CONSISTENT STATE SOFTWARE TRANSACTIONAL MEMORY

Gongalo Cunha

Jodo M. S. Lourengo

Ricardo Dias

CITI-Centro de Informdtica e Tecnologias de Informagdo, and
Departamento de Informdtica, Universidade Nova de Lisboa

goncalo.cunha@gmail.com joao.lourenco@di.fct.unl.pt

Keywords:

Abstract:

rifd@di.fct.unl.pt

Software Transactional Memory, Concurrency Control, Multicore Programming.

Software transactional memory (STM) is a promising programming model that adapts many concepts bor-

rowed from the databases world to control concurrent accesses to memory (RAM) locations. In this paper we
propose a new classification for the active states of a transaction; a new memory quiescing algorithm, to allow
the safe transition of a memory block form transactional to non-transactional space; we compare word and
object transactional grain units; and evaluate the cost of consistent state validation, arguing that this cost can
be minimized by performing partial validation on problematic code regions.

1 INTRODUCTION

The current trend of having multiple cores in a sin-
gle CPU chip is leading to a situation many would
believe absurd not long ago: we may have more pro-
cessing power then we can use. To invert such situa-
tion we need to find and explore concurrency where
before was sequential code. The transactional pro-
gramming model is an appealing approach as it deals
with concurrency by making use of high-level con-
structs. The transactional programming model may
or may not count with support from the underlying
hardware, most specially the CPU. The term software
transactional memory (STM) refers to the transac-
tional programming model when there is no special
support from the hardware.

Due to performance reasons, most existing STM
implementations use optimistic methods for concur-
rency control. Such methods allow transactions to
conflict with each other and conflict detection may
occur when the conflicting operation is executed or
later at commit time, depending on the STM design
and implementation options. If the conflict is not
detected when the conflicting operation is executed,
transactions will execute temporarily in an inconsis-
tent state. This may lead to many hazards such as
infinite loops, dereferencing invalid pointers or fail
algorithmic invariants that would not happen if the
transaction would execute only in consistent states.

Section [2] briefly describes the main approached
towards software-based implementations of the trans-
actional programming model. Section [3|introduce the
obsolete consistent state, the new quiescing algorithm
and describes the object-mode variants. Section [

presents the experimental results and Section [5| sum-
marizes our results.

2 STM IMPLEMENTATION
ALTERNATIVES

Other literature [1] covers in detail the different
approaches towards STM implementation. In this
Section we will concentrate on those that are relevant
for the work described ahead.

STM Operational Model

Within the context of a transaction, any memory
change should be considered tentative, thus the STM
engine must be able to restore the previous value if
the transaction aborts. Blocking STMs use two main
operational models: direct [2} 3] and deferred [4} 1516}
7, 18] update.

Concurrency Control

Due to performance reasons, most STM systems use
optimistic concurrency control for reads with ver-
sioned write locks. Each memory location has a ver-
sion number that is incremented for every commit up-
dating it. When a transactional read is performed, the
version number of the variable is stored in a trans-
action local data structure (the read-set). On com-
mit, the version of variables listed in the read-set are
checked against the recorded version. If any of vari-
ables has changed, the transaction is in an invalid state
and must be rolled back. This strategy prevents non-
serializable orderings from being committed.

Transactional granularity
Transactional memory locations may have differ-

ent levels of granularity: it may be at the object
level (object-based STMs) or block level (word-based
STMs). With block level granularity, the block may
have the size of a memory word or the size of a cache
line, while in the object-based approach the grain may
vary with the object being protected. Word based
STMs have more room for concurrency as the gran-
ularity is finer, each word has its own metadata and
collisions are less frequent. However the overhead in-
troduced to manage these fine grain units is higher,
since the transactional API must be called once for
every field (instead of every object) the transaction ac-
cesses. Object based STMs have metadata shared for
all the fields of the object. They have a coarser granu-
larity than Word based STMs, as the transactional API
is called only once for every object. Simultaneous ac-
cesses from different transactions to different fields
of the same objects will conflict. Object based STMs
are less suitable for accesses to transactional variables
that are not objects, like single variables and arrays.
Some Object-based STM systems do not allow this
kind of accesses, while others treat an array as a single
object. Word based STM, on the other hand, can eas-
ily access single variables and arrays word-by-word.

Lock Placement

There are two main strategies for lock placement on
lock based STMs: adjacent to the data; or in a separate
table.

