. A User’s Guide
to PVM Parallel Virtual Machine. Technical Report, ORNL/TM-118266, Oak Ridge
National Laboratory, USA, 1991.

[5] A, Beguelin, J.J. Dongarra, G.A. Geist, V.S. Sunderam. Visualization and Debugging
in a Heterogeneous Environment. IEEE Computer 26, 6 (1993).

[6] W. Cheung, J. Black, E. Manning. A framework for distributed debugging. IEEE
Software, Jan. (1990).

[7] W.F. Clocksin, C.C. Mellish. Programming in Prolog. (Springer, 1981).

[8] J.C. Cunha, H. Krawczyk, B. Wiszniewski, P. Mork, P. Kacsuk, E. Luque, L. Sutovska,
L. Hluchy. Monitoring and Debugging Distributed Memory Systems. in: Proc. uP’94:
The Eight Symposium on Microcomputer and Microprocessor Applications (Budapest,
Hungary, 1994).

[9] J.C. Cunha, J. Lourenço, T. Antão. Integrating a debugging engine to the GRAPNEL
environment. HPCTI Project, COPERNICUS Programme, 3rd Progress Report,
University of Westminster, London, UK, 1996.

[10] J.C. Cunha. Design of Parallel and Distributed Monitoring and Debugging Sy
stems. SEPP Project, COPERNICUS Programme, 4th Progress Report, University of
Westminster, London, UK, 1996.

[11] J.C. Cunha, J. Lourenço, T. Antão. A Debugging Engine for a Parallel and Distributed
Environment. in: Proc. DAPSYS’96, Austrian-Hungarian Workshop on Distributed and
Parallel Systems (Miskolc, Hungary, 1996).

[12] J.C. Cunha, J. Lourenço, T. Antão. DDBG: A Distributed Debugger – User’s Guide.
Technical Report, Departamento de Informática, FCT-Universidade Nova de Lisboa,
Portugal, 1996.

[13] P.S. Dodd, C.V. Ravishankar. Monitoring and debugging distributed real-time
programs. Software—Practice and Experience 22, 10 (1992).

[14] G. Dózsa, T. Fadgyas, P. Kacsuk GRAPNEL: A Graphical Programming Language
for Parallel Programs in: Proc. uP’94: The Eight Symposium on Microcomputer and
Microprocessor Applications (Budapest, Hungary, 1994).

[15] G. Eisenhauer, W. Gu, K. Schwan, N. Mallavarupu. Falcon – Toward Interactive
Parallel Programs: the Online Steering of a Molecular Dynamic Program. in: Proc.
3rd International Symp. on High-Performance Distributed Computing (1994).

[16] A. Fagot, J, Chassin-de-Kergommeaux. Optimized execution replay mechanism for
RPC-based parallel pr ogramming models. Technical Report, IMAG, Grenoble, France,
1995.

13

[17] C. Fidge. Partial orders for parallel debugging. in: ACM Workshop on Parallel and
Distributed Debugging, ACM SIGPLAN Notices 24, 1 (1988).

[18] P. Kacsuk, G. Dózsa, T. Fadgyas. GRAPNEL: A Graphical Parallel Programming
Language. Journal of Systems Architecture, Special Issue on Parallel Software
Engineering, 1 (1996).

[19] P. Kacsuk, G. Dózsa, T. Fadgyas. Development of Graphical Parallel Programs
in PVM Environments. in: Proc. Austrian-Hungarian Workshop on Distributed and
Parallel Systems - DAPSYS’96 (Miskolc, Hungary, 1996).

[20] P. Kacsuk, J.C. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas, T. Antão. A Graphical
Development and Debugging Environment for Parallel Programs. Parallel Computing
(1997).

[21] H. Krawczyk, B. Wiszniewski Structural Testing of Parallel Software in STEPS in:
Proc. 1st SEIHPC Workshop, COPERNICUS Programme (Braga, Portugal, 1996).

[22] T.J. LeBlanc, J-M. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Trans. on Computers C-36, 4 (1987).

[23] J. Lourenço, J.C. Cunha, Universidade Nova de Lisboa, and H. Krawczyk, P. Kuzora,
M. Neyman, B. Wiszniewsk, Technical University of Gdansk. An Integrated Testing
and Debugging Environment for Parallel and Distributed Programs. in: Proc. 23rd
EUROMICRO Conference (Budapest, Hungary, 1997).

[24] T. Ludwig, R. Wismuller, V. Sunderam, A. Bode. OMIS — on-line monitoring
interface specification. LRR-TUM, Technical Univ. of Munich, Germany, and Emory
Univ. USA, 1996.

[25] M. Mackey. Program replay in PVM. Hewlett-Packard, Concurrent Computing
Department, H.P. Laboratories, 1993.

[26] Y. Manabe, M. Imase. Global conditions in debugging distributed programs. J. of
Parallel and Distributed Computing 15 (1992).

[27] D.C. Marinescu, J.E. Lumpp, Jr., T.L. Casavant, H.J. Spiegel. Models for monitoring
and debugging tools for paralell and dis tributed software. J. of Parallel and Distributed
Computing 9 (1990).

[28] R. Marques, J.C. Cunha. PVM-Prolog: Parallel Logic Programming in the PVM
System. in: Proc. 1995 PVM User’s Group Meeting (Pittsburgh, USA, 1995).

[29] C.E. McDowell, D.P. Helmbold. Debugging concurrent programs. ACM Computing
Surveys 21, 4 (1989).

[30] M.L. Simmons, A.H. Hayes, D.A. Reed, J. Brown, editors. Debugging and
Performance Tuning for Parallel Computing Systems. IEEE Computer Science Press
(1995).

[31] J. Tsai, K. Fang, H, Chen, Y. Bi. A noninterference monitor and replay mechanism
for realtime software testing and debugging IEEE Trans. on Software Engineering 16,
8 (1990).

14

[32] J.J-P., Tsai, S.J.H. Yang, editors. Monitoring and debugging of distributed real-time
systems. IEEE Computing Society Press (1995).

[33] S. Winter,P. Kacsuk. Software Engineering for Parallel Processing. in: Proc. 8th
Symp. on Microcomputer and Microprocessor Applications (Budapest, Hungary, 1994).

[34] S. Winter, P. Kacsuk, editors. Software Engineering for Parallel Processing.
Copernicus Programme, Contract CIPA-C193-0251, Progress Report no. 1, , University
of Westminster, London, UK, 1994.

15

