
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

João André Martins (26464)

Lisboa
(2009)

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

SmART: An Application
Reconfiguration

Framework

Joao Andre Martins (26464)

Orientador: Prof. Doutor Hervé Paulino
Co-orientador: Prof. Doutor João Lourenço

Dissertação apresentada na Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa para
a obtensão do Grau de Mestre em Engenharia In-
formática.

Lisboa
(2009)

To my family and friends, who supported me through the best and worst.

Summary

Among the information technology sectors is the virtualization sector, which stands out by
being a very active area, with many collaborations and advances. Virtualization’s benefits are
plenty. Some of them are the massive server consolidation, reduced cooling, structural and
electrical costs and the isolation between virtual machines.

Virtual appliance is a concept resulting from the advancements on virtualization, and de-
fines an alternative software distribution model from those existing by then, such as the tradi-
tional CD-ROM distribution, software as a service and hardware appliances. This model allows
customers to have their IT solution fully specified and optimized for the task it must perform.

With the virtual appliance outbreak, many servers using different applications tend to
gather on the same physical machine. The applications, in turn, may implement plenty config-
uration formats, from widely adopted standards to proprietary formats. The configuration of
these applications is typically carried by busy system administrators, who must dedicate some
of their time coping such a vast configuration format range.

This thesis contributes for the nourishing of the virtual appliance concept and proposes
the creation of a tool which automatically configures applications inside virtual appliances,
regardless of the application being configured. The contributions on this area are, therefore,
very rare, which elevates this dissertation to a pioneer of the area.

The approach for the problem of automatic application configuration explores the frequently
found patterns in configuration files. Typically, those files use similar concepts, such as parame-
ter definitions, parameter blocks and comments. Besides this, only some files were found to im-
plement other concepts, although on a punctual basis. This dissertation proposes a framework
for the automatic configuration of applications based on this characteristic. A configuration
file is transformed to a structured and application-independent language, like the eXtended
Markup Language, which is then modified and reverted to its original syntax.

Keywords: Virtual appliance, automatic application configuration

vii

Sumário

Entre os sectores de tecnologias de informação, o sector da virtualização distingue-se por
ser uma área muito activa, que conta com muitas colaborações e desenvolvimentos. As util-
idades da virtualização são inúmeras. Entre elas estão a consolidação maciça de servidores,
redução nos custos de arrefecimento, estruturais e de electricidade e o isolamento entre
máquinas virtuais.

Fruto dos avanços da virtualização é o conceito de virtual appliance, que define um modelo
de distribuição de software alternativo aos até então existentes, tais como distribuição tradi-
cional (CD-ROM), software as a service e hardware appliances. Este modelo permite aos clientes
terem a sua solução informática especı́fica e optimizada para a tarefa que se propõe desempen-
har.

Com o surgimento das virtual appliances, muitos servidores que recorrem a diversas aplicações
tendem a juntar-se em máquinas fı́sicas. As aplicações, por sua vez, podem implementar vários
formatos de configuração, desde padrões amplamente adoptados a formatos de proprietário. A
configuração destas aplicações é tipicamente feita por administradores de sistemas ocupados,
que têm assim necessidade de canalisar o seu tempo para lidar com a variedade de formatos
de configuração.

Esta dissertação vai no encontro dos avanços no ramo das virtual appliances, propondo a
criação de uma ferramenta que faça a configuração automática de aplicações, independen-
temente da aplicação em causa. São muito poucos os contributos nesta área, pelo que esta
dissertação pode ser considerada pioneira na área.

A abordagem para o problema da configuração automática de aplicações explora os padrões
recorrentes em ficheiros de configuração de aplicações. Tipicamente, estes ficheiros imple-
mentam conceitos semelhantes, como definições de parâmetros, blocos de parâmetros e co-
mentários, existindo ainda outros ficheiros que implementam padrões próprios, tratando-se,
no entanto, de casos pontuais. Esta dissertação propõe uma framework baseada nesta carac-
terı́stica, onde um ficheiro de configuração é transformado para uma linguagem estruturada e
independente da aplicação, como a eXtended Markup Language (XML), e que depois de alter-
ado é revertido na sua sı́ntaxe original.

Palavras-chave: Virtual appliance, configuração automática de aplicações

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3

1.2.1 Pre-installation Configuration . 3
1.2.2 Post-installation Configuration . 4
1.2.3 Application Configuration in General . 4
1.2.4 Conclusion . 7

1.3 Problem Approach . 8
1.4 Contributions . 9
1.5 Document Organization . 9

2 State of the Art and Related Work 11
2.1 Virtual Appliances . 11

2.1.1 Virtualization . 12
2.1.2 Motivation . 13
2.1.3 Open Virtual Machine Format . 14
2.1.4 Virtual Appliances in Real Life . 15

2.2 Automatic Configuration of Applications . 15
2.2.1 Thin Crust . 16
2.2.2 SmartFrog . 16

2.3 Automatic Recognition of Configuration Files . 16
2.3.1 SableCC . 17
2.3.2 JavaCC . 18

2.4 Representation of Configuration Files in a Generic Syntax 18

3 An application reconfiguration framework 21
3.1 Architectural Requirements . 22
3.2 Automatic Application Configuration . 24
3.3 Original to Generic syntax Converter . 24

3.3.1 Component Description . 25
3.3.2 Original to Generic Syntax Converter Operation Scenarios 31

3.4 Generic to Original syntax Converter . 33

xi

CONTENTS

3.5 Modifying the Configuration File . 34
3.6 External Parser Addition . 34

4 An Implementation 37
4.1 Programming Language . 37
4.2 Parser Generator . 38
4.3 Generic Syntax . 39
4.4 Data Structures . 39

4.4.1 Parser . 39
4.4.2 Grammar . 41
4.4.3 ParsingData . 41
4.4.4 CompilationData . 42

4.5 Original to Generic syntax Converter . 43
4.5.1 User Interface . 43
4.5.2 Configuration File Parser . 44
4.5.3 Parser Repository . 44
4.5.4 Grammar Compiler . 45
4.5.5 Code Generator . 45
4.5.6 Tentative Grammar Repository . 45

4.6 Generation of Original Syntax . 46
4.7 Generic to Original Syntax Converter . 48

5 Framework Evaluation 51
5.1 Functional Validation . 51
5.2 Operational Validation . 53

5.2.1 INI-like Configuration Files . 54
5.2.2 Apache-like Configuration Files . 56
5.2.3 XML-like Configuration Files . 58
5.2.4 Parsing the Generated XML . 58

5.3 Performance Validation . 63

6 Integration with VIRTU 67
6.1 Project Description . 67
6.2 VIRTU Top-Level Analysis . 68
6.3 VIRTU Architecture . 70

6.3.1 Data and Resources Layer . 70
6.3.2 Processing Layer . 72
6.3.3 Presentation Layer . 73
6.3.4 Other Notable Sectors . 74

6.4 SmART integration . 74
6.4.1 SmART Original to Generic syntax Converter 76
6.4.2 SmART Generic to Original syntax Converter 77

xii

CONTENTS

6.4.3 Parser Generator . 77
6.5 Summary . 77

7 Conclusion and Future work 79
7.1 Future Work . 81

A Appendix - Architecture 83
A.1 OGC sequence diagram . 83

xiii

List of Figures

2.1 Virtual appliance . 12
2.2 Physical unit running four VMs . 12

3.1 SmART Work Flow . 25
3.2 Components overview . 26
3.3 Partial and totally parsed configuration file stages 29
3.4 Interactions on the successful file recognition scenario 32
3.5 Interactions on the failed file recognition scenario 33

4.1 Recognition of a configuration file by two parsers 40
4.2 Graphical representation of ParsingData . 42
4.3 List of TGRNodes . 46

5.1 Parsing the generated XML . 63

6.1 VIRTU Assembly Configuration . 69
6.2 VIRTU Logical View . 70
6.3 VIRTU Architectural Design . 71
6.4 SmART integration points with VIRTU . 75

A.1 Original to generic syntax converter sequence diagram 84

xv

List of Tables

3.1 Presentation Layer Components . 25
3.2 Logic Layer Components . 26
3.3 Data Layer Components . 26

5.1 Elapsed times for parser compilation in JavaCC 65

xvii

List of Listings

1.1 Apache configuration file excerpt . 5
1.2 Eclipse configuration file excerpt . 6
1.3 MySQL configuration file excerpt . 6
1.4 PostgreSQL configuration file excerpt . 7
1.5 Mantis configuration file excerpt . 7
3.1 User Interface proposed interface . 27
3.2 Configuration File Parser proposed interface . 28
3.3 Code Generator proposed interface . 29
3.4 Grammar Compiler proposed interface . 30
3.5 Parser Repository proposed interface . 30
3.6 Tentative Grammar Repository proposed interface 31
3.7 Printer proposed interface . 33
3.8 External Parser Proposed Interface . 35
4.1 Node interface . 38
4.2 Parser data structure . 39
4.3 InternalParser data structure . 39
4.4 ExternalParser data structure . 41
4.5 Grammar data structure . 41
4.6 ParsingData data structure . 42
4.7 CompilationData data structure . 43
4.8 Example Metadata . 47
4.9 Example FStr . 48
4.10 Apache parameter with a single value . 48
4.11 Apache parameter with multiple values . 48
4.12 XML element with a single subelement . 49
4.13 XML element with multiple elements . 49
5.1 MySQL configuration file snippet . 54
5.2 MySQL block in XML . 55
5.3 MySQL comment in XML . 55
5.4 MySQL special instruction in XML . 55
5.5 MySQL Metadata . 56
5.6 Apache configuration file snippet . 57

xix

LIST OF LISTINGS

5.7 Apache parameter with a single value in XML . 57
5.8 Apache parameter with multiple values in XML 57
5.9 Apache block in XML . 58
5.10 Apache nested block in XML . 59
5.11 Apache comment . 59
5.12 Apache Metadata . 60
5.13 Eclipse configuration file snippet . 60
5.14 Eclipse empty block in XML . 60
5.15 Eclipse block with parameters in XML . 61
5.16 Eclipse nested blocks in XML . 61
5.17 Eclipse comment in XML . 62
5.18 Eclipse Metadata . 62

xx

1
Introduction

This dissertation presents a framework for the automatic configuration of applications in vir-
tual appliances. This framework, entitled Smart Application Reconfiguration Tool (SmART),
configures virtually any kind of application by transforming the application’s configuration
files into a generic structure, dettached from the configuration file original syntax. This ab-
straction allows for a configurator to traverse configuration files in original syntax from any
application and modify them to reflect a desired behaviour on the target application. As soon
as the configurator manages to apply the changes, the information in the configuration files
on generic syntax is used to reproduce them in their original syntax. This framework is very
innovative on the grounds that it approaches the area of automatic application configuration,
an area which benefits from few contributions and currently does not offer many solutions for
that endeavour.

This chapter is structured on the following way: Section 1.1 explains the motivation for the
resolution of the problem, Section 1.2 defines the problem to be solved, Section 1.3 reveals how
that problem can be solved, Section 1.4 enumerates the contributions of this dissertation for the
problem solution and Section 1.5 presents the organization of the remainder of this dissertation.

1.1 Motivation

The virtualization area is a very hot and fast-moving area of Information Technology (IT). Al-
though virtualization is not an entirely new concept, only recently it has been noticed, devel-
oped and studied carefully and in depth, so it is prone to more advancements and should be
considered as a mainstream software deployment model for the future [VMwb].

Despite the term and ideas of virtualization being quite old (1960’s), only recently it has
been given increased attention [Sin04]. Companies which recur to IT services are increasingly

1

1. INTRODUCTION 1.1. Motivation

aware of virtualization due to the crucial changes it brings along. Virtualization makes it pos-
sible to gather several underutilized servers into fewer ones (possibly just a single server) by
virtualizing the hardware where each server runs. This reduces not only the companies’ electri-
cal bills, but also cooling, space and hardware costs. Virtualization brings along other benefits
such as the fast replication and/or migration of virtual machines (VMs), which allows for high
availability of the services provided by the VMs.

But not only the final users of virtualization woke up to the trend. Some IT giants such as
Intel, AMD and Microsoft already entered the virtualization market, with different solutions
such as hardware-assisted virtualization or hypervisor based virtualization. This huge trend
also got into the consumers market, with popular solutions such as VMware Workstation or
Microsoft Virtual PC, and even in the gaming market. Anyone who runs games on MAME or
WINE is using virtualization technology. Currently, there are a lot of virtualization solutions
in the market. These include VMware [VMwa], XenSource [Cit], Microsoft [Mica], Sun [Micc],
Parallels [Par] products, and so on.

With the advancement of virtualization technology, the new Virtual Appliance (VA) concept
emerged. VAs came to change the way of looking to software deployment. Unlike the existing
software deployment models, presented ahead in Section 2.1, such as the traditional CD-ROM
way, Software as a Service or Hardware Appliances, VAs allow the costumers to have their
own IT platform, fully optimized for the task being and completely under their domain. The
blending of virtualization benefits with VAs’ performance is bringing software deployment to
a new level.

This shift in the IT sector motivated project VIRTU [Sola] which is a collective effort by the
consortium composed of Evolve Space Solutions, Universidade Nova de Lisboa, Universidade
de Coimbra, HP Labs and the European Space Agency. The project’s goal is to develop an
open-source vendor-independent virtualization platform, including support for the manage-
ment and configuration of applications.

There are currently two emerging opportunities on the IT market. On one side, virtualiza-
tion has changed the way in which companies deploy software, on the other hand, application
configuration is still mostly a manual task. VIRTU exploits these opportunities by defining a
virtualization tool which manages application stacks. In other words, VIRTU allows for the
creation of optimized virtual machines assembled with existing applications which can be au-
tomatically configured.

VIRTU project’s use cases range from software testing in complex distributed systems, in-
cluding the European Space Operations Center’s Mission Control System (MCS) and Ground
System Tests and Validation infrastructure (GSTVi), to IT infrastructural management, like Por-
tugal Telecom’s Application Service Provider or Novabase’s Enterprise Applications Environ-
ment. VIRTU also makes it possible for a customer to have its solution self-provisioned within
his domain, but also to maintain different application versions to achieve legacy compatibility.

The advent of virtual appliances makes it possible to gather a great amount of applications
on the same machine. This results in many different ways to represent configurations, which,
in turn, makes the management of those configurations complicated and time-consuming.

2

1. INTRODUCTION 1.2. Problem Description

This dissertation proposes the creation of a tool, entitled Smart Application Reconfiguration
Tool (SmART), that is able to configure any application, regardless of how it represents its
configuration.

1.2 Problem Description

The problem of automatic application configuration is caused by software applications which
employ different means of representing their configurations. In some cases, it was noticed that
the same application implemented different configuration formats from one version to another.
This lack of standardization reveals that the configuration aspects of the applications are put
in the backburner by application developers. Currently, the solutions on the field of automatic
configuration of applications are seldom. This work goes in a way as to explore the mentioned
opportunity.

VAs may have different formats and may contain all sorts of applications, so it would be
very helpful if a tool could configure any kind of application inside a VA. For this matter, it is
essential that the tool interprets each configuration file independently of the application being
configured, rather than having a limited set of known configurations and trying to match them
with the configuration file.

Besides the differences in the representation of configurations between two disparate ap-
plications, once can also identify divergent configurations in the same applications. Typically,
whenever an application is upgraded, so are its configuration files, even if the differences in
both situations come down to one or two extra lines containing new parametrizable elements
than before. This motivates the abstraction from the configuration representation, which will
allow any application to be configured based on what settings it defines, not how they are
defined.

Two ways to configure applications in VAs can be identified. The first sets up the config-
uration files before the application is installed on the VA, whereas the second searches for the
configuration files in the VA and changes them. Given the fact that the we are dealing with text
configuration files which need to be read and parsed in both approaches, applications whose
configuration files are in the binary format may require special parsers. This is often the case
in closed-source applications.

An example of the typical usage of this tool is the case where many VAs containing the
same applications (e.g., webserver) need to be deployed on an intranet. Although these VAs
have the same software, their configurations must be different (e.g., machine name, IP address,
etc.). Following is a brief description of both approaches and the way in which each approach
deals with the example case.

1.2.1 Pre-installation Configuration

Before the application is installed on a VA, there are two elements: the application installation
package and the VA. In order to configure an application prior to its installation, the configura-

3

1. INTRODUCTION 1.2. Problem Description

tion files must be read, parsed and changed, to reflect the desired settings, outside the VA. After
the configuration file is properly modified, the application package must be reconstructed to
be ready for installation.

This approach has two significant limitations. First, whenever a different configuration for
another VA is required, a new package containing that configuration must be built. This results
in the proliferation of packages for the same applications, differing only on their configuration
files.

Also, since this approach deals with uninstalled packages, it does not allow the same VA
to be configured more than once. If an application is to be configured again, the process goes
back to the beginning and the application has to be re-installed.

1.2.2 Post-installation Configuration

On the post-installation configuration, the configuration file is retrieved from an already built
VA. The file is then parsed, changed outside the VA and will later replace the older version
inside the VA. Getting the configuration file from inside the VA may be the toughest part of the
process because it requires knowledge of the VA format, as well as the software inside it. For
instance, in Fedora Core Linux distributions the Apache HTTP Server configuration files are
usually stored in the /etc/httpd/ directory whereas in Ubuntu Linux distributions they are
located at /etc/apache2/.

In the example case, only one template VA, containing the applications, must be built. It is
then replicated enough times to match the desired number of VAs. After all VAs are created,
their applications can be configured with the tool any number of times without the need to
reinstall the application. This clears the need of having to proceed with multiple installations.

1.2.3 Application Configuration in General

One way to treat the configuration of different applications equally is to look for similarities
in their structure. The fact is that the majority of configuration files are represented similarly.
Although the formats or the languages of the configuration files tend to differ, different config-
uration files end up by implementing the same concepts, or patterns. The majority, if not all
configuration files, use the notion of parameter to represent the setting of a value to an applica-
tion variable.