Placing the lock adjacent to the data has the ad-
vantage of having a higher chance that both, the lock
and the data, will stay on the same cache line. This
may reduce the number of cache misses, yielding a
better performance. However, placing the lock and
data next to each other, requires changes to the struc-
ture of the objects on the heap. Also, the object han-
dling is different. Without support from the compiler,
the developer holds a pointer to the header and, to ac-
cess the data itself, the pointer is incremented by the
header size. These changes limit the re-usage of ex-
isting libraries, as they change both the structure of
the objects and the way they are handled.

Placing the locks in a separate table does not re-
quire changes to the heap objects, nor to the way they
are handled. With this technique it is easier to re-
use existing libraries, as it only requires the accesses
(reads/writes) to be instrumented. To map a variable
to the lock in the lock table, it is necessary to have
a hash function that maps the variable address to the
table position.

3 NEW PROPOSALS FOR STM

TL2 [9] introduced two interesting features: 1) it
doesn’t require the use of specialized malloc/free im-
plementations (even for non garbage collected lan-

guages) and allows memory to be recyclable between
transactional and non-transactional space; and 2) it
uses the global version clock algorithm to prevent
user code from running in an inconsistent state. How-
ever, it was only able to provide both features with
Word based and Deferred Update mode (or commit
time locking as described by the authors).

Our work was based in a TL2 implementation. On
the port to Linux/X86-32,64/GCC, the TL2 scheduler
control was removed, since this is not available on
Linux. Also the SPARC non-faulting load instruction
(not available in the X86 processors) was replaced
with fault handlers. The synchronization instructions
were inspired on the Ennals STM implementation [8]].

3.1 Obsolete Consistent Transaction
State

When using versioned write locks, transactions may
collide with each other and fall into states where the
transaction cannot commit. We divide active trans-
action state into three categories: updated consistent,
obsolete consistent and inconsistent, as illustrated in

Fig

obsolete
consistent

update partially _
consimted | terminated

Figure 1: Transaction states.

A transaction running in an updated consistent
state is one in which all reads have returned all the
latest committed values and these values haven’t been
updated since the read. Transactions that try to com-
mit with an updated consistent memory snapshot will
succeed.

A transaction is in an obsolete consistent state if
it has a valid memory snapshot, but the snapshot it-
self is outdated because it was updated by some other
transaction. Figure2]show an interleaving leading Ta
to an obsolete consistent state at step 6. A transaction
running in a obsolete consistent state has a correct be-
havior but will fail to commit.

A transaction is in an inconsistent state if the read
values do not correspond to a valid memory snapshot.
It may be due the reading dirty values or read-after-
write hazards, e.g., two consecutive reads to the same
variable return different values because it was updated
by another transaction. The transaction may have un-
predictable results but in the end it will abort.

Transaction A Transaction B
1 | atomic {
2 a=x;
3 atomic {
4 X ++;
5 }
6 y=2;
71}

Figure 2: Obsolete consistent state: on step 0, transaction A
is consistent but obsolete.

3.1.1 Concurrency Control and Transaction
States

When using read write locks, a read is guaranteed to
always return a consistent value, as the transaction has
acquired a read lock and no other transaction can up-
date the value while the read lock is being held.

When using versioned write locks there is no such
guarantee and some hazards may occur. While the
transaction is being run, the loads may see dirty vari-
ables and/or see inconsistent states as a result of un-
fortunate interleavings. These transactions will prob-
ably abort later at commit time. Although, they may
also enter endless loops in the middle of the transac-
tion, dereference invalid pointers, fail assertions that
otherwise would be valid if the transaction was be-
ing run in a consistent state, etc. Figure E] shows an
example of an interleaving where the invariant a = b
should hold for transaction T but, as an invalid state
was observed, T enters an infinite loop.

Transaction A Transaction B
1 | //x =0 && y=0 //x =0 && y=0
2 | atomic {
2 a=x;
3 atomic {
4 X ++;
5 y ++;
6 }
7 b=y;
8 if(a !'= b)
9 while (true) {}
10 | }

Figure 3: Infinite loop caused by improper ordering. Trans-
action A is inconsistent.

