
Precise Detection of Atomicity Violations

Vasco Pessanha, Ricardo J. Dias, and João M. Lourenço

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{v.pessanha,ricardo.dias}@campus.fct.unl.pt joao.lourenco@fct.unl.pt

Abstract. Concurrent programs that are free of unsynchronized ac-
cesses to shared data may still exhibit unpredictable concurrency errors,
called atomicity violations, which include both high-level dataraces and
stale-value errors. Atomicity violations occur when programmers make
wrong assumptions about the atomicity scope of a code block, incorrectly
splitting it in two or more atomic blocks and allow them to be interleaved
with other atomic blocks. In this paper we propose a novel static analysis
algorithm that works on a dependency graph of program variables and
detects both high-level dataraces and stale-value errors. The algorithm
was implemented for a Java Bytecode analyzer and its effectiveness was
evaluated with well known faulty programs. The results obtained show
that our algorithm performs better than previous approaches, achieving
higher precision for small and medium sized programs, making it a good
basis for a practical tool.

1 Introduction

The absence or misspecification of the scope of atomic blocks in a concurrent
program may trigger atomicity violations and lead to runtime misbehaviors.

Low-level dataraces occur when the program includes unsynchronized ac-
cesses to a shared variable, and at least one of those accesses is a write, i.e.,
it changes the value of the variable. Although low-level dataraces are still a
common source of errors and malfunctions in concurrent programs, they have
been addressed by others in the past and are out of the scope of this paper. We
will consider herein that the concurrent programs under analysis are free from
low-level dataraces.

High-level dataraces results from the misspecification of the scope of an
atomic block, by splitting it in two or more atomic blocks with other (possi-
bly empty) non-atomic block between them. This anomaly is often referred as
a high-level datarace, and is illustrated in Fig. 1(a). A thread uses the method
areEqual() to check if the fields ‘a’ and ‘b’ are equal. This method reads both
fields in separate atomic blocks, storing their values in local variables, which are
then compared. However, due to an interleaving with another thread running
the method setPair (), between lines 12 and 13 the value of the pair may have
changed. In this scenario the first thread observes an inconsistent pair, composed
by the old value of ‘a’ and the new value of ‘b’.



1 atomic vo id getA ( ) {
2 r e t u r n p a i r . a ;
3 }
4 atomic vo id getB ( ) {
5 r e t u r n p a i r . b ;
6 }
7 atomic vo id s e t P a i r ( i n t a , i n t b){
8 p a i r . a = a ;
9 p a i r . b = b ;

10 }
11 boolean a r eEqua l ( ){
12 i n t a = getA ( ) ;
13 i n t b = getB ( ) ;
14 r e t u r n a == b ;
15 }

(a) A high-level datarace.

1 atomic i n t getX ( ) {
2 r e t u r n x ;
3 }
4 atomic vo id setX ( i n t p0 ) {
5 x = p0 ;
6 }
7 vo id incX ( i n t v a l ) {
8 i n t tmp = getX ( ) ;
9 tmp = tmp + va l ;

10 setX ( tmp ) ;
11 }

(b) A stale value error.

Fig. 1: Example of atomicity violations.

Figure 1(b) illustrates a stale value error, another source or atomicity viola-
tions in concurrent programs. The non-atomic method incX() is implemented by
resorting to two atomic methods, getX() (at line 1) and setX() (at line 4). During
the execution of line 9, if the current thread is suspended and another thread is
scheduled to execute setX(), the value of ‘x’ changes, and when the execution of
the initial thread is resumed it overwrites the value in ‘x’ at line 10, causing a
lost update. This program fails due to a stale-value error, as at line 8 the value
of ‘x’ escapes the scope of the atomic method getX() and is reused indirectly (by
way of its private copy ‘tmp’) at line 10, when updating the value of ‘x’ in setX().