In order to determine the patterns that configuration files are likely to implement, the ap-
plications of some VIRTU project usage scenarios were analysed. These applications include:

• Apache

• Eclipse

• MySQL

• PostgreSQL

4

1. INTRODUCTION 1.2. Problem Description

Listing 1.1: Apache configuration file excerpt

ServerRoot: The top of the directory tree under which the server’s
configuration, error, and log files are kept.
ServerRoot "@@ServerRoot@@"

Allow from all

<IfModule !mpm_netware_module>
<IfModule !mpm_winnt_module>
#
If you wish httpd to run as a different user or group, you must run
httpd as root initially and it will switch.
User daemon
Group daemon
</IfModule>
</IfModule>

!includedir /etc/mysql/conf.d/

• Mantis

Following are presented some configuration file excerpts of the presented applications.
Each excerpt is analysed to identify the commonly found patterns in each of them.

Apache

The patterns in the Apache HTTP Server [Foua] configuration files (Listing 1.1) are parameters
formed as id - separator - value, where the separator is a space character and the value may have
multiple instances; comments, which are text lines starting with the ‘#’ character; and blocks,
which are sets of patterns delimited by a header and a footer. Besides these patterns, there
are also special instructions, which start with a ‘!’ character, followed by a command key and
further arguments.

Eclipse

The Eclipse [Foub] configuration files (Listing 1.2) are in a format similar to the eXtensible
Markup Language (XML) format [Con]. It mainly contains elements and blocks. The blocks may
be empty or may contain other blocks. In case the blocks are empty, they are represented solely
by a tag, whereas if a block contains other blocks, it is delimited by a starting and an ending tag.
Additionally, a block may contain attributes, corresponding to parameters.

Being XML, it also supports comments, of the form <!--this is a comment-->.

5

1. INTRODUCTION 1.2. Problem Description

Listing 1.2: Eclipse configuration file excerpt

<workbenchAdvisor/>
<fastViewData fastViewLocation="1024">
<orientation view="org.eclipse.ui.views.ContentOutline"
position="512"/>
</fastViewData>

Listing 1.3: MySQL configuration file excerpt

[mysqld]
#
* Basic Settings
#

user = mysql
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = 3306

MySQL

The MySQL [Micb] configuration files (Listing 1.3) are in a format similar to the INI file for-
mat (ahead in Section 1.3). A MySQL configuration file implements parameters formed as id -
separator - value, where the separator is the ‘=’ character; comments which are text lines starting
with the ‘#’ character; and blocks identified by an initial header and which may contain multiple
parameters and/or comments.

PostgreSQL

The PostgreSQL [Grob] configuration files (Listing 1.4) are an amalgam of parameters and com-
ments. A parameter is formed as id - separator - value, where the separator is the ‘=’ character
and the value may be a keyword or a string delimited by the apostrophe character as the value.
A comment may appear anywhere in the file and is identified by the ‘#’ character. Unlike the
previous examples, the PostgreSQL configuration files do not implement the block pattern, al-
though there seems to be a followed convention in which a set of parameters is preceded by a
comment, which is similar to a block.

Mantis

The Mantis PHP Bug Tracker [Groa] configuration file (Listing 1.5) implements parameters of
the form $ - key - separator - value, where the separator is the ‘=’ character and the value is a
keyword or a string delimited by apostrophes or quotes. It also implements comments, which
are text lines that start with the ‘#’ character.

6

1. INTRODUCTION 1.2. Problem Description

Listing 1.4: PostgreSQL configuration file excerpt

#---
CLIENT CONNECTION DEFAULTS
#---

datestyle = ’iso, mdy’
timezone = unknown # actually, defaults to TZ
#timezone_abbreviations = ’Default’

Listing 1.5: Mantis configuration file excerpt

--- database variables ---------

set these values to match your setup
$g_hostname = "localhost";
$g_db_username = "mantisdbuser";

$g_webmaster_email = ’webmaster@example.com’;

$g_allow_file_upload = ON;

1.2.4 Conclusion

The analysis carried to this set of applications allows us to conclude, with a reasonable degree
of certainty, that the patterns passible to be found on the average configuration file are reduced
to the following:

Parameters
This pattern basically consists on a pair of id, list of values, separated by a separator symbol.
Although on the majority of applications, a parameter is simply structured as id - separator
- value, there are some which associate many values, separated by separators to an id.

Blocks
This pattern is composed of a header delimiter, followed by other patterns, finally delim-
ited by a footer. On some applications (e.g., MySQL), blocks are only delimited by an
initial header.

Comments
This pattern consists on a line which starts with a reserved comment symbol, followed by
any text content, which may be void.

The three presented patterns define the basis of the majority of applications. Nonetheless,
a special case of a pattern was found in the Apache application, where a special instruction,
composed of a reserved instruction symbol and subsequent keywords, defines a pattern, very

7

1. INTRODUCTION 1.3. Problem Approach

much alike the comment pattern, but not the same. Since this pattern was only found on the re-
ferred application, we must not expect that every application strictly implements the presented
patterns, but may rather implements patterns of its own.

1.3 Problem Approach

Section 1.2 identified two ways to configure applications in virtual appliances: pre and post-
installation. The pre-installation approach has no outstanding requirement and operates by
generating as many application packages as different required configurations for that applica-
tion, and does not allow for the re-configuration of an application in a practical fashion (i.e.,
without resorting to that application re-installation). On the other hand, the post-installation
approach requires previous knowledge of the software running inside the VA but, contrary
to the previous approach, each different configuration only requires a new configuration file
version, and allows for the practical re-configuration of an application. Given the benefits and
drawbacks of each approach, the post-installation approach requirement was found tolerable
and moreover, allows for better functionality than the pre-installation approach and, therefore,
SmART will follow this discipline.

The adopted approach operates by conducting a lexical analysis on an application’s con-
figuration files with the aim of extracting the relevant information for that application con-
figuration from them. This raises a significant requirement which says that the configuration
files must be in text format. A consequent implication of this requirement is that special for-
mats, like the Windows OS registry or binary files, may not be configurable using the approach.
However, there exist dedicated parsers for the treatment of those formats and these can be used
by the framework to provide support for the mentioned kinds of formats.

Still in the scope of the applications supported by SmART, Section 1.2.3, the VIRTU project
usage scenarios analysis concluded that overall, configuration files either follow three formats:

• Apache-like format;

• INI-like format;

• XML-like format.

The Apache-like format is characterized by defining parameters as key/value pairs separated
by spaces or a similar character, blocks delimited by a header and a footer, containing other
patterns, and comments.

The INI-like format defines parameters as key/value pairs separated by an equal, space or a
similar character, blocks delimited by a header and comments.

The XML-like format defines blocks as XML elements delimited by a header and a footer, if
they contain other blocks, or a single tag if they do not contain other blocks, parameters as XML
attributes contained in an XML tag, and comments.

8

1. INTRODUCTION 1.4. Contributions

SmART should provide built-in support for these three configuration file categories, seen
as most of the configuration files fit in one of these categories. However, the tool must also be
extensible to support new configuration file formats.

Finally, one way of tackling this problem is to reduce the configuration files of any applica-
tion to a generic structure, dettached from its application specifics, which contains the relevant
elements for its application configuration. This structure can then be modified without any
knowledge of the application to which it belongs. Once altered, that structure is again con-
verted to a configuration file in its original syntax, containing the applied modifications.

1.4 Contributions

This dissertation contributions for the automatic application configuration are:

• Identification of commonalities amidst configuration files structures;

• Proposal of a framework for the rebuilding of configuration files of an application;

• Implementation of the proposed framework;

• Provision of the VIRTU project with a state-of-the-art and innovative tool for application
reconfiguration, independent of its vendor.

1.5 Document Organization

The rest of the dissertation is structured as follows: the next chapter covers the state of the art of
the related subjects to this thesis, Chapter 3 describes the proposed architecture of the SmART
tool, Chapter 4 explains the tool implementation decisions, Chapter 5 provides the validation
process carried to the tool, Chapter 6 approaches the integration of SmART with the VIRTU
virtualization platform, and Chapter 7 reveals the final considerations about this thesis.

9

2
State of the Art and Related Work

This section aims at presenting the state of the art in automatic application configuration, as
well as studying the tools which may be used to tackle the problem identified in Chapter 1.

To better understand the outlines of the problem, this section starts by explaining the con-
text of this dissertation. Namely, the virtual appliances theme is explored with the purpose of
making it more natural.

Afterwards, the existing techniques to deal with the problem are analysed. There is, never-
theless, a particularity regarding this part. As previsouly mentioned in Chapter 1, the configu-
ration of applications is still mostly a manual task. As such, the existing references considerably
relevant to this theme are very few. Therefore, this dissertation consists on one of the first con-
tributions for the problem of automatic configuration of applications.

Finally, the adopted concepts and tools to mitigate the problem are analysed. The automatic
file recognition theme is studied by identifying two parser generators and describing them.
Finally, it is seen how the file can be represented in an abstract, independent from its original
language, way.

2.1 Virtual Appliances

A Virtual Appliance (VA) is a minimal virtual machine (VM, Section 2.1.1) composed of pre-
configured and pre-installed applications plus an optimized operating system called Just
Enough Operating System (JeOS) (Figure 2.1). VAs are normally created to perform a specific
task in the most effective way, therefore they only contain the essential and necessary resources
for the execution of that task, contrary to the regular VM where all of the kernel OS features are
present, even those whose use is seldom.

11

2. STATE OF THE ART AND RELATED WORK 2.1. Virtual Appliances

Physical Hardware

Virtualization Layer

Virtual Appliance

JeOS

Figure 2.1: Virtual appliance

2.1.1 Virtualization

Virtualization is a very broad term and refers to something which does not exist physically
but appears to exist. Think of it in the context of virtual reality. With virtual memory, for
example, computer software gains access to more memory than is physically installed, via
the background swapping of data to disk storage. Similarly, virtualization techniques can be
applied to other IT infrastructure layers such as networks, storage, laptop or server hardware,
operating systems and applications.

The concept of platform virtualization refers to the technique for hiding the physical char-
acteristics of computing resources from the way in which other systems, applications or end
users interact with those resources. In other words, virtualization allows multiple logical com-
puting units to run on a single physical computing unit, like in the Figure 2.2. This is done with
the aid of a software layer (alias virtualization layer, virtualization manager, virtual machine
monitor or hypervisor) which provides the illusion of a “real” machine to multiple instances of
“virtual machines”.

Virtualization Layer

Computational Unit

Figure 2.2: Physical unit running four VMs

12

2. STATE OF THE ART AND RELATED WORK 2.1. Virtual Appliances

The virtualization concept goes back to the 1960s when corporate mainframes were in a
severe underutilization state [oV08]. By then, some IBM research personnel were working on
the CP-40 OS designed to run on the System/360 time-sharing system. It was the first OS to
completely virtualize a system (namely System/360) so that other S/360 OSes could be tested
and executed. This system paved the way for virtualization as known nowadays and concepts
pioneered by CP-40 are still actual, like the case where an abstraction layer catches traps and
simulates them. Curiously, CP-40 is still supported by IBM mainframes (System z10). Presently,
mainframes came to suffer from the same underutilization problem and so virtualization is en
vogue once again.

2.1.2 Motivation

Nowadays, deployment via download or DVD defines the typical software distribution model.
Despite its simplicity, this model features limitations such as deployment and configuration
complexity. Other flaws that might be pointed are the huge number of application versions to
maintain, which leads to IT resources draining; having to cope with a myriad of hardware plat-
forms, which leads to intensive time-consuming testings; Independent Service Vendors (ISVs)
might see their revenues decreased since if the customer is content with the product, he will
only upgrade when a groundbreaking feature comes out; and so forth.

As a response to these challenges, some alternative deployment models arose. Such is the
case of Software as a Service (SaaS), hardware appliances and virtual appliances.

Software as a Service (SaaS)

This approach consists on providing a service by hosting a software application that customers
over the Internet can use. In this way, the need for install and configure on the customer’s
computer is eliminated, so problems as software maintenance and support are no longer cus-
tomer’s responsibility but software vendor. The revenue becomes different: customers pay
when they want to use the service, rather than having a single expense when purchasing the
application.

However, this will turn the application vendor into a service provider that has to maintain
its infrastructure. Also, given the variety of existing open-source solutions and the inexpensive
hardware, it appeals economically to the customer to keep the application running under its
control.

Hardware Appliances

Another approach to software distribution is the creation of hardware appliances bundling
the application with hardware capable of running it. The customer just needs to plug in the
appliance and turn it on. This approach also clears the need for the customer to install and
configure the application, but this forces the application vendor to enter a different market, the
hardware market.

13

2. STATE OF THE ART AND RELATED WORK 2.1. Virtual Appliances

Virtual Appliances

The existing hardware virtualization techniques allow the leveraging of the hardware appli-
ances advantages without the hardware requirement. The virtual appliance vendor packs in
a set of required applications with a JeOS on a virtual machine that can be executed on the
vast majority of existing hypervisors given the appearance of virtualization format standards
(OVF). The deployment of the appliance is simple and the appliance comes pre-configured.
The appliance vendors are able to customize the applications and guest OS as much as they
want, thus leading to unseen efficiency. Updates are vendor’s responsibility and just require
him to address the flaws identified in the former version, produce an upgraded VA and deploy
it in the customer’s hardware. Management is made dramatically simpler by the use of man-
agement tools created by the appliance vendors [Sta07]. Moreover, VAs supply customers with
all the benefits of virtualization: increased hardware use, reduction of physical resources, etc.

2.1.3 Open Virtual Machine Format

The Open Virtual Machine Format (OVF) is a joint effort of various virtualization solution ven-
dors such as XenSource, VMware and Microsoft as a part of the Distributed Management Task
Force Inc. It consists on an open, secure, portable, efficient and extensible format for packaging
and distribution of VMs [VX]. With OVF, VMs which are created on one platform can also be
managed and used on other platforms, providing platform independence, although it enables
platform-specific enhancements to be captured.

OVF differs from other formats such as VMware’s VMDK and Microsoft’s VHD since these
are run-time VM images. Although they are currently used for VM transportation, they do not
address problems such as multi-tiered VMs consisting of multiple independent VMs, or VMs
with multiple disks.

Another important aspect in the scope of OVF is its integrity. OVF was designed so that
the VM configures itself, without the need for the virtualization platform where it is installed
to recognize the VM’s file system. This is particularly useful since it allows VMs to run on any
OS and virtualization platform which supports the OVF format.

OVF is extremely useful in the Virtual Appliance case since it provides essential foundations
for VA’s such as efficiency, portability, ease of use and distribution, etc.

An OVF package can be stored as a single file using the TAR format under the .ova extension
(open virtual appliance or application). It consists of the following [DMT08]:

• one OVF descriptor file (descriptor file or .ovf file) containing the package metadata and
its contents;

• zero or one OVF manifest file (manifest file or .mf file) containing the SHA-1 digests of
individual files in the package;

• zero or one certification file (certification file or .cert file) containing the OVF package
signature digest along with the base64-encoded X.509 certificate.

14

2. STATE OF THE ART AND RELATED WORK 2.2. Automatic Configuration of Applications

• zero or more disk images files

• zero or more additional resource files, such as ISO images

OVF specification v1.0.0 has been released on September, 2008 and is prone to intensive
development.

2.1.4 Virtual Appliances in Real Life

A good example of an application of virtual appliances is the Amazon Elastic Compute
Cloud [Ama], also known as Amazon EC2. It is a service which allows customers to rent
hosted computing capacity in order to run their applications. The customers can create a VA
comprised by applications, libraries, data and associated configuration settings or use a pre-
constructed image and then upload it in the Amazon Machine Image format to the Amazon
storage service, Amazon Simple Storage Service (S3). VAs provide the means for elastic com-
puting by enabling a fast and efficient way for service expansion.

Whereas previously SaaS solutions failed to succeed due to the lack of control of the ser-
vice from the customer and the maintenance costs involved, Amazon EC2 uses multiple Xen
hypervisor nodes so that customers can build VAs containing their applications and host them
outside their domain. In this way, the vendor is able to provide the service desired by the
customer without the need to maintain the solution, focusing on keeping a secure, reliable, ef-
ficient and inexpensive environment for the VAs to run on. On the other hand, the customers
now have the control over their services and may update them any time necessary without hav-
ing to wait for the vendor. Furthermore, customers are only billed for what they consume (i.e.,
instance uptime or data transferred), opposed to paying an established fee even if the service
usage is low or non-existant.

2.2 Automatic Configuration of Applications

To the best of our knowledge, our approach is the first to exploit the similarities among con-
figuration files to allow for automatic, vendor-independent and on-the-fly application recon-
figuration. Similar existing projects, such as AutoBash [SAF07] or Chronus [WCG04], take on
automatic application configuration as a way to assist the removal of configuration bugs. Auto-
Bash employs the causality support within the Linux kernel to track and understand the actions
performed by a user on an application and then recurs to a speculative execution to rollback
a process, if it moved from a correct to an incorrect state. Chronus, on the other hand, uses a
virtual machine monitor to implement rollback, at the expense of an entire computer system.
It also focuses a more limited problem: finding the exact moment when an application ceased
to work properly.

Two other projects, better related to this work, are Thin Crust [Cru] and
SmartFrog [GGL+09]. Both projects aim at automatic application configuration, but take a
different approach than ours. Following is a brief summary of both.

15

2. STATE OF THE ART AND RELATED WORK 2.3. Automatic Recognition of Configuration Files

2.2.1 Thin Crust

Thin Crust is an open-source set of tools and meta-data for the creation of VAs. It features
three key components: Appliance Operating System (AOS), Appliance Creation Tool (ACT)
and Appliance Configuration Engine (ACE). The AOS is a minimal OS built from a Fedora
Kickstart file 1, which can be cut down to just the required packages to run an appliance. The
user may download a ready-to-run AOS image or may create his own through the ACT. The
ACE is ran at VA boot time and loads the appliance recipe. The appliance recipe contains VA
metadata and the modules used by the VA. If it does not match the appliance configuration,
the latter is changed to reflect the changes. Finally, Thin Crust supports VMware, KVM and
EC2 (see Section 2.1.4) by providing conversion tools from and to the mentioned formats.

2.2.2 SmartFrog

SmartFrog (Smart Framework for Object Groups) is a framework for the creation of
configuration-based systems. Its objective is to make the design, deployment and management
of distributed component-based systems simpler and more robust. It defines a language to
describe component configurations and a runtime environment to activate and manage those
components.