3.2 New Quiescing Algorithm

Transactional variables must only be accessed from
within transactions; however, it is desirable that vari-

ables leaving the transactional space can be re-used by
non transactional operations. To handle such a transi-
tion the variable must be quiesced before it is freed.
Quiescing on the original TL2 consisted of waiting for
the writes to be drained and the lock to be released.
This however fails under some circumstances. Con-
sider the situation of a list with two nodes (A and B)
being used by three threads (T1, T2 and T3); T1 is
looking for node B; T2 is deleting node B; T3 is not
running any transaction. The following sequence of
events may takes place:

1. T1: starts (with transaction timestamp 10) and
looks up node A, which is prior to node B (i.e.,
it reads a pointer to node B);

2. T2: starts, (with transaction timestamp 10) looks
up node B and removes all references to node B;

3. T2: commits (increments the global clock to 1;

4. T2: quiesces node B (no thread is currently lock-
ing B);
5. T2: frees node B;

6. T3: starts, calls malloc and receives a pointer to
the same memory where node B was previously
referenced,

7. T3: writes to that memory;

8. T1: follows the pointer to the late node B and
reads its contents. At this point T1 is reading
memory already recycled for usage of another
thread. Hence T1 is running on an inconsistent
state, which violates the idea of never seeing in-
consistent memory states.

The solution found was for the quiesce operation
to treat the delete as a regular write. In other words,
quiesce updates the lock version to the current value
of the global clock. It is like a mini transaction writ-
ing to the lock of the node to be deleted. Since qui-
esce is always called after the commit and before the
free, updating the nodes version number will invali-
date any further reads to the node by all other transac-
tions. Quiesce does not need to increment the value of
the global clock because it was already incremented
when the commit was done (quiesce can not be called
inside an active transaction).

With the new quiesce, the previous operations
would be transformed into the following:

1. Steps 1 to 7: same as above;

8. T1: follows the pointer to the late node B and
verifies that B’s lock is greater (12) that its own
transaction timestamp (10). T2 aborts and the user
code never sees an inconsistent state.

IClock is always incremented by 2, odd numbers mean
the lock is held, even number mean the lock is acquired

Even if some other transaction incremented the clock
between step 3 and 4, the result would be the same.

3.3 Object Based Direct Update with
Partial and Full Validation

This mode is based in the same algorithms as the word
based modes. The main differences are on the API to
handle the objects and on the fact that the read and
write operations are made directly to the objects.

3.3.1 Algorithm

The API for object based mode differs from the word
based mode API, and its basis is similar to many other
object-based STMs [8]. Before and object is read Tx-
OpenRead is called. It verifies if the lock version of
the objects is greater than the transaction timestamp.
If that’s the case the transaction aborts, otherwise it
records the read operation in the read set. After call-
ing TxOpenRead, the object can be directly accessed
for read. However, each object read may render the
transaction to an inconsistent state, as it may have
been changed by another transaction. To avoid this,
the transaction must call TxVerifyAddr. TxVerifyAddr
checks again if the lock version of the objects is grater
than the transaction timestamp. If it is not, the object
has not been changed since the beginning of the trans-
action and the transaction continues to be consistent.
The macro TxReadField does the last two steps, re-
turning the field value and verifying if the state con-
tinues to be consistent.

TxOpenRead (Thread *t, void *addr);
TxOpenWrite (Thread *t, void *addr, int size);
TxVerifyAddr (Thread *t, void *addr);

#define TxReadField(t,addr,field)

Figure 4: Simplified API for handling objects in object
based mode

In fact TxVerifyAddr does not enforce the transac-
tion to terminate with a correct result; it only guar-
antees that the transaction is running in a consistent
memory states. The other STMs that use one ver-
sion counter per variable (e.g., [8]) may also do this
by re-validating the read set after every read, but it
would have a cost of O(n?), where n is the number
of transactional reads. Our prototype does this valida-
tion with a cost of O(n).

3.3.2 API Usage Example

Next, follows two examples showing how the proto-
type API may be used. Both illustrate a part of a trans-
action reading the key and value of a list node. After
the read, an assertion is made to verify the invariant
that the key must be greater than zero. The assertion

must be checked within a consistent state; otherwise,
interleavings with other transactions may fail the as-
sertion even if it is valid according to the algorithm.

The first example in Fig. [5] shows the validation
being performed after the read of key and value. This
approach however allows the transaction to run incon-
sistent in steps 2 and 3. After the re-validation on step
4, the transaction is again consistent. The second ex-
ample in Fig. [5|shows the validation being performed
on every read. This approach makes the transaction
always run in a consistent state, at the cost of addi-
tional checks.