In this paper we propose a novel approach for the detection of high-level
dataraces and stale-value errors in concurrent programs. As our proposal only
depends on the concept of atomic regions and is neutral concerning the mech-
anisms used for their identification, the atomic regions are not delimited using
locks but rather using an @Atomic annotation. Our approach is based on a novel
notion of variable dependencies, which we designate as causal dependencies.
There is a causal dependency between two variables if the value of one of them
influences the writing of the other. We also extended previous work from Artho
et al. [2] by reflecting the read/write nature of accesses to shared variables in-
side atomic regions and additionally use the dependencies information to detect
both high-level dataraces and stale-value errors. We formally describe the static
analysis algorithms to compute the set of causal dependencies of a program and
define safety conditions for both high-level dataraces and stale-value errors.

Our approach can yield both false positives and false negatives. However, the
experimental results demonstrate that it still achieves high precision when de-
tecting atomicity violations in well know examples from the literature, suggesting
its usefulness for software development tools.

In the next Section of this paper we introduce the previous relevant work
on detections of high-level dataraces and stale-value errors; in Section 3 we de-
fine a core language and introduce some definitions that support the remainder
of the paper, namely Sections 4 and 5, where we propose algorithms for defin-



ing causal dependencies between variables and for detecting atomicity violations
(dataraces). In Section 6 we briefly describe a tool that applies the proposed al-
gorithms with static analysis techniques for Java Bytecode programs, and com-
pare and discuss the results obtained. We terminate in Section 7 with some final
concluding remarks.

2 Background and Related Work

Several past works address the detection of the same class of atomicity violations
in concurrent programs as addressed in this paper.

The work from Artho et al. [2] introduces the concept of view consistency,
to detect high-level dataraces. A view of an atomic block is a set containing all
the shared variables accessed (both for reading and writing) within that block.
The maximal views of a process are those views that are not a subset of any
other view. Intuitively, a maximal view defines a set of variables that should
always be accessed atomically (inside the same atomic block). A program is free
from high-level dataraces if all the views of one thread that are a subset of the
maximal views from another thread form an inclusion chain among themselves.

Our work builds on the proposal from Artho et al. [2], but we extend it by
incorporating the type of memory access (read or write) into the views, and refine
the rules for detecting high-level dataraces to consider this additional information
and the information given by the causal dependencies, with considerable positive
impact in the precision of the algorithm, as demonstrated in Section 6.

Praun and Gross [9] introduce method consistency as an extension of view
consistency. Based on the intuition that the variables that should be accessed
atomically in a given method are all the variables accessed inside a synchronized
block, the authors define the concept of method views that relates to Artho et al’s
maximal views, which aggregates all the shared variables accessed in a method
and also differentiates between read and write memory accesses. Similarly to
ours, this approach is more precise than Artho et al’s because it also detects
stale-value errors. Our algorithm however has higher precision than Praun’s and
give less false positives, as we use maximal views rather than method views.

Wang and Stoller [10] use the concept of thread atomicity to detect and pre-
vent dataraces, where thread atomicity guarantees that all concurrent executions
of a set of threads is equivalent to a sequential execution of those threads. In an
attempt to reduce the number of false positives yield by [10], Teixeira et al. [7]
proposed a variant of this algorithm based in the intuition that the majority of
the atomicity violations come from two consecutive atomic blocks that should be
merged into a single one. The authors detect dataraces by defining and detect-
ing some anomalous memory access patterns for both high-level dataraces and
stale-value errors. Our approach may be seen as a generalization of this concept
of memory access patterns, but in our case supported by the notion of causal
dependencies between variables, which allow to reduce considerably the number
of both false negatives and false positives.



e ::= (expression)
x (variables)

| null (null value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x := meth(~y) (method call)
| x.f := e (heap write)
| x := new id ∈ C (allocation)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| if b thenS elseS (conditional)
| while b doS (loop)
| return e (return)
| skip (Skip)

M ::= meth(~x) {S} (methods decl)

C ::= class id {field∗ (M | atomicM)∗} (class decl) P ::= C+ (program)

Fig. 2: Core language syntax

3 Core Language

We start by defining a core language that captures essential features of a subset
of the Java programming language, namely class declaration (class id{...}), ob-
ject creation (new), field dereferencing (x.f), assignment (x := e), and method
invocation (meth(~x)). The syntax of the language is defined by the grammar in
Fig. 2.