One of the major causes for the problems in large distributed systems design is identified
by SmartFrog as the ad-hoc way in which such systems are designed. This results in application
configuration data scattered by the system, often causing its repetition.

In SmartFrog, there is the notion of a SmartFrog component and a SmartFrog system, which is
composed by various such components. A SmartFrog component is constituted by three parts:
the lifecycle manager, which applies a configuration on a component; configuration data, which
defines the behaviour of a component; and the managed component, which may be a piece of
software implementing any functionality-specific interface. Each component is monitorized by
its lifecycle manager and must report any failure to the other components of the system. The
components can also be distributed on a network.

2.3 Automatic Recognition of Configuration Files

The lexical analysis of the file with the objective of producing that same file in a different struc-
ture provides a way for the tool to abstract itself from each configuration file language specifics,
refining the configuration file down to just the essential for configuration (i.e., the elements
needed to modify the application settings, such as parameter keys and attributes). The lexi-
cal analysis of a file is accomplished by a parser, which recognizes the file original syntax and
produces a version of the same file in a different structure.

Configuration file parsers are produced by grammar compilers (or parser generators). A
grammar compiler reads a grammar that recognizes a certain configuration file language and

1

16

2. STATE OF THE ART AND RELATED WORK 2.3. Automatic Recognition of Configuration Files

compiles it, resulting in the generation of a parser for a specific configuration file language.
Following are presented some parser generators:

2.3.1 SableCC

SableCC [GH98] is an object-oriented framework that generates compilers, or parsers, in the
Java programming language. This framework is based on two fundamental design decisions.
Firstly, the framework uses object-oriented techniques to automatically build a strictly-typed
abstract syntax tree that matches the grammar of the compiled language and simplifies debug-
ging. Secondly, the framework generates tree-walker classes using an extended version of the
visitor design pattern which enables the implementation of actions on the nodes of the abstract
syntax tree using inheritance.

SableCC specification files do not contain any action code. Instead, SableCC generates an
object-oriented framework in which actions can be added by defining new classes containing
the action code. This leads to a shorter development cycle, allowing for the rapid prototyping
of SmART.

Given a grammar, SableCC’s produces a set of packages, namely:

• analysis: contains different tree walkers (e.g., depth first, reversed);

• lexer: contains the elements needed for the lexical analysis of the grammar;

• node: classes containing node representations;

• parser: contains the parser class.

None of the automatically produced classes ought to be modified. Instead, all of the user
generated code should be put in classes extending those created by SableCC. By doing this,
every time a problem arises (e.g., error in a grammar), it can be easily located and corrected by
modifying only a small portion of the code. Another aspect of discussible importance is that
SableCC is distributed under the GNU Lesser General Public License.

Notwithstanding, SableCC also reveals some significant shortcomings. SableCC does not
support error productions. In other words, when a generated parser comes upon an unrecog-
nizable token in a configuration file, it does not allow the parse to advance further beyond that
token, consequently halting the parse on that position. Since error productions are a common
feature on parser generators, this lackage was not noticed upon the choice. This, in turn, sev-
ered the ability to produce multiple recognized file blocks to just one. The parsing statistics
also become unreliable, since a parser might not recognize the first token a configuration file
and recognize the rest of the file, but without error productions, parsing will inevitably stop in
the beginning of the file and that parser will be reported to have parsed 0% of the file, when in
fact it would manage to parse nearly 100% of the file.

17

2. STATE OF THE ART AND RELATED WORK 2.4. Representation of Configuration Files in a Generic Syntax

2.3.2 JavaCC

The Java Compiler Compiler (JavaCC) [Proa] is a tool that reads a grammar specification and
converts it to a Java program that can recognize matches to the grammar. In addition to the
parser generator itself, JavaCC provides other standard capabilities related to parser generation
such as tree building, actions, debugging, etc.

JavaCC generates top-down parsers (i.e., start at the root of the derivation tree, picks a pro-
duction and tries to match the input tokens [oM]), declares the lexical and grammar specifica-
tions in one file, making grammars easier to read and maintain, supports semantic lookahead,
uses the Extended Backus-Naur Form (i.e., operators *, + and ?) and supports error recovery in
two forms: shallow recovery and deep recovery. In shallow recovery, if an input token does not
match any production, it is possible to move to the next desired token (e.g., semicolon). Deep
recovery is similar to the shallow recovery, but also allows to recover from an error inside a
production, which is impossible resorting to shallow recovery alone.

2.4 Representation of Configuration Files in a Generic Syntax

The concept of generic syntax refers to a language-independent syntax used in the process of
automatic application configuration. The generic syntax is used to abstract the configuration
files from their original languages. When a configuration file is represented in a generic syntax,
another independent entity which recognizes that syntax is able to manipulate the file without
having knowledge of what the original syntax was, or what application uses that file. The cho-
sen generic syntax must provide a practical way to traverse and manipulate files. Furthermore,
it must be widely supported and well documented. Its software license must also allow it to be
used freely.

Considering the prievous requirements, the chosen syntax was the eXtensible Markup Lan-
guage (XML) since it is a broadly adopted and supported standard. XML allows for the struc-
turing of configuration files in a way that makes them easily manipulable and traversable.

Some available implementations of XML parsers were identified in many programming
languages. The criteria to choose from an XML parser implementation includes factors such as
the programming languages it is available on and what it allows the user to do resulting data
structure from the parse.

Since the programming language used to develop the tool is going to be Java, two major
XML parser implementations in Java were considered: the Simple API for XML (SAX) and the
Domain Object Model (DOM). Following is a brief description of both.

Simple API for XML

The Simple API for XML (SAX) is an Application Programming Interface (API) for XML in Java,
although it is available in many other programming languages. It is event-driven: it reads from
a stream and reacts when processing instructions, elements, comments and text.

18

2. STATE OF THE ART AND RELATED WORK 2.4. Representation of Configuration Files in a Generic Syntax

Being event-oriented, SAX does not implement a representation of the document in mem-
ory and, therefore, memory accesses are seldom in quantity. This leads to some memory inde-
pendence and fairly good memory consumption ratings, also excelling in large files parsing.
SAX parses in an uni-directional way since it does not allow previously read data to be read
again, without restarting the parser. This consists on a problem when a whole XML document
must be in memory in order to be properly parsed, as SAX requires the user to start the parsing
again to get values previously obtained.

Domain Object Model

DOM is a cross-platform and language-independent interface for creating and manipulating
XML documents in memory. It is a World Wide Web Consortium (W3C) standard.

It loads an XML document to memory and allows for dynamic access to it, allowing for
bi-directional parsing. DOM represents an XML document in memory in a tree-like structure.
Furthermore, it is very well supported in many programming languages, including Java.

Since DOM keeps a document in memory after it is parsed, a drawback is the time spent
to parse a big file on the grounds that many memory allocation requests might sum up to a
considerable time.

19

3
An application reconfiguration

framework

Chapter 1 identified the problem of automatic application configuration, along with the con-
cept of pattern in a configuration file, whereas Chapter 2 studied the existing tools and tech-
nologies that can help to mitigate the problem. Using that knowledge, this chapter presents the
framework for automatic application configuration, the major contribution of this dissertation.

In truth, the proposed framework reconfigures applications (possibly fresh installations or
deployments of an application) instead of configuring them at deployment time, but for the
sake of clarity, the problem will be addressed in the remainder of the dissertation as the auto-
matic configuration of applications. The proposed framework requires three steps to config-
ure an application automatically: conversion from original to generic syntax, file modification
and conversion back to original syntax. Only the first and third belong to the scope of this
work. The configuration resorts to the lexical and syntatic analysis of the configuration file and
subsequent production of a data structure which is equivalent to the original file. After the
data-structure is properly modified, it is reconverted back to the original file form.

We start by identifying the functional and non-functional requirements of the tool in Sec-
tion 3.1, Section 3.2 provides a broad view over the solution proposal, Sections 3.3 and 3.4 detail
the required components in each step and their interfaces, Section 3.5 approaches the file mod-
ification part by proposing some ways to modify the intermediate file in generic syntax and
providing some information about the generic syntax and Section 3.6 deals with the support
for file formats not recognizable by the framework.

21

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.1. Architectural Requirements

3.1 Architectural Requirements

Before approaching the proposal of a framework for the automatic application configuration,
the tool requirements must be identified. This section presents the functionalities which the
tool is expected to provide, in the form of use cases. A use case defines a goal-oriented set
of interactions between external actors and the tool. Following is a list of functional and non-
functional requirements:

1. The user must be able to convert a configuration file syntax from its original syntax to
a generic one, independently of the application.

Description: The user must be able to try parsing the configuration file with the available
parsers.

Non-functional requirements:

Performance: The generated file with the generic syntax must be as simple as possible.

2. The user must be able to define grammars for configuration file languages.

Description: If there are no suitable parsers for a given configuration file, the user must
be able to define a grammar that recognizes the new configuration file language.

Non-functional requirements:

Usability: The grammar definition syntax should be a broadly adopted one.

Usability: To ease the parser generation process, the user must be able to iterate through
the previously built grammars so as to rollback any change made on a grammar.

3. The user must be able to produce a parser from a grammar.

Description: When the user builds a grammar for a new configuration file language, there
must be a means to compile that grammar in order to generate a parser.

Non-functional requirements:

Usability: The user must be able to add parsers built outside the tool.

4. The user must have access to the parser compilation trace.

Description: When a grammar is compiled, the user should be able to check on the parser
compilation trace to see if it was successfully compiled or whether any error persists in
the grammar declaration.

22

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.1. Architectural Requirements

Non-functional requirements:

Usability: The error messages must clearly identify the source of the error.

5. The user must receive information relative to the grammar fitness with a given config-
uration file.

Description: When the user attempts at parsing a configuration file with a given parser,
he/she must be informed if the parsing was successful or not, as well as the quantity of
file recognized by that parser.

Non-functional requirements:

Usability: The sections of the configuration file that were parsed and those that were not
must be clearly identified.

6. The user must be able to store a functional parser generated by the tool, in order to be
used on later tool runs.

Description: When the user checks a new parser to parse a configuration file entirely,
he/she must be able to store it in a repository so it can be reused.

Non-functional requirements:

Security: The user must be able to see the parsing outcome in order to check if the parser
is indeed operating as intended to.

7. The user must be able to reconvert a configuration file syntax from generic syntax to
the original one.

Description: Given a configuration file in generic syntax, the user must be able to convert
it into its original syntax, keeping its functionality unharmed.

8. File conversion must not eliminate comments.

Description: On the original to generic syntax conversion, the comments should be stored
in order to show up in the final file.

9. The user must be able to halt the tool execution at some point and continue the config-
uration process later.

Description: In the middle of the configuration process (i.e., right after the original to
generic syntax conversion), the administrator should be able to halt the execution flow,
have the necessary data stored, such as the file in the generic syntax or the tentative

23

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.2. Automatic Application Configuration

parsers, and continue from the same state later.

10. The user must be able to manually delete parsers from the parser repository.

Description: The user must be able to manually delete parsers from the parser repository
so that the user may intervene if the parser repository becomes to big, or if a certain parser
becomes obsolete.

3.2 Automatic Application Configuration

Having identified the requirements for the tool, it is now possible to tackle a possible solution
for the problem. This section presents a framework which is the solution proposal for the
automatic configuration of applications.

The application configuration files are read by the tool, which parses them in order to con-
vert their syntax from the original to a generic, application-independent, one. This allows for
the configuration files to be manipulated and altered in the same way, for any application,
through an agent which recognizes the generic syntax.

Being in generic syntax, the file can be efficiently modified by an agent which operates on
that kind of syntax, such as an automated script. Ensuing the file modification, the tool is
responsible to do the inverse conversion, back to the file original form. Once the file has been
converted to the generic syntax, the characteristics of the original syntax have been aprehended
and can be used to reconvert the file back to its original syntax.

The configuration process (Figure 3.1) can be divided into three main stages:

1. Configuration file extraction;

2. Original to generic syntax conversion;

3. File modification;

4. Generic to original syntax conversion.

The second stage is accomplished through an Original to Generic syntax Converter (OGC)
and the fourth by a Generic to Original syntax Converter (GOC). This dissertation points ways
in which OGC and GOC might evolve. The first and third stages are not on the original work
scope and therefore are not tackled in detail. Nevertheless, Section 3.5 approaches the file
modification area superficially, hinting at some possible ways of dealing with the subject and
identifying possible operational constraints.

3.3 Original to Generic syntax Converter

The Original to Generic syntax Converter (OGC) is structured like a three-tier
architecture [Ram00]. The three-tier architecture consists of a software design pattern which

24

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

!!""#$%&'$()*

+$)&,$-.

!/()0$12,&'$()*

0$#-.

!""#$%&'$()*0$#-.

!/()0$12,&'$()*0$#-*

$)*(,$1$)&#*.3)'&4

5,1)&#*'(*1-)-,$%*

.3)'&4*%()6-,'-, !/()0$12,&'$()*0$#-*

$)*1-)-,$%*.3)'&4

7$#-*8(9$0$%&'$()

!:(9$0$-9*

%()0$12,&'$()*0$#-*

$)*1-)-,$%*.3)'&4

;-)-,$%*'(*(,$1$)&#*

.3)'&4*%()6-,'-, !!""#$%&'$()*

+$)&,$-.

!:(9$0$-9*0$#-*$)*

(,1)&#*.3)'&4

!""#$%&'$()*0$#-.

<

=

>

?

Figure 3.1: SmART Work Flow

Component Description
User Interface The User Interface makes the link between the user and the

tool. It can be thought of as a command interpreter, which
reacts to user orders by calling other tool components. Ad-
ditionally, it is used to simplify some otherwise complex
tasks, such as building grammars for configuration files.

Table 3.1: Presentation Layer Components

defines three inter-related tiers, each with its own responsibilities. In this work context, the
tiers are:

Presentation Layer. Contains the presentation logic, including simple control and user input
validation.

Logic Layer. Contains the processing logic and the data access.

Storage Layer. Provides the data storage.

In this topology, each layer is modifiable without interfering with the others, increasing
modularity.

The three-tier architecture is depicted in Figure 3.2. However, the OGC does not follow a
strict three-tier architecture, as later on, it is seen that some components on the presentation
layer interact with those on the storage layer.

The components employed by the OGC are now briefly described. Table 3.1 presents the
components used by the Presentation Layer, Table 3.2 contains the description of the Logic
Layer components and Table 3.3 introduces the components used by the Data Layer.

3.3.1 Component Description

This section provides a description for each component required by OGC. First, the task of each
component is briefly analysed and then, the operations of each component are more thoroughly

25

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Presentation Layer

Logical Layer

Storage Layer

Presentation Layer

Logical Layer

Storage Layer

User
Interface

Parser
Repository

Configuration
File Parser

Code
Generator

Grammar
Compiler

Tentative
Grammar
Repository

Figure 3.2: Components overview

Component Description
Configuration File Parser The Configuration File Parser recognizes the diversity of

configuration files and parses them in order to change their
structure to an application-independent one;

Code Generator The Code Generator reads the parsed output from the Con-
figuration File Parser and generates the generic syntax of
the file;

Grammar Compiler The Grammar Compiler is the component which generates
new parsers from grammars.

Table 3.2: Logic Layer Components

Component Description
Parser Repository The Parser Repository is a parser database which holds all

the functional parsers generated to the date;
Tentative Grammar
Repository

The Tentative Grammar Repository stores the grammars
built by the user on the process of creating a new parser
for a configuration file language.

Table 3.3: Data Layer Components

26

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Listing 3.1: User Interface proposed interface

interface UI {
void processFiles(String[] fileNames);
void submitGrammar();
byte[] getTentativeGrammar();
void approveParser();
boolean importParser();
void haltSession();
void recoverSession();

}

described. The interfaces that every component should implement are also presented, in a
Java-like syntax. Enforcing every component to implement an interface not only allows any
component to be completely remade without having any effect on other components, it also
aids the integration process of SmART with other tools.

User Interface

The User Interface (UI, Listing 3.1) is the tool’s front-end, through which the user interacts with
the tool. It is invoked by the user and receives an array of configuration file locations at boot
time, although it only processes one at a time.

For each file, UI summons the Configuration File Parser to make an attempt at
parsing a configuration file with the parsers in the Parser Repository. Two outcomes are
possible: either a parser manages to recognize the totality of a file or none does.

The first case is the ideal case, where at least one of the parsers in the Parser Repository

manages to fully recognize the configuration file. In this situation, UI displays the representa-
tion of the generic syntax, as returned by the Configuration File Parser, to let the user
validate the generated structure. At this point, the configuration file in generic syntax is stored
in memory, so UI must save it to a file to let file modification take place.

The second case, where the configuration file was not completely parsed by any available
parser, requires user intervention. If the file could not be totally recognized by any parser,
another parser which recognizes this new language must be generated. For this endeavour,
UI provides the user with a friendly interface which allows him to define a new grammar
that recognizes the configuration file language. The user must also be allowed to build a new
grammar from an existing one. This is useful in the case where a parser managed to parse a
configuration file almost entirely. In this case, the new parser might be ready just by tuning an
existing one, instead of having to build it from scratch.

As soon as a grammar is defined, the user triggers its compilation with the Grammar

Compiler’s submitGrammar call. Any grammar compilation errors should be displayed to
the user. To ease parser generation, the user must have access to the previously tested gram-
mars. This allows for the rollback of changes in grammars in an easy way. To accomplish
this, every time the user submits a new grammar, UI sends it to the Tentative Grammar

27

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Listing 3.2: Configuration File Parser proposed interface

interface CFP {
Map<Parser,ParsingData> doParse(String fileName);
ParsingData doParse(String fileName, Parser parser);

}

Repository. Then, the user can fetch the previsouly built grammars through the
getTentativeGrammar call.

The parsers generated by the Grammar Compiler must be validated by the user to check
if the new parser is able to parse the configuration file, or if the generic syntax produced by the
parser is indeed the desired one. UI must handle this information and show it to the user in
a user-friendly optic (e.g., graphically). Then, if the user approves the parser, he can summon
the approveParser method to store the parser with the remaining parsers in the Parser
Repository. Finally, UI stores the generic syntax in memory on a file.