TxOpenRead (t, node);
key = node->key;

value = node->value;
TxVerifyAddr (t, node);
assert (key>0);

AW ==

TxOpenRead (t, node);

key = TxReadField(t,node,key);
assert (key>0);

value = TxReadField(t,node,value);

AW~

Figure 5: Explicit consistent state validation

The second approach is simpler to be used by the
programmer, because there is not need to keep track
of which objects have to be verified for consistency.

The first approach has less overhead due to the
fewer number of verifications made. Yet, it is more
complex for a programmer to use it directly. It is bet-
ter suited for compilers that generate the transactional
code from a higher level language [10]. The compiler
may validate the transaction state only before some
event that needs a consistent state, e.g., before an as-
sertion, dereferencing a pointer, or testing a loop con-
dition.

Since this mode locks the objects when they are
opened for write, the reads don’t need to be validated
on objects opened for write (Fig.[6).

TxOpenWrite (t, node, sizeof(node_t));
key = node->key;

value = node->value;

assert (key>0);

AW N =

Figure 6: Consistent state validation for locked variables

4 EXPERIMENTAL RESULTS

Since our prototype is based on TL2, we decided
to use a similar test harness. Our tests were made with
a Red Black Tree implementation based on the one

found on TL2 package. Several modifications were
made to adapt it to use the different API of object
mode.

The tests consist on series of operations on a STM
based Red Black Tree. The implementation has three
methods: add, delete and get. The tree nodes have a
key and a value and all methods are indexed by the
key. Duplicate keys are not allowed and adding an
already existing key just updates the node value.

The test harness launches a number of threads in
parallel. Each thread randomly chooses an operation
to execute (add, delete, or get), then generates a ran-
dom key and executes the selected operation on that
key. The operations are chosen based on probability
factors given on the command line. The key range
also passed as a command line argument and it limits
the maximum number of elements in the set.

The tests were performed on a Sun Fire X4600 M2
x64 server with eight dual-core AMD Opteron Model
8220 processors @ 2.8 GHz with 1024 KB cache.

4.1 Comparing Direct/Deferred and
Word/Object modes

The first set of tests (Fig. intend to compare
the performance of direct/deferred strategies and
word/object based modes. We used the same test
loads than [2].

The tests include a small (200 keys) and a large
(20.000 keys) red black tree. The small tree represents
a high contention structure and the large tree repre-
sent a low contention structure. Each tree is subject to
two load patterns, one with mostly reads (writes are
2-3%), other with a higher write percentage (6-12%).
The first pattern is 5% puts; 5% deletes; 90% gets.
The second pattern is 20% puts; 20% deletes; 60%
gets. The test loads included 1, 2, 4, 8 and 16 threads.
In this way is possible to evaluate the scalability as
the number of available CPUs increase. Tests were
performed using the three combinations of our pro-
totype. The Object based STM tests were performed
with partial verification (on the required places to pre-
vent the transaction from entering infinite loops and
fail several assertions made on the code).

All tests show that word based direct (undo log)
and deferred (redo log) update modes perform simi-
larly in all scenarios. But the deferred update strategy
scales better in high contention environments, while
the direct update strategy performs better in low con-
tention environments.

All tests show that, with a high number of threads,
object mode with partial verification performs worst
than word mode with direct and deferred strategies.
Although having a smaller overhead (there is only one

Red-Black / 60 sec / 200 keys / 5% put, 5% del, 90% get
7000

6000 |-

5000 |-

4000 |-

3000 |

1000« Operations/second

2000 |-

1000

Number of threads

Red-Black / 60 sec / 200 keys / 20% put, 20% del, 60% get
3500

3000 |

2500 |

2000 |-

1500 |-

1000x Operations/second

w000

4
Number of threads

8000

7000 |-

6000 |-

5000 |-

4000 |-

3000 |-

1000% Operations/second

2000 |-

1000 f—"

Number of threads

Red-Black / 60 sec / 20000 keys / 20% put, 20% del, 60% get

2500 |

2000 |

1000 Operationsisecond

»
a
8
8

500 |- wordiredo —+—
word/undo
object/undo

1 2 a B 16
Number of threads

Figure 7: Evaluation of implementation alternatives.

lock and unlock per node instead of one per field),
the lock granularity is coarser in object mode than in
word mode, which limits concurrency and lowers its
scalability for a higher number of threads.