A program in this language is composed by a set of class declarations. Atomic
blocks correspond to methods that are declared using the atomic keyword. We
require the restriction of not allowing nesting of atomic blocks i.e., we do not
allow to call an atomic method inside another atomic method. Variables can
hold integers or object references and boolean values are encoded as integers
using the value 1 for true and value 0 for false. We also do not support exception
handling as normally found in typical object-oriented languages.

We now define some sets that are necessary to the understanding of the
following sections:

– Classes: is the set of all class identifiers of all classes declared in the program.
– Fields: is the set of all class fields defined in the program.
– Methods: is the the set of all methods defined in the program.
– Atomics ⊆ Methods: is the subset of methods that were declared as atomic.

We define a local (stack) variable as a pair of the form (x,m) where x is
the variable identifier and m ∈ Methods is the method where this variable is
declared. For the sake of simplicity we write the pair (x,m) as only x whenever
is not ambiguous to do so. The set of all local variables of a program is denoted
as LocalVars.

We define a global variable as an object field and we represent it as the pair
(c, f) where c ∈ Classes represents the class where field f ∈ Fields is declared.



The set of all global variables is denoted as GlobalVars. These global variables
appear in the code when dereferencing an object reference. For instance, in the
statement x.f := 4, the expression x.f represents a global variable of the form
(c, f) where c is the class of the object reference pointed by local variable x.
We define a function typeof : LocalVars→ Classes, which given a local variable
returns the class of the object reference that it holds. So, in the example above
c = typeof(x).

Please note that by deciding to represent an access to a field of an object as
a pair with the class of the object reference and the field accessed, we are not
able to differentiate between different object instances of the same class, and
hence we may consider that there is always at most one object instance of each
declared class in the program. This allows us to avoid pointer analysis at the
cost of losing precision and becoming unsound in some cases but, as the results
in Section 6 show, this design choice has proven to be very effective.

Finally we define the set Vars ≡ LocalVars+GlobalVars, which corresponds
to all variables used in the program, both local and global variables.

4 Causal Dependencies

There is a Causal dependency, which we will designate herein only as depen-
dency, between two program variables (local or global) if the value read from
one variable influences the value written into the other. For instance, the follow-
ing expression

y := x

generates a dependency between variable x and y because the value that is
written into variable y was read from variable x. As another example, consider
the following code:

i f ( x == 0) { y := 4 }
In this example, the variable y is written only if the condition x = 0 is true,
thus it depends on the current value of variable x and therefore there is also a
dependency between variables x and y. We represent a dependency between two
variables x and y as x ↪→ y where x ∈ Vars is the variable read and y ∈ Vars is
the variable written.

For each program we can compute a directed graph of causal dependencies.
The information provided by this graph plays an important role in finding corre-
lations between variables, which can be used to detect atomicity violations. We
can define two kinds of correlations between variables.

Definition 1 (Direct Correlation). There is a direct correlation between a
read variable x and a written variable y if there is a path from x to y, in a
dependency graph D.

Definition 2 (Common Correlation). There is a common correlation be-
tween a read variable x and a read variable y if there is a written variable z,
where z 6= x and z 6= y, for which there is a path from x to z and another path
from y to z, in a dependency graph D.



Grafo&incX_graph&BW&
&label&=&fig:dep_example&

valgetX.ret

0setX.p3h tmp,2h tmp,

Fig. 3: Dependency graph example

In the following section we describe how to compute the graph of dependen-
cies using symbolic execution.

4.1 Dependency Analysis

The construction of the dependency graph is done in two steps. In the first step
we only detect data dependencies between variables. In the second step we detect
control dependencies between variables. In the end we merge all dependencies
in a single graph.

Data Dependencies The accurate detection of data dependencies relies on
the precise localisation of where the variables are defined. SSA (Single Static
Assignment) [1] could be used, because each variable would only have one def-
inition site, but this only works for local variables, and we still need to track
each definition site for global variables. Therefore we did not use SSA as inter-
nal representation and we solve the problem by defining a new variable version
whenever the variable is updated.

A variable version is defined as a triple of the form (x, h,m) where x ∈ Vars
is a variable (local or global), h is a unique identifier, and m ∈ Atomics ∪ {⊥}
indicates if this variable is used inside an atomic method or not (⊥). The set of
all variable versions is denoted as Versions.