Besides the presented basic functionality, UI offers some more utilities to the user. Namely,
the importParser method allows the importation of external parsers if the user is already
in possession of a functional parser for a new configuration file. Additionally, the user may
suspend the tool’s execution and resume it later through the haltSession method. This
method stores the tentative grammars to disk, as well as other volatile data in memory, such as
the produced file in generic syntax, if it was already produced. The recoverSession method
obtains all the stored data to resume a previously saved session.

Configuration File Parser

The Configuration File Parser (CFP, Listing 3.2) can either parse a configuration file with every
parser in the database or just with a single one. The parsers analyse the configuration files in
their original syntax, declared in a grammar which defines the tokens and productions of that
syntax, and produce the abstract syntax tree (AST) of the file.

The ASTs generated by the parsers must follow the typing indicated in Section 1.3. There-
fore, nodes composing an AST are either parameters, blocks, comments or nodes corresponding
to new patterns. By assuring that the ASTs are typed in such a way, it is possible to conceive a
uniform Code Generator, which is able to traverse the AST of any application. Furthermore,
strictly typed ASTs guarantee that the generic syntax is constant for every application. In other
words, the generic syntax will be composed of elements like parameters, blocks, comments and
specials, which is a standard recognized by the file modification agent.

CFP may iterate the available parsers in the Parser Repository and attempt to parse
the input file with each one of them. Alternatively, CFP may also be called to parse a file with a
newly generated parser if the file was not entirely recognized with any of the existing parsers.

When a parser is tested, it returns the configuration file intervals which were recognized,
along with the AST of each interval. The ASTs are sent to the Code Generator to be con-
verted into generic syntax, in order to help the user analyse and validate the output produced

28

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

!"#$%&'()*%"#+,%-. !"#$%&'()*%"#+,%-.

,()&/.#*+0+

123

,()&/.#*+0+456

,()&/.#*+7+

123

,%-.+123

,()&/.#*+7+456

,%-.+456

Figure 3.3: Partial and totally parsed configuration file stages

Listing 3.3: Code Generator proposed interface

interface CG {
Document doTranslate(List<Node> ast);

}

by a parser. If a file has been completely recognized, the interval returned by the parser is the
same as the overall original file length and the only returned AST will correspond to the whole
file. The stages of the file in both scenarios are depicted in Figure 3.3. Since the CFP tests a file
with every parser in the Parser Repository, it returns a map of every parser and the data
regarding the parsing attempt with that parser. On the other hand, if the CFP tests a file with a
single parser, it returns the parsing data with that parser.

Code Generator

The Code Generator (CG, Listing 3.3) traverses the ASTs created by the parsers and produces
the generic syntax for a configuration file or a configuration file fragment. Besides that, CG
must also capture the properties of the configuration file original syntax and save them in the
generic syntax in order to ease the opposite conversion process, from generic to original syntax.

CG is able to correctly traverse any AST, provided that this follows the typing described in
Section 1.3, with parameters, comments, blocks and other types meanwhile defined. Moreover,
the generic syntax produced by CG must be the same for any kind of configuration file so as to
detach the Original to Generic syntax Converter from the Generic to Original syntax Converter.
More considerations on the generic syntax produced by CG can be found in Section 3.6.

Grammar Compiler

To allow the generation of new parsers for the recognition of new configuration file languages,
the Grammar Compiler (GC, Listing 3.4) was created. GC produces parsers from user-built

29

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Listing 3.4: Grammar Compiler proposed interface

interface GC {
CompilationData doCompile(byte[] grammar);

}

Listing 3.5: Parser Repository proposed interface

interface PR {
Parser storeParser(ParserID parserID, ParserInt parser, byte[]
grammar);
Parser importParser(ParserID parserID, ParserInt parser);
Iterator<String, Parser> getIterator();
void deleteParser(String parserID);
void saveState();

}

grammars. For this, CG may make use of an outside parser generator, such as Bison [FSF],
SableCC [GH98], JavaCC [Proa], etc., by invoking it whenever a grammar is received. Also,
when a grammar is not valid, CG must return an error message containing information about
the problem.

Parser Repository

The Parser Repository (PR, Listing 3.5) is a parser database which manages the parsers used
by the tool to that date. It maintains a map of ParserID, which is the parser name and must
uniquely identify it, and Parser, used to call a given parser. PR provides a number of func-
tionalities to the user. These functionalities are now enumerated.

The parsers generated by the Grammar Compiler may be stored by the PR if the user has
approved them. The storeParser method saves a parser in the database, given its name,
which uniquely identifies it, the parser and its grammar definition.

If a user possesses an already built parser for a new configuration file, it is possible to im-
port that parser into the tool. The importParser method saves an external parser in the
database. The importation of external parsers is, nevertheless, conditioned by a pre-defined in-
terface which forces external parsers to implement an invocable method. This matter is further
discussed in Section 3.6.

Besides inserting parsers into the database, it is also possible to obtain an iterator for the
existing parsers in the parser repository through the getIterator method, to delete a parser
from the database with the deleteParser method and to save the state of the database by
calling the saveState method.

30

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Listing 3.6: Tentative Grammar Repository proposed interface

interface TentativeGrammarRepository {
Grammar store(GrammarID grammarID, byte[] grammar);
Grammar next();
Grammar prev();
Grammar get(int grammarNumber);
void discard(int grammarNumber);
void discardAll();
void saveState();

}

Tentative Grammar Repository

To respond to the architectural non-functional requirement which says that the user must be
able to iterate through the previsouly tested grammars, the Tentative Grammar Repository
(TGR, Listing 3.6) was conceived. TGR is a database which maintains a list of the grammars,
functional or not, created by the user so far, in the process of building a new parser. Each
grammar in the database knows what grammar was built before and after it.

To store a grammar, the store method receives a GrammarID with the grammar name and
a byte array containing the grammar declaration.

The grammars are retrievable in two ways. The user can obtain grammars on an undo/redo
fashion using the next and prev methods, which return the grammar built immediately be-
fore or after. However, if the user desires to get a specific grammar in time, it can be obtained
using the grammar serial number which is unique to each grammar.

The discard and discardAllmethods delete grammars from the database. The discard
method discards a grammar and those based on it, while the discardAll method discards

every grammar in the database.

Finally, the state of the database can be saved, with the saveState, whenever the tool ex-
ecution is halted.

3.3.2 Original to Generic Syntax Converter Operation Scenarios

Depending on whether a parser for a configuration file exists in the Parser Repository,
OGC may have two different execution scenarios. For a clearer perception of the architecture
and to give a better insight on the interactions between components, both scenarios are now
briefly summarized.

Considering that there is a parser for a given configuration file in the database, the original
to generic conversion unfolds as follows (Figure 3.4):

1. The User Interface calls the Configuration File Parser to parse the configu-
ration file;

31

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.3. Original to Generic syntax Converter

Presentation Layer

Logical Layer

Storage Layer

Presentation Layer

Logical Layer

Storage Layer

User
Interface

Parser
Repository

Configuration
File Parser

Code
Generator

Figure 3.4: Interactions on the successful file recognition scenario

2. The Configuration File Parser gets the parsers from the Parser Repository

and tests the configuration file with all of them. By assumption, at least one parser is
able to parse the configuration file entirely, therefore, at least one valid AST for the entire
configuration file is produced;

3. The Configuration File Parser sends the generated ASTs to the Code Generator

and returns User Interface the generic syntax of the file for each parser;

4. Finally, the User Interface chooses a valid file in generic syntax and stores it to disk.

On the other hand, if a configuration file is new to the tool, the process requires more com-
ponents to operate. The previous process is performed normally until step 2, where no parser
was found to be able to parse the configuration file by the User Interface. Afterwards, the
action flow is as follows:

1. The user must build a grammar through the User Interface so that the Grammar

Compiler generates a parser from it. If a grammar declaration is not valid or if the
generated parser still cannot parse the configuration file, another grammar must be built
until the configuration file is parsed;

2. Meanwhile, every grammar produced by the user is stored in the Tentative Grammar

Repository for the user to easily rollback any change made to a grammar;

3. When a parser successfully recognizes a configuration file, the user has the last word as
he may approve or disapprove the structure produced by that parser;

4. If the user does not approve of a parser, another one must naturally be generated;

32

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.4. Generic to Original syntax Converter

Presentation Layer

Logical Layer

Storage Layer

Presentation Layer

Logical Layer

Storage Layer

Configuration
File Parser

Grammar
Compiler

User Interface

Code
Generator

Tentative
Grammar
Repository

Parser
Repository

Figure 3.5: Interactions on the failed file recognition scenario

Listing 3.7: Printer proposed interface

interface Printer {
void print(String file);

}

5. If a parser is approved, it is stored in the Parser Repository and the Tentative
Grammar Repository may be emptied.

Afterwards, the course of action returns to normal: the AST produced by the parser is sent
to the Code Generator and the resulting file in generic syntax is stored to disk by the User
Interface. The interactions between components on this process are depicted in Figure 3.5.

Annex A.1 is a sequence diagram showing how components interact with each other, and
in what order.

3.4 Generic to Original syntax Converter

The conversion from generic syntax back to the original one is accomplished solely by one
component, the Printer (Listing 3.7).

The Printer is able to convert files in generic syntax to any configuration file format. It
does so by using the information on the file’s original syntax, captured by the Code Generator

in Section 3.3.

The outcome of the Printer is the modified file in its original syntax, which remains 100%
functional and is ready to be re-merged with the other application files, causing the application
to become configured.

33

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.5. Modifying the Configuration File

3.5 Modifying the Configuration File

Despite not being part of this work, some possible ways to deal with the configuration file
modification theme were identified.

In the presence of a configuration file, structured in an XML document, one can either man-
ually modify it, using a regular text editor or a similar XML editor, or automatically modify it,
employing an XML script which applies the changes to a configuration file without the need
for any user intervention.

The first way does not ask for any special requirement, other than having a text editor at
hand, and therefore, consists on the easiest way to modify a configuration file in XML. On the
other hand, the second way requires a script to be previously built. This script may, neverthe-
less, be reusable and also allows for a completely automatic application configuration process.
However, one must first know how the generic syntax is structured in order to build a script
that operates on it.

Therefore, it is very important that all the files in generic syntax follow the same structure
and nomenclature, regardless of their original format. For example, assuming there is a script
which goes through an entire configuration file searching for the block “Network” to change
the “address” parameter value to “192.168.0.100”, it is vital that every file in generic syntax rep-
resents block parameter patterns in the same way (i.e., a generic syntax element called “Block”
with a “value” element assigned to it) so that the script recognizes those patterns when it sees
them. The same goes for anyone who wants to manually make that change. The person who
applies the modification should not be obliged to know multiple generic syntaxes for various
configuration file languages, but rather a homogeneous syntax which might slightly diverge
from language to language, depending on that language idiosyncrasies.

3.6 External Parser Addition

In response to the non-functional requirement in Section 3.1 which says that the user must be
able to add parsers built outside the tool, Section 3.3.1 indicates that the Parser Repository

implements the importParser method. This utility is especially useful when the user wants
to configure applications whose configuration files cannot be parsed by parsers created by
the chosen parser generator (e.g., binary files) or if the user already possesses a parser for a
configuration file.

Nevertheless, in order for an external parser to be added to the tool, it must implement
the interface defined in Listing 3.8. This interface solely defines one method, which is the one
called by the Configuration File Parser when parsing a file with an external parser.
Furthermore, the method must return the parsing statistics and the parsed blocks in generic
syntax.

34

3. AN APPLICATION RECONFIGURATION FRAMEWORK 3.6. External Parser Addition

Listing 3.8: External Parser Proposed Interface

interface ExternalParserInterface {
public ParsingData parse(String fileName);

}

35

4
An Implementation

Chapter 3 approached the application configuration framework by identifying the require-
ments to be met and defining a tool workflow and component architecture. This chapter de-
scribes the implementation of that framework, developed in the context of this thesis.

First, implementation decisions of several orders are presented. Section 4.1 presents the
adopted programming language, Section 4.2 presents the adopted parser generator and Sec-
tion 4.3 presents the adopted generic syntax format. Then, Section 4.4 shows the implementa-
tion of the created data structures in terms of the motivation for their use and their functionality.
Afterwards, Section 4.5 presents the details of the Original to Generic syntax Converter com-
ponent implementation, Section 4.6 shows how the files in generic syntax are printed back to
original syntax and last, Section 4.7 displays the Generic to Original syntax Converter compo-
nent implementation.

4.1 Programming Language

As it is well known, programming languages differ from each other not only in terms of sup-
ported programming paradigms, but also expressive power, documentation, popularity, etc.
Among the requirements that the programming language was expected to meet, two had a
special weight in the time of decision: the chosen programming language should be object-
oriented due to the modular nature of the tool and high-level to easily and quickly provide
programming tools such as data types, data structures, etc.

Given the previous considerations, the decision fell on the Java1 programming language,
considering it supports the object-oriented programming paradigm, among many other pro-
gramming paradigms, is high-level and its API (Application Programming Interface) is well

1http://java.sun.com/

37

4. AN IMPLEMENTATION 4.2. Parser Generator

Listing 4.1: Node interface

interface Node {
void translate();

}

documented. Moreover, a great number of parser generators provide support for this pro-
gramming language.

4.2 Parser Generator

The choice of a parser generator took into account the two parsers studied earlier in Section 2.3,
SableCC and JavaCC.

SableCC is defined by automatically generating all nodes of an AST from a grammar, im-
plementing a fairly simple and intuitive grammar definition interface and strictly separating
all the user-generated code from the parser generator-generated code.

On the other hand, JavaCC makes it possible for the insertion of Java code in the gram-
mar definition, which may cause the grammar definition interface a bit more complex. Unlike
SableCC, JavaCC does not automatically generate the nodes of the AST, leaving that task to the
user. The separation of parser generator and user-generated code is relative and depends on
the degree of detachment defined in the grammar.

Initially, SableCC’s characteristics led us to consider it as the best option, since it allowed
for the rapid prototyping of the tool. However, after used and tested, its mechanics were found
to be more complex over time considering that, by having each parser creating its own AST, it
requires specific walkers for each AST. The direct impact that this characteristic had on SmART
is that for each different configuration file type is a different grammar, which leads to a different
AST, which leads to one AST walker for each configuration file type. Adversely, since JavaCC
requires the nodes of the AST to be manually defined, it is possible to conceive a structure
where every node in it implements a method that can be called by the structure walker (see
Listing 4.1). In this way, only one walker is required for any kind of configuration file, which
is able to visit the AST of any configuration file type and produce the file in generic syntax by
calling the method defined in the interface of Listing 4.1.

Another severe limitation of SableCC is that it currently does not offer the error recovery
functionality, whereas JavaCC provides two types of error recovery: shallow and deep error
recovery. Error recovery consists on continuing the parsing of a configuration file even after
an unrecognized token has been found. This allows for better accuracy when calculating the
fitness of a parser with a configuration file.

Given the previous considerations, the initial beliefs in SableCC were turned in favour of
JavaCC.

38

4. AN IMPLEMENTATION 4.3. Generic Syntax

Listing 4.2: Parser data structure

interface Parser {
String getParserID();

}

Listing 4.3: InternalParser data structure

interface InternalParser {
Method getParseMethod();
byte[] getGrammarDefinition();

}

4.3 Generic Syntax

Section 2.4 indicated that the chosen format for the representation of the configuration files
in generic syntax would be XML (eXtended Markup Language). Furthermore, that Section
saw that there are two XML parser implementations for the Java programming language,
DOM [W3S] and SAX [Prob]. It was seen that the first keeps a tree in memory, representing
the XML document, while the second is event-driven.

By balancing the benefits and drawbacks of each parser, DOM was preferred to SAX on
account of representing an XML document in memory as a tree structure. This allows for a
quick transition of an AST to a DOM tree.

4.4 Data Structures

This section presents the data structures created to cope with various aspects regarding the
passing of data between components. For each data structure, an interface is revealed and an
explanation on the data structure functionality and the methods declared in the interface is
presented.

4.4.1 Parser

Parser objects are used as references for the parsers used by the tool. This implementation
considers that the parsers are identified by their name and, therefore, the ParserID field
consists on a String instead. However, the Parser class cannot be instanciated since it is
an abstract class. To distinguish the internal parsers, built by the tool, and external parsers,
built outside the tool and imported by a user, two classes extending Parser were created:
InternalParser and ExternalParser. The two classes are now explained.

39

4. AN IMPLEMENTATION 4.4. Data Structures

!"#$%#&!

!"#$%#&"

'()*+,-#".+()&/+0%

Figure 4.1: Recognition of a configuration file by two parsers

InternalParser

InternalParser (Listing 4.3) objects represent parsers generated by the tool, through the
Grammar Compiler. An InternalParser object contains a pointer to the parse method
and the grammar used to construct the parser.

Regarding the parse method, the latter is invoked resorting to the Java reflection API and re-
turns a list of Node objects (Listing 4.1) due to be transformed to XML by the
Code Generator.

Concerning the grammar used for the generation of the InternalParser, it is kept with
the parser in order to aid users on the generation of new parsers. Consider the case where a
user tries to configure a file which is new to the tool and two parsers are stored. The result of
the parsing attempt is depicted in Figure 4.1.

In the example, two parsers are tested on a configuration file with 100 lines. The first parser,
α, manages to recognize the file from line 0 to 59 and then from line 70 to 99, resulting in a 90%
of parsed file. On the other hand, parser β recognized 20% of the file, from line 50 to 69.

In this situation, the user who would build the new parser for the file might want to access
the grammar of the parser α, since it parsed almost the entire file, and base the new parser on
the old instead of starting from scratch. Also, seen as the second parser recognized the part of
the file that the first did not, the user might want to check the grammar of the second parser.

40

4. AN IMPLEMENTATION 4.4. Data Structures

Listing 4.4: ExternalParser data structure

interface ExternalParser {
ExternalParserInterface getParseMethod();

}

Listing 4.5: Grammar data structure

interface Grammar {
int getSerialNumber();
String getGrammarID();
byte[] getGrammarDefinition();

}

ExternalParser

ExternalParser objects are used to represent parsers built outside the tool. Since these
parsers might not be built with the parser generator used by the tool, there is no knowledge of
the content they produce when parsing a file. Therefore, an ExternalParser has an attribute
of the ExternalParserInterface type, which contains the invocable method declared in
Listing 3.8 to parse a file and return the file in generic XML.