4.2 The cost of consistent state
validation

The second set of tests (Fig. [§) evaluate the cost of
consistent state validation in object mode (with a di-
rect update strategy). Experiments show that partial
validation regularly performs better than full valida-
tion by a factor of 10% to 15%. Experiments also
show evidence that the cost of verification is benevo-
lent, as it allows to detect inconsistent states sooner
and, thus, transactions do less useless work. The
no verification mode only detects inconsistencies at

commit time and, therefore, has to re-execute the en-
tire transaction again, imposing a considerable perfor-
mance penalty when compared to the other modes.

1000x Operationsisecond

a
Number of threads.

Red-Black / 60 sec / 20000 keys / 20% put, 20% del, 60% get

Number of threads

Figure 8: Cost of verification on small and large Red Black
Trees

5 CONCLUSIONS

We have presented an initial study of several im-
plementations options for STM engines with empha-
sis in running transactions in consistent states. We
evaluated the direct/deferred update strategies and
word/object modes. The benchmarks show that both
update strategies perform similarly on word based
mode and both scale better than object mode. There
is also evidence that in object mode the overhead in-
troduced by validating frequently the transaction can
avoid to performing useless computations and achieve
good performances.

Acknowledgements

This work was partially supported by Sun Mi-
crosystems under the “Sun Worldwide Marketing
Loaner Agreement #11497”, by the CITI-Centro de
Informatica e Tecnologias da Informagao and by the
FCT/MCTES-Fundacio para a Ciéncia e Tecnologia
in the context of the Byzatium research project and of
grant SFRH/BD/41765/2007.

References

[1] Jim Larus and Ravi Rajwar. Transactional Mem-
ory (Synthesis Lectures on Computer Architec-

(2]

(3]

[4]

(5]

(6]

(7]

[9]

[10]

ture). Morgan & Claypool Publishers, 2007.

David Dice and Nir Shavit. What really makes
transactions faster? In Proceedings of the First
ACM SIGPLAN Workshop on Languages, Com-
pilers, and Hardware Support for Transactional
Computing, Jun 2006.

Bratin Saha et al. McRT-STM: a high perfor-
mance software transactional memory system
for a multi-core runtime. In PPoPP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN sym-
posium on Principles and practice of parallel
programming, pages 187-197, New York, NY,
USA, 2006. ACM.

Maurice Herlihy, Victor Luchangco, Mark Moir,
and III William N. Scherer. Software trans-
actional memory for dynamic-sized data struc-
tures. In PODC ’"03: Proceedings of the twenty-
second annual symposium on Principles of dis-
tributed computing, pages 92-101, New York,
NY, USA, 2003. ACM.

Maurice Herlihy, Victor Luchangco, and Mark
Moir. A flexible framework for implement-
ing software transactional memory. In OOP-
SLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applica-
tions, pages 253-262, New York, NY, USA,
2006. ACM.

Tim Harris and Keir Fraser. Language support
for lightweight transactions. SIGPLAN Not.,
38(11):388-402, 2003.

Keir Fraser. Practical lock freedom. PhD the-
sis, Cambridge University Computer Labora-
tory, 2003. Also available as Technical Report
UCAM-CL-TR-579.

Robert Ennals. Software transactional memory
should not be obstruction-free. Technical Re-
port IRC-TR-06-052, Intel Research Cambridge
Tech Report, Jan 2006.

D. Dice, O. Shalev, and N. Shavit. Transac-
tional locking ii. In Proc. of the 20th Inter-
national Symposium on Distributed Computing
(DISC 2006), pages 194-208, 2006.

Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay
Menon, Brian R. Murphy, Bratin Saha, and Ta-
tiana Shpeisman. Compiler and runtime support
for efficient software transactional memory. In
PLDI ’06: Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language
design and implementation, pages 26-37, New
York, NY, USA, 2006. ACM.

	Introduction
	STM Implementation Alternatives
	New Proposals for STM
	Obsolete Consistent Transaction State
	Concurrency Control and Transaction States

	New Quiescing Algorithm
	Object Based Direct Update with Partial and Full Validation
	Algorithm
	API Usage Example

	Experimental Results
	Comparing Direct/Deferred and Word/Object modes
	The cost of consistent state validation

	Conclusions