The unique identifier h is a hash value based on the line of code of the
respective definition site. If the version of the variable is not known in the current
context, as in the case of method arguments, a special hash value is used. We
denote this special hash value as h?.

Figure 3 depicts the dependency graph for the method ‘incX()’ from Fig. 1(b).
For the sake of simplicity, we omitted the method (m) part of the version repre-
sentation. We denote getX . ret as the return value of method getX(), and setX . p0
as the parameter of method setX( int p0). Both the return value and the param-
eter do not need to have an hash value associated, and thus we omitted it from
their representation.

In method incX( int val ), the value returned by the method getX() is written
into a temporary variable tmp, which is then incremented using parameter val
and is then used as a parameter on the invocation of method setX( int p0).

While analyzing this method, we first start by creating the dependency
getX . ret ↪→ (tmp, h2) between the return value of getX() method and variable



tmp with an hash value h2. In the next statement variable tmp is redefined
with a value resulting from the sum of the previous tmp variable and the val
parameter, and hence we create two dependencies (tmp, h2) ↪→ (tmp, h3) and
val ↪→ (tmp, h3), where the new version of tmp variable has the hash value h3.
Finally, we invoke method setX( int p0) with the value of tmp as parameter and
therefore we create the dependency (tmp, h3) ↪→ setX . p0 .

The symbolic execution rules are defined as a transition system (〈D,H, S〉 =⇒
〈D′,H′〉) over a state composed by a dependency graph D and a set of versions,
denoted hasH ⊆ Versions, which holds the current versions of each program vari-
able. We may find different versions of the same variable, in a single program
point, because our analysis over-approximates the run-time state of a program.
The rules can be depicted in Figure 4, and we always omit the method (m)
parameter from the representation of a variable version.

Function verH is used to retrieve the set of current versions of a variable, and
is defined as follows:

Definition 3 (Version Retrieval). Given a set of versions H and a variable
v ∈ Vars:

ver : P(Versions)× Vars→ P(Versions)

verH(v) ,

®
{(v, h,m) | (v, h,m) ∈ H} if ∃(v, h,m) ∈ H
{(v, h?,m)} otherwise

If there is not a version for variable v, a version with the special hash value h?

is returned.
Every time that a variable is written, it is created a new version for such

variable and all other existing current versions are replaced by the new one. We
define an helper function subsH for this purpose as:

Definition 4 (Version Substitution). Given a set of versions H and a vari-
able version (v, h,m) ∈ Versions:

subs : P(Versions)× Versions→ P(Versions)

subsH((v, h,m)) , (H \ {(v, h′,m′) | (v, h′,m′) ∈ H}) ∪ {(v, h,m)}

Each hash value is generated using function nhash, which given a statement
S, generates a new, and unique, hash value based of the line number of statement
S. This function is deterministic in the sense that for any statement S the same
hash value is always returned.

At the beginning of the analysis, the sets D and H are empty. We represent
meth. pi as the parameters of methods, and meth. ret as the return value of
a method. We denote as retVar the return value of the method that is being
analysed when evaluating the Return statement.

All assignment operations, namely Assign, Heap Read, and Heap Write,
create dependencies between all versions of the variables used in the right side of



〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D′,H′, S2〉 =⇒ 〈D′′,H′′〉
〈D,H, S1;S2〉 =⇒ 〈D′′,H′′〉

(Seq)

h = nhash(x := y)
H′ = subsH((x, h)) D′ = D ∪ {v ↪→ (x, h) | v ∈ verH(y)}

〈D,H, x := y〉 =⇒ 〈D′,H′〉
(Assign)

c = typeof(y) h = nhash(x := y.f) H′ = subsH((x, h))
D′ = D ∪ {v ↪→ (x, h) | v ∈ verH((c, f))}

〈D,H, x := y.f〉 =⇒ 〈D′,H′〉
(Heap Read)

c = typeof(x) h = nhash(x.f := y) H′ = subsH(((c, f), h))
D′ = D ∪ {v ↪→ ((c, f), h) | v ∈ verH(y)}