4.4.2 Grammar

Grammar objects (Listing 4.5) stand for tentative grammars. They are created in the User

Interface and stored the Tentative Grammar Repository when a new grammar is built.

A Grammar contains a serial number, which is used by the Tentative Grammar

Repository to have a means of identifying each grammar, since the name of all the tenta-
tive grammars for a parser tends to be equal because it represents the name of the parser being
built. In this implementation, the getGrammarID returns the grammar name in a String.
The grammar name is used to name the Grammar, but also to name the parser which it was
used to generate, as already mentioned. Finally, a Grammar also contains an attribute for the
grammar declaration, accessible through the getGrammarDefinition method.

4.4.3 ParsingData

ParsingData objects (Listing 4.6) contain pieces of a configuration file, in generic syntax, and
information regarding the parsing of that file with a parser and are returned by the
Configuration File Parser.

Although the ParsingData objects do not contain any reference to the corresponding
parser, they always refer to the parsing result of a parser. This relation is explicit when the
Configuration File Parser returns objects of this kind. When a single parser is tested,
the return is a ParsingData object, obviously referring to the parse with the tested parser.

41

4. AN IMPLEMENTATION 4.4. Data Structures

Listing 4.6: ParsingData data structure

interface ParsingData {
boolean wasParsed();
int getParsingDone();
List<Block> getParsedBlocks();
void dump(String fileName);

}

boolean
parsed

int
parsePercentage

List<Block>
blocks

ParsingData

int
startPosition

Block

int
endPosition

XML block

Figure 4.2: Graphical representation of ParsingData

Whenever multiple parsers are tested, the return is a map of the tested parsers and their
ParsingData.

By having a ParsingData contain the parts of a file recognized by a parser, the case where
a file is completely parsed is a special case of when a file is not totally parsed, considering
that in the first case, a ParsingData will only contain one part, which is the whole parsed file.
However, a parser may return only one part of a file but not recognize it entirely. Therefore,
additional control is required to check if a file was well parsed or not. The wasParsed method
tells whether a file was entirely recognized, or not.

In case a file was not completely parsed, its parsing statistics are logged. This is an indicator
of how fit the parser was found to be with the given configuration file and can be measured in
terms of percentage of parsed file.

Additionally, the ParsingData objects also contain a list of Block objects. A Block object
has no relation with the block pattern, but rather contains the generic syntax of a parsed file part
as well as the positions of the first and last character that Block represents. The representation
of a ParsingData object, and the contained Block object, is shown in Figure 4.2.

Whenever the file is due to get modified in order to be configured, or the user halts the tool
execution, the dump method is called in order to store the blocks in a given file in persistent
storage.

4.4.4 CompilationData

CompilationData objects (Listing 4.7) are produced by the Grammar Compiler to send in-
formation regarding the compilation of a grammar to the User Interface. A
CompilationData object tells if a grammar was successfully compiled in the wasCompiled

42

4. AN IMPLEMENTATION 4.5. Original to Generic syntax Converter

Listing 4.7: CompilationData data structure

interface CompilationData {
boolean wasCompiled();
String getErrorMessage();
String getParserLocation();

}

method. If the compilation ended without any occurred error, the parser location is given by
the getParserLocation method. Alternatively, if an error ocurred during the compilation,
it is accessible through the getErrorMessage method.

4.5 Original to Generic syntax Converter

After the components required in the Original to Generic syntax Converter were identified and
the behaviour of each one was described, their implementation took place. Following is shown
how the components identified in Section 3.3 were implemented.

4.5.1 User Interface

The User Interface is passed multiple configuration file locations upon its invocation by
the user. The parsing of multiple configuration files is sequential, or, in other words, UI config-
ures one file at a time and only when that file is configured should the next file configuration
start.

To configure a file, UI sends its location to the Configuration File Parser in order
to parse it with every available parser. The Configuration File Parser returns a map of
ParsingData objects which tells if the parsing was successful with any parser, as well as the
percentage of parsed file, the parsed file blocks in generic syntax and the position of the first
and last characters of the corresponding block.

When a file is successfully parsed, the corresponding AST is sent to Code Generator and
the returned file in XML is placed in a temporary file folder, with the same name as the original
configuration file, plus the suffix “.xml”.

If a file was not entirely parsed, UI displays the parts of the file which were recognized
by the parser with the best configuration file parse percentage and the grammar used on the
respective parser. Then, UI prompts the user for a file containing a grammar to be com-
piled and sends the grammar to Grammar Compiler. The Grammar Compiler returns a
CompilationData object which tells whether there was any error compiling the grammar. If
an error ocurred, the user must alter the grammar in the file to correct the error(s) and then
trigger another grammar compilation until the grammar is successfully compiled.

When a grammar is successfully compiled, UI attempts to parse the configuration file
with the newly generated parser by invoking the Configuration File Parser’s doParse
method which tests a file with a single parser. If the file was still not entirely recognized, the

43

4. AN IMPLEMENTATION 4.5. Original to Generic syntax Converter

user must alter the grammar to recognize the text parts which failed to be parsed, until a parser
which recognizes the whole file is generated.

The initial plan was for a graphical interface to be launched whenever a file could not be
parsed by any parser in the database. This interface would display useful information to the
user such as the graphical representation of the configuration file in XML, grammar navigator
and highlighted configuration file based on its parsed and not parsed parts. UI would also
allow the user to define a grammar without having to manually program it, resorting to the
selection of configuration file pieces and assigning meanings to them, in an interactive way.
However, the implementation of the graphical interface will only take place during the inte-
gration of the tool with VIRTU.

4.5.2 Configuration File Parser

When the Configuration File Parser is summoned for the first time, it initiates the
Parser Repository.

The doParse(String fileName) method calls the doParse(String fileName,

Parser parser) method for every available parser in the Parser Repository and logs
the resulting ParsingData objects in a map, where the entry key is the used Parser. This
method returns the map generated in this way.

The doParse(String fileName, Parser parser) method, in turn, treats a config-
uration file with a parser at a time. If parser is an InternalParser, its parse method is
invoked using the Java reflex API and the return, a list of Node objects (Listing 4.1), is sent
to the Code Generator to be passed to generic XML. Thrown exceptions during parse time
mean that a file was not entirely recognized. The exceptions caught at parsing time contain
the position where the recognized block starts and ends. These exceptions are analysed to re-
trieve that information. The percentage of recognized file is calculated based on the limits of
every parsed block. In the end, a ParsingData object containing the parsing percentage, the
recognized blocks, characterized by their start and end points, together with the XML of the
respective blocks, is returned.

4.5.3 Parser Repository

The Parser Repository holds a map of Parser objects corresponding to the available
parsers. When PR is initiated, it gets the last saved state by loading the parser map to memory.

The storeParser method creates a Parser object from a string containing the name
of the parser, and the ExternalParserInterface which contains the parser. An optional
grammarFile can be passed, in case the user wants to merge the grammar with the Parser
so that it is available in the future. If the grammarFile argument is not null, the grammar
must be stored in the grammar directory, with the same name as the parser. The Parser is
then inserted in the Parser map. The importParser does a similar job in inserting a parser
in the database, but for external parsers.

PR also implements methods for getting the parser map iterator, getIterator and to

44

4. AN IMPLEMENTATION 4.5. Original to Generic syntax Converter

delete a parser from the repository, deleteParser, which consists on deleting the map entry
with the parser name in argument.

4.5.4 Grammar Compiler

The Grammar Compiler is implemented as a class which receives a grammar definition and
produces a parser from it. After JavaCC generates the parser classes, these must be compiled
before the Parser Repository is able to load them.

In the end, the Grammar Compiler returns a CompilationData object, which tells that
a grammar failed to compile if an exception was caught, or that it compiled successfully other-
wise.

4.5.5 Code Generator

The Code Generator traverses structures composed of nodes implementing the interface de-
fined in Listing 4.1 and invokes the method defined the interface upon visiting each node in
order to generate the generic XML of the pattern associated to that node. The reason why every
node in structure implements that interface was already explained in Section 4.2 and consists
on forcing each node of the AST to implement a method which can be called by CG. In this way,
the information on how to print the nodes to generic XML is stored in the nodes and CG gains
the ability to successfully traverse ASTs of any configuration files.

On an early stage of the tool, the code that generates the generic XML of a node in the
AST must be generated manually, for new patterns. However, with the creation of a graphi-
cal interface for the definition of grammars for new types of configuration files in the User
Interface, it should be possible to use the information received from the user to automati-
cally generate that code.

CG is responsible for logging the details of each configuration file language, such as the
used delimiters on patterns, or how a pattern is formatted. For this, CG resorts to a Metadata
special field, which stores the information regarding the delimiters used by the patterns, and
another FStr special field to log how each pattern is formatted. Details regarding the generation
of original syntax details are further described in Section 4.6. A set of functions to manipulate
the Metadata and the FStr fields are provided.

The generic XML must be the same for every configuration file types, following a structure
similar to the presented in Section 1.3, with blocks, comments, parameters and other special ele-
ments. This is important since the generic XML document might become unrecognizable to the
configurator which modifies it if the user decides, for example, to denote blocks by “blockx”.
The configurator will afterwards find a “blockx”, when in fact its operation was defined on a
“block”.

4.5.6 Tentative Grammar Repository

The Tentative Grammar Repository implements a linked list of TGRNode objects. A
TGRNode represents a tentative grammar in TGR and contains a TGRNode prev attribute with

45

4. AN IMPLEMENTATION 4.6. Generation of Original Syntax

!"#$%&'

(

)*++

!"#$%&'

,

!"#$%&'

-

)*++

!"#$%&'

.

)*++

!"#$%&'

/

)*++

Figure 4.3: List of TGRNodes

the grammar where the current was based on and a TGRNode list next containing the gram-
mars based on the current. An example is represented in Figure 4.3.

To allow the user to traverse all the built grammars, the prev and next methods resort to
each grammar serial number to iterate the grammars backwards/forwards. Each method may
also return null if no grammar was built before/after the current one, respectively. The get
method receives an integer representing the desired grammar serial number and returns the
respective Grammar.

The discard method deletes a grammar from the database, and every grammar based on
that one. The discardAll empties the list of tentative grammars. To save the state of the
database, the gramar list is stored to disk.

4.6 Generation of Original Syntax

The generation of original syntax consists on printing a file on generic syntax back to its original
syntax by means of a Printer component. When a file is transposed from its original syntax,
say INI, to the generic syntax (XML), the language-specific details, like the ‘[’ and ‘]’ header
delimiters, are discarded to allow for application-independent configuration. Furthermore, the
format of each pattern is also lost. Only the relevant information for the configuration process,
such as parameter keys and values, is kept.

When the printer tries to print the file in generic syntax back to its original form, it will

46

4. AN IMPLEMENTATION 4.6. Generation of Original Syntax

Listing 4.8: Example Metadata

<Metadata>
<Block>

<LBra>[</LBra>
<RBra>]</RBra>

</Block>
</Metadata>

not know what application is being configured at that moment. Therefore, it cannot determine
what delimiters to print on a given pattern (e.g., INI “[]” or XML block delimiters), or how to
print them (e.g., INI single header or XML header and footer). So, to print a file to its original
syntax, there should be enough information regarding the original syntax, in the generic syntax,
for the Printer.

One way to know what delimiters should be print is to store them in a field in the be-
ginning of the file in generic syntax. As the pattern delimiters are immutable throughout the
configuration file (i.e., comments always start with # in an Apache configuration file), infor-
mation regarding them can be unified in a special Metadata field in the beginning of the file.
This makes it possible for the Printer to query Metadata to know what to print on a certain
pattern.

The format of a pattern is of great importance as well. The same pattern might have differ-
ent formats in two different configuration file languages. For instance, an INI block has only
one block header, whereas an XML block (i.e., element) has a header and a footer. Again, since
the Printer does not know what application it is configuring at the moment, it does not know
whether to print a pattern one way or the other.

To solve this problem, a format string which describes how a pattern looks like is associated
with each pattern, forming an FStr field. In this way, the Printer gets the FStr from a pattern
and prints it accordingly. A format string may be composed of the following:

%a.name The value of the attribute named name in the current element is printed;

%e The value of the current element is printed;

%m.name The value of the element named name in Metadata is printed;

%c The format string is in the next child of the current element;

%s A space is printed;

%n A new line is printed;

Let’s consider the following header in an INI configuration file:

[Engine]

The corresponding Metadata is depicted in Listing 4.8 and the FStr will look like Listing 4.9.

47

4. AN IMPLEMENTATION 4.7. Generic to Original Syntax Converter

Listing 4.9: Example FStr

<Block name="Engine">
<FStr>

%m.LBra%a.name%m.RBra%n
</FStr>
..(other patterns)..

</Block>

Listing 4.10: Apache parameter with a single value

ServerType standalone

Note that in the example, the FStr is assigned to the Engine block and not to the block
pattern. This happens because there are cases where the same pattern has different formats in
a configuration file language. For example, a parameter in an Apache configuration file might
have one (Listing 4.10) or multiple values (Listing 4.11), or an XML element might have one
(Listing 4.12) or multiple sub-elements (Listing 4.13), which leads to multiple format strings.
Therefore, FStr cannot be factorized in a single field, like Metadata.

4.7 Generic to Original Syntax Converter

The Generic to Original syntax Converter contains two classes, PrinterMain and Printer.
The first is used to interact with the user, while the second contains methods for the interpreta-
tion and printing of the file in generic syntax (i.e., XML). Following is a deeper explanation of
both classes.

The PrinterMain class implements a main method which receives the location of the XML
file in argument. It imports the XML document from the file to memory using the Java XML
parsing API. Then, PrinterMain sends the document pointer and a stream to the Printer and
the latter prints the final configuration file in original syntax to the stream in argument.

The Printer class manages the printing of XML elements inside an XML file. It implements
a single visible method, print.

The printmethod is called by PrinterMain to print the entire XML document into a con-
figuration file in its original syntax. It receives a stream and a NodeList object as arguments.
NodeList refers to a DOM interface for the representation of lists of Node objects, whereas
each Node object stands for XML components, such as elements, attributes or text nodes. Since
the XML standard defines XML documents as having a single root node, PrinterMain calls

Listing 4.11: Apache parameter with multiple values

DirectoryIndex index.html index.htm index.shtml
default.htm default.html index.php

48

4. AN IMPLEMENTATION 4.7. Generic to Original Syntax Converter

Listing 4.12: XML element with a single subelement

<perspectiveBar>
<itemSize x="196"/>

</perspectiveBar>

Listing 4.13: XML element with multiple elements

<coolbarLayout locked="0">
<coolItem id="group.file"
itemType="typeGroupMarker"/>
<coolItem id="org.eclipse.ui.workbench.file"
itemType= "typeToolBarContribution" x="104" y="30"/>

</coolbarLayout>

the print method with the root node’s children, which is, in turn, a NodeList.
The first element in the XML files generated by the tool is always Metadata, containing the

information about the original syntax. This element aids the printing process and is not part of
the final configuration file, therefore it must not be printed. The remainder of the elements are
then printed. XML elements generated by the tool always contain an FStr field, corresponding
to the format string of that element, explained in Section 4.6. All elements in the document
are visited and printed according to their format string. If the current element has other child
nodes, they must be printed as well.

49

5
Framework Evaluation

Chapter 3 presented the proposed application configuration framework and Chapter 4 covered
the process of implementing the framework. This chapter provides us with the validation of
the tool, carried after the implementation phase had ceased.

First, Section 5.1 shows the functional validation of the tool by explaining how the require-
ments identified in Section 3.1 are met. Then, Section 5.2 presents the operational validation
by checking the integrity of the tool and examining the configuration process step by step. Fi-
nally, Section 5.3 provides the performance validation by testing the tool behaviour in different
scenarios (i.e., configuration of a very big and very small configuration file).

5.1 Functional Validation

In Section 3.1, some functional and non-functional requirements of the tool were identified.
This section presents the ways in which these requirements are met.

1. The user must be able to convert a configuration file syntax from its original syntax to
a generic one, independently of the application.

The user is able to summon the tool from a terminal and pass it multiple configuration file
locations. The tool, in turn, produces abstract trees for the configuration files, and then the
configuration files in a structured, generic format.

Non-functional requirements:
Performance: The generated file with the generic syntax must be as simple as possible.
The information regarding the original syntax is factorized by the code generator in a Meta-

data field.

2. The user must be able to define grammars for configuration file languages.

51

5. FRAMEWORK EVALUATION 5.1. Functional Validation

After the user submits a number of files to the tool, they are processed and, if not fully
recognized, the user is able to manually define a grammar, or pass the tool a file containing the
grammar for the generation of new parser.

Non-functional requirements:

Usability: The grammar definition syntax should be a broadly adopted one.

JavaCC grammar interpreter supports the Extended Backus-Naur Form and allows Java
code, for more commodity.

Usability: To ease the parser generation process, the user must be able to iterate through the previ-
ously built grammars so as to roll back any change made on a grammar.

Every time the user tries a newly created parser on a configuration file, the grammar used
for it is stored in a repository and can be recovered at any time.

3. The user must be able to produce a parser from a grammar.

As soon as the user finishes declaring a grammar, the latter is passed to the tool, which
compiles it on an external parser generator.

Non-functional requirements:

Extensibility: The user must be able to add parsers built outside the tool to support other configura-
tion file paradigms (e.g., Windows registry files, binary files, etc.).

The parser repository implements the importParser method which allows the user to
store an external parser. However, the parser must implement the interface presented in List-
ing 3.8.

4. The user must have access to the parser compilation trace.

When a grammar is compiled, its compilation trace is shown in case there any error ocurred,
or a success message is displayed, otherwise.

Non-functional requirements:

Usability: The error messages must clearly identify the source of the error.

The error messages contain the source of the compilation error.

5. The user must receive information relative to the grammar fitness with a given config-
uration file.

Any time a parser is tested with a configuration file, the percentage of parsed file with that
parser is displayed.

Non-functional requirements:

Usability: The sections of the configuration file that were parsed and those that were not must be
clearly identified.

When a parser is tested with a configuration file, the regions of the file recognized by it are
highlighted in a graphical environment.

6. The user must be able to store a functional parser generated by the tool, in order to be
used on later tool runs.

52

5. FRAMEWORK EVALUATION 5.2. Operational Validation

The user can trigger a storeParser command, which stores a parser in the parser reposi-
tory definitively.

Non-functional requirements:

Security: The user must be able to see the parsing outcome in order to check if the parser is indeed
operating as intended to.

The graphical user interface displays a user-friendly representation of the generic syntax so
the user can confirm that the parser is indeed operating in the intended way.

7. The user must be able to reconvert a configuration file syntax from the generic syntax
to the original one.

The user is able to summon the tool and pass it a tool-generated XML file to be converted
into the original syntax, keeping its functionality.

8. File conversion must not eliminate comments

The built-in parsers preserve the comments of the original file. For new parsers, their gram-
mars must contemplate the comments and not ignore them.

9. The user must be able to halt the tool execution at any point and continue the config-
uration process later.

When the user halts the tool execution, the parser repository and tentative grammar repos-
itory states are stored in order to be recovered later. If a valid version of the configuration file
has been produced before the user halted the execution, the file is stored and can be recovered
later.

10. The user must be able to manually delete parsers from the parser repository.

The parser repository implements the delete method which allows the user to delete an
existing parser from the database, given its name.

5.2 Operational Validation

This section presents some tests carried on the tool, using various configuration file types,
with the objective of specifying the configuration file intermediate states and determining the
validity of the final configuration file, produced by the tool.

The framework provides built-in support for three major configuration file categories, iden-
tified in Section 1.3:

• Files composed of parameter blocks delimited only by a header, and comments (i.e., INI-
like);

• Files composed of parameters, blocks delimited by a header and a footer and comments
(i.e., Apache-like);

53

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.1: MySQL configuration file snippet

1 [mysqldump]
2 quick
3 quote-names
4 max_allowed_packet = 16M
5

6 # The MySQL database server configuration file.
7

8 !includedir /etc/mysql/conf.d/

• Files composed of blocks delimited by dynamic headers and footers, and comments (i.e.,
XML-like).

Three tests were conducted, one with a file of each category. All the tests were ran on a
system with the Intel Pentium Dual T3200 processor, 2 GB DDR2 main memory and Ubuntu
Linux 9.04 operating system.

Each test consisted on configuring an application by invoking SmART with the application
configuration file. The configuration files were converted in XML and then converted back to
their original format. Between the tests, the file was not modified, since Section 3.2 showed
that file modification is not part of this dissertation scope.

Due to the considerable length of each file, the tested configuration files are not integrally
displayed in this section. Instead, they can be found in the SmART webpage (http://asc.
di.fct.unl.pt/SmART). The examples refer to parts of the configuration file which were
handpicked to display the tool behaviour in the presence of each pattern implemented by the
file.

To check the differences between the original and final file, the diff 1 UNIX utility was used.
diff is a file comparison utility that shows the differences between two text files, in terms of
different lines. Whenever lines from both files differ, the result shows the divergent lines of the
original configuration file, and then those from the generated configuration file.

5.2.1 INI-like Configuration Files

This test consisted on configuring the MySQL database management system. The MySQL con-
figuration file format is a slightly altered version of the INI format, but is still recognized by the
tool. The configuration file (Listing 5.1) implements parameters with zero or one assigned val-
ues, contained in blocks delimited by a static header (lines 1-4), comments (line 6) and special
instructions (line 8). The complete configuration file is located at http://asc.di.fct.unl.
pt/SmART/my.cnf. The file containing the code generated by the tool for this configuration
file can be found at http://asc.di.fct.unl.pt/SmART/ini.xml.

The tool produced the following XML for the block (Listing 5.2), comment (Listing 5.3) and
special instruction (Listing 5.4):

1http://www.gnu.org/software/diffutils/diffutils.html

54

http://asc.di.fct.unl.pt/SmART
http://asc.di.fct.unl.pt/SmART
http://asc.di.fct.unl.pt/SmART/my.cnf
http://asc.di.fct.unl.pt/SmART/my.cnf
http://asc.di.fct.unl.pt/SmART/ini.xml
http://www.gnu.org/software/diffutils/diffutils.html

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.2: MySQL block in XML

<Block name="mysqldump">
<FStr>%m.start%a.name%m.end%n%c%c%c%c</FStr>
<Parameter>

<FStr>%e%n</FStr>
<Key>quick</Key>

</Parameter>
<Parameter>

<FStr>%e%n</FStr>
<Key>quote-names</Key>

</Parameter>
<Parameter>

<FStr>%e%m.equal%e%n</FStr>
<Key>max_allowed_packet</Key>
<Value>16M</Value>

</Parameter>
<EOL>

<FStr>%n</FStr>
</EOL>

</Block>

Listing 5.3: MySQL comment in XML

<Comment>
<FStr>%m.start%e%n</FStr>
<Text> The MySQL database server configuration file.</Text>

</Comment>

Listing 5.4: MySQL special instruction in XML

<Special>
<FStr>%m.start%e%n</FStr>
<Value>includedir /etc/mysql/conf.d/</Value>

</Special>

55

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.5: MySQL Metadata

<Metadata>
<Comment>

<start>#</start>
</Comment>
<Parameter>

<equal>=</equal>
</Parameter>
<Block>

<start>[</start>
<end>]</end>

</Block>
<Special>

<start>!</start>
</Special>

</Metadata>

The Metadata generated by the tool is represented on Figure 5.5.

The file was re-converted to its original syntax. diff showed that the differences between
the original and generated files resume to a few absent spaces from the first to the second. This
happens since the parser ignores the space characters outside strings. As MySQL ignores the
spaces in configuration files, the file functionality is maintained.

5.2.2 Apache-like Configuration Files

This test consisted on configuring the Apache HTTP server. The Apache configuration file
(Listing 5.6) implements parameters with a single value (line 1), parameters with multiple
values (lines 3-4), blocks (lines 6-8), nested blocks (10-14) and comments (line 16). The com-
plete configuration file is located at http://asc.di.fct.unl.pt/SmART/httpd.conf.
The file containing the code generated by the tool for this configuration file can be found at
http://asc.di.fct.unl.pt/SmART/blox.xml.

The tool produced the following XML for the parameter with a single value (Listing 5.7),
parameter with multiple values (Listing 5.8), block (Listing 5.9), nested (Listing 5.10) and com-
ment (Listing 5.11):

The Metadata generated by the tool is represented on Figure 5.12.

The file was re-converted to its original syntax. diff showed that the differences between
the original and generated files are some absent new lines and tabulations. Once again, this is
due to the parser which ignores some new lines and tabulations. However, this does not affect
in any way the functionality of the new file, so the result is valid.

56

http://asc.di.fct.unl.pt/SmART/httpd.conf
http://asc.di.fct.unl.pt/SmART/blox.xml

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.6: Apache configuration file snippet

1 ServerType standalone
2

3 DirectoryIndex index.html index.htm index.shtml default.htm
4 default.html index.php
5

6 <IfModule mod_mime_magic.c>
7 MIMEMagicFile /usr/local/apache/conf/magic
8 </IfModule>
9

10 <IfModule mod_alias.c>
11 <Directory "/usr/local/apache/icons">
12 Options Indexes MultiViews
13 </Directory>
14 </IfModule>
15

16 # httpd.conf -- Apache HTTP server configuration file

Listing 5.7: Apache parameter with a single value in XML

<Parameter>
<FStr>%e%m.equal%e</FStr>
<Key>ServerType</Key>
<Value>standalone</Value>

</Parameter>

Listing 5.8: Apache parameter with multiple values in XML

<Parameter>
<FStr>%e%m.equal%e%m.equal%e%m.equal%e%m.equal%e%m.equal%e%m.

equal%e</FStr>
<Key>DirectoryIndex</Key>
<Value>index.html</Value>
<Value>index.htm</Value>
<Value>index.shtml</Value>
<Value>default.htm</Value>
<Value>default.html</Value>
<Value>index.php</Value>

</Parameter>

57

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.9: Apache block in XML

<Block>
<FStr>%c%c%c%c%c</FStr>
<Header name="IfModule mod_mime_magic.c">

<FStr>%m.start%a.name%m.end</FStr>
</Header>
<EOL>

<FStr>%n</FStr>f
</EOL>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>MIMEMagicFile</Key>
<Value>/usr/local/apache/conf/magic</Value>

</Parameter>
<EOL>

<FStr>%n</FStr>
</EOL>
<Footer name="IfModule">

<FStr>%m.start%a.name%m.end</FStr>
</Footer>

</Block>

5.2.3 XML-like Configuration Files

This test consisted on configuring the Eclipse workbench. The Eclipse workbench configura-
tion (Listing 5.13) file is originally on XML format and implements empty elements/blocks
(line 1), elements with attributes/blocks containing parameters (line 3-4), nested blocks (lines
6-8) and comments (line 10). The complete configuration file is located at http://asc.di.
fct.unl.pt/SmART/workbench.xml. The file containing the code generated by the tool for
this configuration file is found at http://asc.di.fct.unl.pt/SmART/xml.xml.

The tool produced the following XML for the empty block (Listing 5.14), block containing
parameters (Listing 5.15), nested blocks (Listing 5.16) and comments (Listing 5.17):

The Metadata generated by the tool is represented on Listing 5.18.

Then, the file was re-converted to its original syntax. diff showed that the differences be-
tween the original and generated files are some extra new lines in the generated file. This is due
to the original file having a dual criteria for new lines. In some places, an XML tag is followed
by a new line, where in other places they are not.

Still, the tool is able to recognize the whole file, and it produces a file which is completely
functional and well defined.

5.2.4 Parsing the Generated XML

In order to make sure that the XML file generated by the tool was indeed valid, an experiment
was carried: parsing the file generated by the tool. Beforehand, the tool should be able to parse

58

http://asc.di.fct.unl.pt/SmART/workbench.xml
http://asc.di.fct.unl.pt/SmART/workbench.xml
http://asc.di.fct.unl.pt/SmART/xml.xml

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.10: Apache nested block in XML

<Block>
<FStr>%c%c%c%c</FStr>
<Header name="IfModule mod_alias.c">

<FStr>%m.start%a.name%m.end</FStr>
</Header>
<EOL>

<FStr>%n</FStr>
</EOL>
<Block>

<FStr>%c%c%c%c%c</FStr>
<Header name="Directory "/usr/local/apache/icons"">

<FStr>%m.start%a.name%m.end</FStr>
</Header>
<EOL>

<FStr>%n</FStr>
</EOL>
<Parameter>

<FStr>%e%m.equal%e%m.equal%e</FStr>
<Key>Options</Key>
<Value>Indexes</Value>
<Value>MultiViews</Value>

</Parameter>
<EOL>

<FStr>%n</FStr>
</EOL>
<Footer name="Directory">

<FStr>%m.start%a.name%m.end</FStr>
</Footer>

</Block>
<Footer name="IfModule">

<FStr>%m.start%a.name%m.end</FStr>
</Footer>

</Block>

Listing 5.11: Apache comment

<Comment>
<FStr>%m.start%e%m.end</FStr>
<Text># httpd.conf -- Apache HTTP server configuration file</

Text>
</Comment>

59

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.12: Apache Metadata

<Metadata>
<Comment>

<start>#</start>
<end>\n</end>

</Comment>
<Parameter>

<equal> </equal>
</Parameter>
<Header>

<start><</start>
<end>></end>

</Header>
<Footer>

<start></</start>
<end>></end>

</Footer>
</Metadata>

Listing 5.13: Eclipse configuration file snippet

1 <workbenchAdvisor/>
2

3 <coolItem id="org.eclipse.ui.workbench.file"
4 itemType="typeToolBarContribution" x="104" y="30"/>
5

6 <perspectiveBar>
7 <itemSize x="196"/>
8 </perspectiveBar>
9

10 <!--this is a comment-->

Listing 5.14: Eclipse empty block in XML

<Block name="workbenchAdvisor">
<FStr>%m.start%a.name%m.end</FStr>

</Block>

60

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.15: Eclipse block with parameters in XML

<Block name="coolItem">
<FStr>%m.start%a.name%s%c%s%c%s%c%s%c%m.end</FStr>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>id</Key>
<Value>"org.eclipse.ui.workbench.file"</Value>

</Parameter>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>itemType</Key>
<Value>"typeToolBarContribution"</Value>

</Parameter>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>x</Key>
<Value>"104"</Value>

</Parameter>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>y</Key>
<Value>"30"</Value>

</Parameter>
</Block>

Listing 5.16: Eclipse nested blocks in XML

<Block>
<FStr>%c%c%c</FStr>
<STag name="perspectiveBar">

<FStr>%m.start%a.name%m.end</FStr>
</STag>
<Block name="itemSize">

<FStr>%m.start%a.name%s%c%m.end</FStr>
<Parameter>

<FStr>%e%m.equal%e</FStr>
<Key>x</Key>
<Value>"196"</Value>

</Parameter>
</Block>
<ETag name="perspectiveBar">

<FStr>%m.start%a.name%m.end</FStr>
</ETag>

</Block>

61

5. FRAMEWORK EVALUATION 5.2. Operational Validation

Listing 5.17: Eclipse comment in XML

<Comment>
<FStr>%m.start%e%m.end</FStr>
<Text>this is a comment</Text>
</Comment>

Listing 5.18: Eclipse Metadata

<Metadata>
<Prolog>

<start><?xml</start>
<end>?></end>

</Prolog>
<Parameter>

<equal>=</equal>
</Parameter>
<STag>

<start><</start>
<end>></end>

</STag>
<ETag>

<start></</start>
<end>></end>

</ETag>
<Comment>

<start><!--</start>
<end>--></end>

</Comment>
<Block>

<start><</start>
<end>/></end>

</Block>
</Metadata>

62

5. FRAMEWORK EVALUATION 5.3. Performance Validation

!"#$#%&'(

)#'*

+,'-

+,'.

+,'/

)#%&'()#'*

0

0

Figure 5.1: Parsing the generated XML

the generated XML file since it is able to parse files resemblant to XML.
First, OGC (Original to Generic syntax Converter) was called to parse a configuration file.

From this parse resulted the file xml1. Then, OGC was called again to parse xml1 into xml2.
Then, GOC (Generic to Original syntax Converter) was called to print xml2 into xml3, and
finally GOC was called again to print xml3 into the final file. This is depicted in Figure 5.1.

Before the test, xml1 was expected to be equal to xml3 and the original file to be equal to
the final file. diff showed that xml1 was exactly equal to xml3 and that the original file only
differed from final in the sense that only a few new lines were omitted from the original file,
analogously to the test in Section 5.2.3. Still, the final file remains recognizable by XML parsers,
since they also ignore new lines. Moreover, the tool was shown to produce valid XML files
since it is capable of parsing them over again.

5.3 Performance Validation

This section studies how the tool behaves in the presence of configuration files with different
sizes. Despite not having been designed to excel performance-wise, obtained performance
results by the tool might turn out to be interesting.

The tested configuration files are from PostgreSQL and are all recognized by an INI-like
parser. These are:

• file α with 1,4 KB (http://asc.di.fct.unl.pt/SmART/pg_ident.conf)

• file β with 3,5 KB (http://asc.di.fct.unl.pt/SmART/pg_hba.conf)

63

http://asc.di.fct.unl.pt/SmART/pg_ident.conf
http://asc.di.fct.unl.pt/SmART/pg_hba.conf

5. FRAMEWORK EVALUATION 5.3. Performance Validation

• file γ with 16,6 KB (http://asc.di.fct.unl.pt/SmART/postgresql.conf)

These files were selected to verify if there is any relation between the file size and the time
it takes to configure each one. The final results are represented as the sum of two times: the
time to convert the file into generic XML, step 1, and the time to convert the file from XML into
its original syntax, step 2.

File α:

Step 1: 0,143 s

Step 2: 0,073 s

Total time: 0,216 s

File β:

Step 1: 0,191 s

Step 2: 0,086 s

Total time: 0,277 s

File γ:

Step 1: 0,463 s

Step 2: 0,262 s

Total time: 0,725 s

This test shows that for short configuration files, the elapsed times to convert a file to XML
and back to its original format are similar. An interpretation of these results might be that the
configuration work done by the tool is very small, whereas the majority of the elapsed time
was spent doing computational tasks such as memory allocations, etc. However, as the files
become bigger, so does the time to convert them, although in a disproportionate way. γ is
almost 5 times bigger than β, nevertheless, γ only takes 2.5 times more than β to be converted
in both ways.

Taking into account the average file size of VIRTU’s use case application configuration files,
which is nearly 20KB, we can also conclude that the time spent to configure a configuration file
is sustainable. Nevertheless, the tool may require considerable amounts of time to carry certain
tasks, like parser creation. During implementation, we realised that some parsers took a while
to compile while others were compiled almost instantly. Following is an analysis to the JavaCC
parser generator which, in spite of approaching elements that fall out of this dissertation scope,
aims at comprehending the impact of the parser generation process in the tool’s performance.
In this analysis, we compile the three parsers that the tool supports by default and present the
elapsed times for each (Table 5.1).

64

http://asc.di.fct.unl.pt/SmART/postgresql.conf

5. FRAMEWORK EVALUATION 5.3. Performance Validation

INI Apache XML
0,270s 0,280s 0,300s

Table 5.1: Elapsed times for parser compilation in JavaCC

An interpretation of the obtained times might tell us that the needed time to compile a
parser is also sustainable. However, the compiled parsers are not too complex and basing
any conclusion exclusively on these timings may be misleading. To assess more accurately the
required time for parser generation tasks, we compiled a parser which recognizes a more com-
plex language, the Java language, and the elapsed time was 0,550s. This allows us to conclude
that, even for fairly complex languages, the parser generation time is very bearable. Nonethe-
less, these timings refer to the JavaCC parser generator, as we also generated some parsers
with SableCC and, although most parsers took as long as JavaCC’s to compile, parsers for very
complex languages can take up to minutes to compile.

65

6
Integration with VIRTU

The last chapter validated the framework, defined in Chapter 3, in terms of how it met the
requirements, its functionality and also its performance. We now find SmART suitable to be
integrated with the VIRTU virtualization platform.

This chapter describes how SmART can be integrated within the VIRTU tool. First, Sec-
tion 6.1 gives the background of the VIRTU project, together with the motivation for its creation
and a brief description. Then, Section 6.2 presents the VIRTU workflow with the objective of
giving a better perspective of the operations allowed by the tool. The VIRTU architecture is
detailed in Section 6.3, with the description of each component and its interactions with the
other components. Finally, the localization of the integration, both in the workflow and in the
architecture, is indicated and explained in Section 6.4.

6.1 Project Description

A consortium of enterprises and universities, composed of Evolve Space Solutions, Universi-
dade Nova de Lisboa, Universidade de Coimbra, HP Labs and the European Space Agency,
funded by QREN/ADI, came together to develop a virtualization platform known as project
VIRTU.

In Section 2.1.1 we saw that virtualization is a technology for the abstraction of computing
systems which has recently received a considerable number of contributions, despite having
emerged for the first time several years ago. The changes that virtualization allows for in the
IT sector, such as the consolidation of many servers into a single physical machine and the
resulting lowering of hardware, cooling, power consumption and facility costs, short system
maintenance time, great isolation level between virtual machines, etc., have revolutionized the
way IT-recurring companies look at software and hardware deployment.

67

6. INTEGRATION WITH VIRTU 6.2. VIRTU Top-Level Analysis

Aware of this market shift, Evolve Space Solutions proposed VIRTU, a platform for the
creation and management of virtual machines. Before that, the GoVI virtualization tool was
developed for the European Space Agency in order to deal with some outstanding problems
in their IT infrastructure, such as the large number of underutilized machines, great demand
for isolation and a myriad of different hardware platforms. The development on VIRTU ini-
tially took on the GoVI infrastructure as a starting point, but eventually evolved to become an
independent project, dettached from the former.

VIRTU explores interoperability between virtualization solutions, such as Xen [Cit] or
VMware [VMwa]. One way to achieve portability of VMs among different virtualization plat-
forms is to resort to virtualization standards. Open Virtual Machine Format (see Section 2.1.3),
which is being developed by the biggest virtualization players, is one of such standards and
VIRTU might evolve to support it.

Another big opportunity in the virtualization area is the fact that application configuration
is still largely a manual task. The complexity of configuring a system with manifold applica-
tions, employing different configuration formats, can be frightening for a system administrator.
This complexity is only magnified when dealing with a huge system, composed of hundreds,
or even thousands of such systems. To ease the system maintenance burden, VIRTU proposes
the generic automatic application configuration or, in other words, the ability to configure any
application, regardless of its vendor or configuration representation, on the most autonomous
and automatic manner.

The framework presented by this dissertation, SmART, is the Universidade Nova de Lisboa
contribution for project VIRTU. Once SmART was completed, it was integrated with the whole
VIRTU tool.

6.2 VIRTU Top-Level Analysis

The VIRTU tool [Solb] implements the concept of Assembly Instance, which refers to one,
or a set of virtual machines that the users will use and manage directly. An Assembly

Instance results from the instantiation of an Assembly Configuration, which contains
the information used to generate one VM, or a set of VMs. To each VM in an Assembly

Configuration corresponds a Virtual Machine Configuration and when an
Assembly Configuration is instanced, its VM Configurations are also instanced into
VM Instances. Each Virtual Machine Configuration is a combination of Building
Blocks and Publication Files. A Building Block is a template element, such as

an operating system, application or virtual machine, whereas a Publication File con-
tains the desired configuration of a Building Block. In order to re-use previously existing
Assembly Configurations, it is also possible for Assembly Configurations to con-
tain other Assembly Configurations. The VIRTU Assembly Configuration model is
depicted in Figure 6.1.

The configuration of an Assembly Instance is carried at the level of its VM Instances.
Inside a VM Instance resides a process which is ran at every VM boot and, for each

68

6. INTEGRATION WITH VIRTU 6.2. VIRTU Top-Level Analysis

!""#$%&'(

)*+,-./012-*+

34(

)*+,-./012-*+

34(

)*+,-./012-*+

34(

)*+,-./012-*+5(5(5

6/-&7-+.(

6&*89

:/%&-812-*+(

;-&#

6/-&7-+.(

6&*89

:/%&-812-*+(

;-&#

6/-&7-+.(

6&*89

:/%&-812-*+(

;-&#

5(5(5

Figure 6.1: VIRTU Assembly Configuration

Publication File, checks a flag that tells if that Publication File was altered since the
last boot. If not, no action is taken for that Building Block. Otherwise, if a Publication
File is indeed different, it means the Building Block associated to that Publication

File has altered variables or different operating modes and, consequently, the configuration
files for that Building Block must be rebuilt. This rebuilding is done by the process itself
and once it is finished, the flag is reset.

The actors in the VIRTU tool can be administrators or users. Each role is allowed to perform
different actions that may be divided in two categories: virtual machine management and user
management.

An administrator has the permission to manage (i.e., create, edit and delete) the tool’s
Building Blocks and Publication Files, to construct Assembly Configurations,
to accept Assembly Instance requests from the user and deploy those Assembly

Instances and to manage the running Instances, with the option of halting their execution.
The administrator may also create and manage the users of the tool.

On the other hand, the actions available to users are to configure Publication Files,
to request Assembly Instances, to use the virtual machines and control their lifecycle, to
share Assembly Instances with other users and to organize them. Beyond that, the user
may also change his password.

On a broad view, VIRTU may be divided into a handful of logical modules. This division
aims at increasing agility and flexibility in the maintenance and optimization of the system
resources. A scheme containing the modules is shown in Figure 6.2.

The VIRTU Configuration Database stores all information regarding the tool, such as
user accounts, the locations of the available Building Blocks, Assembly

69

6. INTEGRATION WITH VIRTU 6.3. VIRTU Architecture

!"#$%&'$()*#(+,'-)

.+-/$'--)0#1/2)*#(+,'-

34567

8#$9/1+":%/#$)

;:%:<:-'

5'=#-/%#">

?'"@'"5'=#-/%#">

?'"@'"
34567

.,#2A)

;:%:-%#"'

B?.

B2,/=-')

3/'C-

34567)

D==,/2:%/#$

?'"@'"

E'<

?'"@/2'-3/"%+:,/F:%/#$

?'"@/2'-

3*)4$-%:$2'-

Figure 6.2: VIRTU Logical View

Configurations and Instances and users reports and suggestions. The VIRTU Block

Datastore is the physical storage for the available Building Blocks. The VIRTU
Application Server provides access to the tool for users and administrators, together with
the processing logic. The Virtualization Services is where the virtualization is handled.
It contains the virtualization servers and the existing virtual machines. Finally, the Eclipse
Views and Web Front-End are interfaces used to allow interaction with the user through an
application or a typical web browser.

6.3 VIRTU Architecture

The VIRTU tool arcitecture is structured in a three-tier architecture, as depicted in Figure 6.3.
Following is description of each layer and the respective components.

6.3.1 Data and Resources Layer

The Data and Resources Layer provides the storage utility for the system and hosts the
system’s virtualization layer. It is composed by the Block Datastore, the Configuration
Database and Virtualization Services.

Block Datastore

The Block Datastore is an abstraction for the physical storage of the Building Blocks

. It may have multiple instances and can be distributed over different physical locations. It
allows Building Blocks from another system to be uploaded, to create, modify and delete

70

6. INTEGRATION WITH VIRTU 6.3. VIRTU Architecture

!"#"$"%&$'()*+,-()$."/(,

0,*-())1%2$."/(,

0,()(%#"#1*%$."/(,

3-415)($61(7)

8,*%#9(%&

:(;

8,*%#9(%&

<))(=;4/$

>*%?12+,"#*,

<))(=;4/$

>*%#,*44(,

>*%?12+,"#1*%$

!"#";")(

61,#+"41@"#1*%$

A(,B1-()

3C#(,%"4$

<5541-"#1*%)

D4*-E$

!"#")#*,(

F)(,

G"%"2(=(%#

0,*-())1%2$H%#(,?"-()$."/(,

3C#(,%"4$

1%#(,?"-()

Figure 6.3: VIRTU Architectural Design

Building Blocks and to query for Building Blocks, although the Building Block

locations are stored in the Configuration Database.
The Building Blocks stored by the Block Datastore may contain:

• information relative to the configuration of the virtual machine;

• a virtual hard disk containing a fresh installation of an operating system and a first-run
script;

• the virtual machine hard disk for the storage of data;

• an application block, which can be a deployed application or an installer.

Configuration Database

The Configuration Database is a relational database which contains information relative
to the VIRTU tool, such as the existing users, the existing Assembly Configurations and
Assembly Instances. It is comprised of a database server to support the relational database
and VIRTU DB, an Eclipse Rich Client Platform (RCP) [Fouc] plugin used to establish a bridge
between the Configuration Database and the Processing Layer by directly handling
database operations. The Eclipse Rich Client Platform is a set of tools which provides tested
features such as a lifecycle manager, text editors and a workbench with views, perspectives,
wizards, etc., and which can be used to start building an application.

71

6. INTEGRATION WITH VIRTU 6.3. VIRTU Architecture

It provides a number of features for the management of the tool information by interact-
ing with other components. The User Management performs user (creation, edition, dele-
tion), password (change) and role (set user, administrator) management on it, the Assembly
Configurator uses it to manage the available Publication Files, Building Blocks,
VM Configurations and Assembly Configurations and, finally, the Assembly

Controller accesses the Assembly Instances in run-time from it.

Virtualization Services

The Virtualization Services contain the system’s virtualization layer which provides
the virtualization foundations for the running virtual machines, together with each virtual ma-
chine instance hosted by the tool. It provides the basic VM operations such as start, stop, pause,
create, delete, etc., and the support to configure and install applications at first-run time.

6.3.2 Processing Layer

The Processing Layer is where all the tool operations are ran and the tool workflow is
implemented and managed.

User Management

The User Management is the component which controls the user-oriented operations. It han-
dles operations like login checking, password changes, role attributions and creation/dele-
tion of users. The access to the User Management is provided by the Eclipse Views

Front-End and the External Interfaces, in case of a stand-alone application or a web-
service access, respectively. The effects of the operations are reflected in the Configuration
Database, under the user related tables.

Assembly Configurator

The Assembly Configurator allows the administrators to create, edit or delete Assembly
Configurations and the Building Blocks and Publication Files that compose

those Assemblies. As for the user, he may search through the existing Assembly

Configurations, request instances of some of them and edit Publication Files asso-
ciated to those instances. Finally, the Assembly Configurator also reports bugs to the ad-
ministrator.

The access to the Assembly Configurator is provided by the Eclipse Views Front

-End and the External Interfaces. The Assembly Configurator interacts with the
Configuration Database to manage the Assembly definitions and the Block Datastore

to manage the Building Blocks.

72

6. INTEGRATION WITH VIRTU 6.3. VIRTU Architecture

Assembly Controller

The Assembly Controller allows the administrator to control Assembly Instances in
run-time and accept or decline user requests for new Assembly Instances, as well as delete
the existing ones. The user may, in turn, request new Assembly Instances, share
Instances with other users and organize them, access the Instances (i.e., through Remote
Desktop) and control them.

Interaction with the user resorts to the Eclipse Views Front-End and the External
Interfaces. The Assembly Controller accesses the Configuration Database to

get any Assembly Instance state on any time, the Block Datastore to request physical
Building Block deployment and the Virtualization Services to perform basic VM
management operations.

External Interfaces

The External Interfaces allow the interaction of the tool with other existing infrastruc-
tures. It defines a set of components for the communication with the Processing Layer

. The External Interfaces interactions cover every component in the Processing

Layer since this is the component which allows the integration with third-party elements.
The User Management is used for password, login and role management, the Assembly

Configurator is used for the management of Assembly Configurations, the Assembly
Controller is used for VM lifecycle management and remote connection operations and

the Web Front-End and the External Applications are used to allow the access to the
tool from a web-browser or a third-party infrastructure.

6.3.3 Presentation Layer

The Presentation Layer contains the elements which allow the interaction with users and
administrators.

Eclipse Views Front-End

The Eclipse Views Front-End provides access to the tool through a stand-alone appli-
cation, based on the Eclipse RCP, which supplies views and perspectives corresponding the
functionalities available to users and administrators. This component interacts with all other
components in the Processing Layer to reflect the users’ and administrators’ requests.

Web Front-End

The Web Front-End objective is to allow interaction with the tool by means of a regular web
browser, requiring no special applications to be installed in order to communicate with the
tool and allowing access from devices other than typical computers, such as smart-phones
or thin-clients. Unlike Eclipse Views Front-End which communicates directly with the

73

6. INTEGRATION WITH VIRTU 6.4. SmART integration

Processing Layer, the Web Front-End uses the External Interfaces component as
an interface to the tool.

6.3.4 Other Notable Sectors

Apart from the presented layers and components, VIRTU makes use of other sectors that are not
included in the tool architecture, but their relevance is considerable enough for the integration
of SmART with VIRTU.

The VIRTU tool employs some third-party software which is also integrated with the tool,
as is the case of MySQL for the provision of a relational database management system or Eclipse
for the linkage of Java objects to the database. These components are COTS (Commercial, off-
the-shelf), software built by other entities which can be integrated with the objective of quickly
providing functionalities to the tool, possibly saving time by removing the need to build those
functionalities from scratch, but at the cost of some integration work. VIRTU keeps these third-
party components in a CVS (Concurrent Versions System) repository, from where they can be
accessed.

Another important data sector is located inside the virtual machines created by the tool.
This sector hosts the first-run and configuration scripts which are ran automatically by each
virtual machine so that they get the required data from the tool autonomously.

6.4 SmART integration

The VIRTU workflow and architecture were described in the previous sections. Using that
knowledge, this section describes how SmART fits in the VIRTU workflow and the where-
abouts of the SmART component placement in the VIRTU architecture. The integration takes
on both SmART major components, the Original to Generic syntax Converter (OGC) and the
Generic to Original syntax Converter (GOC, see Section 3.2), and employs them on separate
VIRTU components. OGC is used in the creation of configuration file templates when adding
new Building Blocks to VIRTU while GOC is used by the virtual machines to generate config-
uration files from templates.

In the VIRTU workflow, SmART will be called for the first time when an administrator adds
new Building Blocks. As it was seen in Section 6.3.1, these can either be applications, oper-
ating systems or virtual machines. In this case, a Publication File needs to be associated
to that Building Block. For this endeavour, SmART is used to transpose the Building
Block configuration files, whose parameterization is relevant, into XML documents, generat-
ing a Publication File. This Publication File is then stored in the Configuration
Database, from where it is obtained when its usage is required (i.e., when a user requires

the instantiation of an Assembly Configuration composed by that Building Block).
There might be the case where one or more configuration files of an application are unknown
to the tool. If such is the occasion, the administrator must define a grammar which recognizes
the new configuration file in order to build a parser for it. In the end, a new Building

74

6. INTEGRATION WITH VIRTU 6.4. SmART integration

!"#$%&'()*)+,-,./+&0-1)(

!"#$%&'(/2)**.+3&0-1)(

!"#$%&4-,-&-+5&#)*/6(2)*&0-1)(

$7.(589-(,1&*/:,;-() !<&=)(>.2)*

?2@.9*)&!.);*

A(/+,8)+5

B)C

A(/+,8)+5

D**)EC@1&F/+:.36(-,/(

F/+:.36(-,./+&

4-,-C-*)

%*)(&"+,)(:-2)

F/+:.36(-,./+&

A.@)&'-(*)(

F/5)&

G)+)(-,/(

G(-EE-(&

F/E9.@)(

$)+,-,.>)&

G(-EE-(&

#)9/*.,/(1

'-(*)(&

#)9/*.,/(1

'(.+,)(

'(.+,)(<-.+

'-(*)(&

G)+)(-,/(

%*)(&"+,)(:-2)

Figure 6.4: SmART integration points with VIRTU

Block is stored in the Block Datastore and a Publication File is associated to it in
the Configuration Database.

The second usage of SmART in the VIRTU tool is for the generation of configuration files
from Publication Files. This is the case when users request Assembly Instances of
existing Assembly Configurations. After the request is made, the user may parameterize
the application by choosing the variable values or mode of operation of a Building Block

by means of a graphical interface which triggers a script that alters the Publication File

associated to that Building Block. When a VM Instance boots, it runs a script which
checks if the configurations are up to date by retrieving the Publication Files it uses from
the Configuration Database and reading their flag values. If a Publication File was
meanwhile altered, SmART is called to produce a configuration file from it.

Figure 6.4 sketches the integration of SmART from the point of view of the VIRTU tool. As
Section 3.2 points out, SmART is composed by two major components, the OGC and the GOC.
Section 3.3 shows that the sub-components of the OGC are:

• User Interface;

• Configuration File Parser;

75

6. INTEGRATION WITH VIRTU 6.4. SmART integration

• Parser Repository;

• Code Generator;

• Grammar Compiler;

• Tentative Grammar Repository.

and the GOC is composed by Printer and PrinterMain.

As previously mentioned, the two components perform disparate functions. The sub-
components in OGC will be merged with the Assembly Configuration creation
part whereas GOC will integrate the configuration file generation part. Following is deeper
explanation of the integration of the SmART components in the VIRTU tool.

6.4.1 SmART Original to Generic syntax Converter

SmART Parser Repository

The lowest level integration will be that of the Parser Repository. After the parsers are
created, they are inserted in the Configuration Database. This calls for the alteration of
the relational database by adding parser-related relations to it and the alteration of VIRTU DB
in order for the latter to support the necessary database operations for the creation, edition
and deletion of parsers. The concept of Parser Repository will, therefore, refer to a set of
database relations which can be accessed by other components through the VIRTU DB software
layer.

SmART Processing Layer and Tentative Grammar Repository

Most of SmART’s core will be integrated with the VIRTU Assembly Configurator. Namely,
SmART OGC’s Configuration File Parser, Code Generator, Grammar Compiler

and also Tentative Grammar Repository are due to be located under the Assembly

Configurator. The reason for the localization of this merge is, as it was seen earlier in this
section, the fact that SmART OGC is only accessed by the VIRTU tool on the process of creating
new Assembly Configurations.

In this way, the normal SmART workflow remains unchanged, apart from some small ad-
justments. For instance, the Configuration File Parser will now receive parse requests
from the VIRTU Presentation Layer and get the parsers by issuing parser queries to the
Data Layer, by means of VIRTU DB. The Code Generator will remain intact, since it only
interacts with the Configuration File Parser. The Grammar Compiler will now ac-
cess the parser generator from the VIRTU third-party software sector. As for the Tentative
Grammar Repository, its integration with the VIRTU tool was found to be more suitable

to the VIRTU Processing Layer, opposed to the SmART Storage Layer, since it will not
store permanently any grammar, but rather act as a grammar browser, which saves the final

76

6. INTEGRATION WITH VIRTU 6.5. Summary

grammars with the corresponding parsers and discards the rest. Besides that, the Tentative
Grammar Repository will now interact with the Eclipse Views and the Web Front-

Ends.

SmART User Interface

The User Interface will be integrated in the Presentation Layer with the Eclipse
Views Front-End and the Web Front-End, so as to provide a way for the administrator
to perform the tasks of creating the Publication Files, when new Building Blocks

are added to VIRTU, and building new grammars when parsers capable of recognizing the
configuration files of the Building Blocks do not exist in the database.

6.4.2 SmART Generic to Original syntax Converter

As for Printer and PrinterMain, they will form an autonomous process in the boot sector
of each virtual machine, which transforms a Publication File on a configuration file, if
that Publication File modification flag is set.

6.4.3 Parser Generator

Much like in SmART, the Parser Generator component will be considered as third-party
software, therefore, this component will reside as an external package in the third-party soft-
ware repository. It is accessed solely by the Grammar Compiler.

6.5 Summary

At the time of elaboration of this dissertation, the integration of SmART with VIRTU was only
commencing. This chapter presents the result of project meetings where we analysed ways in
which both tools can be merged, from the point of view of the VIRTU tool. The taken approxi-
mation consists on joining the SmART components with the existing VIRTU ones.

By merging the prototype of a framework on a bigger tool whose development is well
under way, the adaptation of some prototype components should be expected. This is the
case of the SmART Parser Repository, which will be tranformed from a simple list of
parsers into a set of relations in the VIRTU Configuration Database. This adaptation
is not straightforward though, as with most of the available parser generators, the produced
parsers will consist on a set of Java classes. The classes that compose the parser can be stored
in the database without any hassle, nevertheless, they cannot be executed from there. Three
alternatives for the execution of the parser classes were identified: to copy the classes locally to
a temporary folder and execute them; to copy the classes to memory and run them from there;
to execute a database method which allows the parser classes to be ran from the database.
After the project meeting, another solution for this problem was identified, which consists on
gathering the parser classes in a .JAR container [Micd] and storing the packages in the database.

77

6. INTEGRATION WITH VIRTU 6.5. Summary

In this way, each class in the package knows the exact location of the others and is always able
to call them.

There are still two components left to implement: the graphical interface for the User

Interface and the configurator.
The first consists on a graphical interface which allows the administrator to define new

grammars, in a practical and efficient way. It should provide the administrator with func-
tionalities such as configuration file syntax highlight, new pattern definition, etc. The SmART
prototype offers the necessary functionalities for the implementation of this component, there-
fore, the remaining work consists on designing the graphical interface and linking it with the
other SmART components.

The implementation of the configurator involves the design of an interface from where the
user can alter the configuration file parameters. This interface should also generate a script
which recognizes the XML generic syntax. That script is used to traverse a Publication File,
applying the required changes as it comes upon the right parameters, consequently generating
a new Publication File containing the desired parameterization.

Apart from the previous considerations, the integration process should unfold in a seam-
less way, providing the VIRTU tool with the ability to automatically configure applications,
regardless of their vendors.

78

7
Conclusion and Future work

The concepts of virtualization and, more particularly, virtual appliance, rose to significant im-
portance in the last few years. Virtualization allows for the consolidation of many underuti-
lized servers into fewer machines, increased infrastructural utilization, easy replication and
replication of virtual machines, among many other benefits. Virtual appliances are a conse-
quence of the virtualization advancements and refer to VMs composed solely of a minimal OS
and a set of applications, optimized to perform a specific computational task.

The VIRTU project is a collective effort by a consortium of enterprises and universities,
whose objective is to develop a platform for the creation and management of virtual appliances.
Nowadays, the offering of virtualization solutions is increasing each day, but the configuration
of virtual appliances is still a mainly manual task. Since a single machine tends to garner
many VAs, configuring them in an effective way has become a problem. VIRTU tries to exploit
this opportunity by offering on-demand configuration of applications, independently of their
vendor.

This thesis tackles the problem of automatic configuration of applications, regardless of
their vendors, in virtual appliances. The automatic configuration of applications is important
since it allows for the reduction of required time to configure applications. It assumes a special
importance if we consider a business scenario, where much time is wasted in configuration du-
ties. A hurdle for the application configuration, regardless of the vendor, is that nowadays, ap-
plications already represent their configurations on widely adopted standards, although many
of those standards exist and the majority of the applications resort to vendor-specific formats.
The aim of this work consists on creating a framework that allows the abstraction of the used
formats, allowing for the configuration process to be the same for every application, as well as
automating that process from it results the least human interaction.

At first, two possible ways to deal with this subject were approached: configure the appli-

79

7. CONCLUSION AND FUTURE WORK

cation pre or post installation on the virtual appliance. Configuring the application before its
installation on the virtual appliance consists on altering the configuration file in the applica-
tion package and then install it on the virtual appliance. This approach was seen to lead to
package redundancy, since the number of required different configuration will equate to the
number of application packages to be installed. Moreover, in case of further configurations of
an application, this approach requires a package to be re-installed on another VA.

A better approach is the configuration post installation. In this approach, an application
configuration file is extracted from inside a VA and configured by the tool, only to be merged
with the VA in the end of the configuration process. Although this approach requires knowl-
edge of the application location, it allows for easy configuration of any number of virtual ap-
pliances and, additionally, it does not force an application to be reinstalled in case of a recon-
figuration.

The Smart Application Reconfiguration Tool (SmART) is the major contribution of this the-
sis for the automatic configuration of applications problem. It consists of a framework with
several components that interact between themselves in order to configure applications by ab-
stracting configuration files from their format details onto a generic structure. This framework
is extensible on the grounds that the interfaces for each component are presented and detailed.
This makes it possible for the rebuilding of any of the tool’s components without any effect on
the remaining components.

Still on this dissertation scope, an implementation of the framework was carried and its doc-
umentation is also made available through this dissertation. The resulting prototype proved
that taking advantage of the frequently found patterns present in configuration files is a valid
concept. This proof assumes the form of a validation in three criteria: requirement, function-
ality and performance. The fact that no other similar tools to this one are available not only
made it harder to pioneer some concepts, it also meant that, much to our dismay, no compara-
tive validation could be made.

Our interpretation of the validation results is a positive one. On one side, the framework
is shown to fulfill every requirement towards which it was designed. In terms of functionality,
SmART is proven to be able to configure files that fall on three categories: INI-like, XML-like
and Apache-like files. These categories, in turn, cover the vast majority of existing configura-
tion files. Regarding the other files that are currently not supported by the tool, we believe that
the subsequent work with the framework by the other Project VIRTU players may be very in-
teresting since it will reveal the framework’s power to be fully extensible to other file formats.
Finally, the performance results, although assuming a lesser importance in the framework va-
lidity assessment, reveal that the necessary time to configure a file using SmART is beyond
tolerable and, furthermore, show that our choice of parser generator implies no big overhead
to the tool.

With the concept proved and having developed a functional prototype, the integration of
the SmART tool with the VIRTU tool proceeded. This process is intended to provide VIRTU
with the ability to automatically configure applications, regardless of their vendors. To com-
plement this dissertation with reliable information about VIRTU, we spent two weeks with

80

7. CONCLUSION AND FUTURE WORK 7.1. Future Work

the Evolve team. The integrational process only started on the final term of the elaboration of
the dissertation. Therefore, we can only offer a suggestion of how to execute the integration
process, meanwhile identifying the possible obstacles that might occur.

7.1 Future Work

From the integration with VIRTU will result an important improvement to the tool: a graphical
user interface. This interface aims at making the grammar definition process more natural
to the user, sparing him from knowing any JavaCC syntax. The framework implementation
already offers the functionalities for an implementation of such interface, therefore, this task
will revolve around the design and linkage of the interface with the tool.

A suggestion for a future improvement on the tool is for it to infer the meanings of different
patterns in new configuration file languages on its own, using grammar inference. Grammar
inference [Hon], also known as automata induction, grammar induction and automatic lan-
guage acquisition, is a field of research with the purpose of learning grammars and languages
from data. It can be applied on the fields of syntatic pattern recognition, adaptative intelligent
agents, diagnosis, computational biology, systems modelling, prediction, natural language ac-
quisition, data mining and knowledge discovery. According to [PH01], it is possible to learn
grammars from simple examples, like sparse configuration files.

There is active work on this subject, namely the GenParse project, which is a collaboration
among the University of Alabama-Birmingham, U.S.A. and the University of Maribor, Slove-
nia. It aims at easing the development of Domain-Specific Languages and also at developing
renovation tools for legacy systems. It makes use of the Genetic Programming paradigm to
infer Context-Free Grammars.

81

A
Appendix - Architecture

A.1 OGC sequence diagram

83

A. APPENDIX - ARCHITECTURE A.1. OGC sequence diagram

OGC Sequence OGC Sequenceinteraction []

 : User : TGR : CFP : GC : CG : PR : UI

[at least 1 parsed]

[else]

[reDoParse=OK]

loop

[]

opt

[reDoCompile=OK]

loop

alt

[all parsers tested]

loop

start(fileNames=file)1:

submitGrammar()11:

storeParser()19:

parse4:

doTranslate(parsingdata="pd")5:

reDoParse7:

reDoParse18:

getIterator()3:

doTranslate(parsingdata=pd)17:

parse16:

reDoCompile13:

reDoTranslate6:

doParse(file=file)2:

successfulParse8:

doCompile(grammar=grammar)12:

store(grammarName=name, grammar=grammar)14:

doParse(file=file, parser=parser)15:

store(name=name, file=file, grammar=grammar)20:

discardAll()21:

successfulParse22:

get(serialNumber=number)9:

prev()10:

Figure A.1: Original to generic syntax converter sequence diagram

84

Bibliography

[Ama] Amazon. Amazon elastic compute cloud (amazon ec2). World Wide Web, http:
//aws.amazon.com/ec2/.

[Cit] Citrix. Xen source: Open source virtualization. World Wide Web, http://www.
xensource.com.

[Con] World Wide Web Consortium. Extensible markup language. World Wide Web,
http://www.w3.org/XML/.

[Cru] Thin Crust. Thin crust main page. World Wide Web, http://www.thincrust.
net/.

[DMT08] DMTF. Open virtualization format specificiation. World Wide Web, http://www.
dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf, 2008.

[Foua] The Apache Software Foundation. Apache homepage. World Wide Web, http:
//www.apache.org/.

[Foub] The Eclipse Foundation. Eclipse homepage. World Wide Web, http://www.
eclipse.org/.

[Fouc] The Eclipse Foundation. Rich client platform. World Wide Web, http://wiki.
eclipse.org/index.php/Rich_Client_Platform.

[FSF] Inc. Free Software Foundation. Bison - gnu parser generator. World Wide Web,
http://www.gnu.org/software/bison/.

[GGL+09] Patrick Goldsack, Julio Guijarro, Steve Loughran, Alistair Coles, Andrew Farrell,
Antonio Lain, Paul Murray, and Peter Toft. The smartfrog configuration manage-
ment framework. SIGOPS Oper. Syst. Rev., 43(1):16–25, 2009.

[GH98] Etienne M. Gagnon and Laurie J. Hendren. Sablecc, an object-oriented compiler
framework. Technology of Object-Oriented Languages, International Conference on,
0:140, 1998.

85

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.xensource.com
http://www.xensource.com
http://www.w3.org/XML/
http://www.thincrust.net/
http://www.thincrust.net/
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf
http://www.apache.org/
http://www.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.gnu.org/software/bison/

BIBLIOGRAPHY

[Groa] Mantis PHP Bug Tracker Development Group. Mantis bug tracker homepage.
World Wide Web, http://www.mantisbt.org/.

[Grob] PostgreSQL Global Development Group. Postgresql homepage. World Wide Web,
http://www.postgresql.org/.

[Hon] Vasant Honavar. Automata induction, grammar inference, and language acqui-
sition. World Wide Web, http://www.cs.iastate.edu/˜honavar/ailab/
projects/grammar.html.

[Mica] Microsoft. Microsoft virtualization. World Wide Web, http://www.microsoft.
com/virtualization/default.mspx.

[Micb] Sun Microsystems. Mysql homepage. World Wide Web, http://www.mysql.
com/.

[Micc] Sun Microsystems. Sun virtualization. World Wide Web, http://www.sun.com/
solutions/virtualization/index.jsp.

[Micd] Sun Microsystems. Using jar files. World Wide Web, http://java.sun.com/
developer/Books/javaprogramming/JAR/basics/.

[oM] University of Maryland. Lecture: Top-down parsers. http://www.cs.umd.edu/
class/fall2002/cmsc430/lec4.pdf.

[oV08] History of Virtualization. Vmware. World Wide Web, http://www.vmware.com/
technology/history.html, 2008.

[Par] Parallels. Parallels homepage. World Wide Web, http://www.parallels.com/.

[PH01] Rajesh Parekh and Vasant G. Honavar. Learning dfa from simple examples. Mach.
Learn., 44(1-2):9–35, 2001.

[Proa] JavaCC Project. Javacc homepage. World Wide Web, https://javacc.dev.
java.net/.

[Prob] Sax Project. Sax. World Wide Web, http://www.saxproject.org/.

[Ram00] Ariel Ortiz Ramirez. Three-tier architecture. World Wide Web, http://www.
linuxjournal.com/article/3508, 2000.

[SAF07] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: improving configuration
management with operating system causality analysis. SIGOPS Oper. Syst. Rev.,
41(6):237–250, 2007.

[Sin04] Amit Singh. An introduction to virtualization. http://www.kernelthread.

com/publications/virtualization/, 2004.

86

http://www.mantisbt.org/
http://www.postgresql.org/
http://www.cs.iastate.edu/~honavar/ailab/projects/grammar.html
http://www.cs.iastate.edu/~honavar/ailab/projects/grammar.html
http://www.microsoft.com/virtualization/default.mspx
http://www.microsoft.com/virtualization/default.mspx
http://www.mysql.com/
http://www.mysql.com/
http://www.sun.com/solutions/virtualization/index.jsp
http://www.sun.com/solutions/virtualization/index.jsp
http://java.sun.com/developer/Books/javaprogramming/JAR/basics/
http://java.sun.com/developer/Books/javaprogramming/JAR/basics/
http://www.cs.umd.edu/class/fall2002/cmsc430/lec4.pdf
http://www.cs.umd.edu/class/fall2002/cmsc430/lec4.pdf
http://www.vmware.com/technology/history.html
http://www.vmware.com/technology/history.html
http://www.parallels.com/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://www.saxproject.org/
http://www.linuxjournal.com/article/3508
http://www.linuxjournal.com/article/3508
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/

BIBLIOGRAPHY

[Sola] Evolve Space Solutions. Virtu product line. World Wide Web, http:

//www.evolve.pt/index.php?option=com_content&view=article&id=

82&Itemid=85.

[Solb] Evolve Space Solutions. Virtu software design document.

[Sta07] James Staten. The case for virtual appliances, November 2007.

[VMwa] VMware. Vmware home page. World Wide Web, http://www.vmware.com.

[VMwb] VMware. Vmware virtualization. http://www.vmware.com/technology/

virtualization.html.

[VX] Vmware and Xensource. The open virtual machine format whitepaper for ovf spec-
ification. White Paper, Version 0.9.

[W3S] W3Schools. Xml dom tutorial. World Wide Web, http://www.w3schools.com/
dom/default.asp.

[WCG04] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Configuration debugging
as search: finding the needle in the haystack. In OSDI’04: Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation, pages 6–6,
Berkeley, CA, USA, 2004. USENIX Association.

87

http://www.evolve.pt/index.php?option=com_content&view=article&id=82&Itemid=85
http://www.evolve.pt/index.php?option=com_content&view=article&id=82&Itemid=85
http://www.evolve.pt/index.php?option=com_content&view=article&id=82&Itemid=85
http://www.vmware.com
http://www.vmware.com/technology/virtualization.html
http://www.vmware.com/technology/virtualization.html
http://www.w3schools.com/dom/default.asp
http://www.w3schools.com/dom/default.asp

	Introduction
	Motivation
	Problem Description
	Pre-installation Configuration
	Post-installation Configuration
	Application Configuration in General
	Conclusion

	Problem Approach
	Contributions
	Document Organization

	State of the Art and Related Work
	Virtual Appliances
	Virtualization
	Motivation
	Open Virtual Machine Format
	Virtual Appliances in Real Life

	Automatic Configuration of Applications
	Thin Crust
	SmartFrog

	Automatic Recognition of Configuration Files
	SableCC
	JavaCC

	Representation of Configuration Files in a Generic Syntax

	An application reconfiguration framework
	Architectural Requirements
	Automatic Application Configuration
	Original to Generic syntax Converter
	Component Description
	Original to Generic Syntax Converter Operation Scenarios

	Generic to Original syntax Converter
	Modifying the Configuration File
	External Parser Addition

	An Implementation
	Programming Language
	Parser Generator
	Generic Syntax
	Data Structures
	Parser
	Grammar
	ParsingData
	CompilationData

	Original to Generic syntax Converter
	User Interface
	Configuration File Parser
	Parser Repository
	Grammar Compiler
	Code Generator
	Tentative Grammar Repository

	Generation of Original Syntax
	Generic to Original Syntax Converter

	Framework Evaluation
	Functional Validation
	Operational Validation
	INI-like Configuration Files
	Apache-like Configuration Files
	XML-like Configuration Files
	Parsing the Generated XML

	Performance Validation

	Integration with VIRTU
	Project Description
	VIRTU Top-Level Analysis
	VIRTU Architecture
	Data and Resources Layer
	Processing Layer
	Presentation Layer
	Other Notable Sectors

	SmART integration
	SmART Original to Generic syntax Converter
	SmART Generic to Original syntax Converter
	Parser Generator

	Summary

	Conclusion and Future work
	Future Work

	Appendix - Architecture
	OGC sequence diagram