〈D,H, x.f := y〉 =⇒ 〈D′,H′〉
(Heap Write)

h = nhash(x := newC()) H′ = subsH((x, h))

〈D,H, x := newC()〉 =⇒ 〈D,H′〉
(Allocation)

h = nhash(x := meth(~y)) spec(meth) = 〈Df ,Hf 〉 D′ = Df ∪ D
D′′ = D′ ∪ {vi ↪→ meth. pi | yi ∈ ~y ∧ vi ∈ verH(yi)} ∪ {meth. ret ↪→ (x, h)}

H′ = {(v, h) | (v, h) ∈ H ∧ ((v, h?) ∈ Hf ∨ (v, h) /∈ Hf )}
H′′ = {(v, h) | (v, h) ∈ Hf ∧ h 6= h?}

〈D,H, x := meth(~y)〉 =⇒ 〈D′′,H′ ∪H′′〉
(Meth Call)

〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D,H, S2〉 =⇒ 〈D′′,H′′〉
H′′′ = H′ ∪H′′ ∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H′′}

∪{(v, h?) | (v, h1) ∈ H′′ ∧ (v, h2) /∈ H′}
〈D,H, if b thenS1 elseS2〉 =⇒ 〈D′ ∪ D′′,H′′′〉

(Conditional)

〈D,H, S〉 =⇒ 〈D′,H′〉 H′′ = H ∪H′ ∪ {(v, h?) | (v, h1) ∈ H ∧ (v, h2) /∈ H′}
∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H}
〈D,H,while b doS〉 =⇒ 〈D ∪ D′,H′′〉

(Loop)

D′ = D ∪ {v ↪→ retVar | v ∈ verH(x)}
〈D,H, returnx〉 =⇒ 〈D′,H〉

(Return)
〈D,H, skip〉 =⇒ 〈D,H〉

(Skip)

Fig. 4: Symbolic execution rules of data dependencies analysis

the assignment and the new version of the assigned variable. The newly generated
version is then used to replace all existing versions of the same variable.

In the rule Meth Call, the function spec returns the result, denoted as
〈Dp,Hp〉, of the analysis of method meth. The dependencies in Dp are merged
with the current dependencies and we create a dependency between each value
that is passed as an argument to meth and the respective declared parameter
meth. pi. We also need to update the variables’ versions that are generated inside
the method. If a variable was redefined (h 6= h?) inside meth then we replace the
existing versions with the new version, otherwise we keep the current versions.
Finally, we add one more dependency between the return value of method meth
and the assigned value.



In the rule Conditional, the dependencies are generated in both branches
and are merged with the initial D. We also generate the versions for each branch,
and if a variable x has a version h 6= h? in one branch but there is not any version
for the same variable in the other branch, then we generate a special version h?

for variable x and we join it to all the other versions. The intuition behind this
operation is that if a variable is written only in one of the branches then we
also need to add the case that the variable might not have been written. The
rule Loop is similar to the Conditional rule. The remaining rules should be
self-explanatory.

After analyzing all methods of the program we get a dependency graph for
the whole program, based on data-flow information. Next, we have to add the
remaining dependencies based on the control flow information.

Control Dependencies If an assignment or return statement is guarded by
some condition then that assignment or return statement depends on the vari-
ables that compose the condition. This situation may occur with every condi-
tional statement such as an if then else, or a while loop.

The analysis of control dependencies traverses the control flow graph and
keeps the set of variables that the assignments may depend on. When an assign-
ment or return statement is found we create a dependency between the current
variables, that it may depend on, and the respective assigned variable.

The symbolic execution rules are shown in Figure 5 as a transition system
(〈IS,D, S〉 =⇒ 〈IS ′,D′〉). The state is composed by a set of conditional vari-
ables IS ⊆ Versions, which correspond to the variable versions that the current
statement depends on, and a dependency graph D. In the beginning of the anal-
ysis the dependency graph is empty, and the set of conditional variables has the
union of all conditional variables that are present at all calling contexts of the
method that is going to be analyzed. For instance, given the program methods
m1, m2 and m3 where method m1 calls method m2 with the current conditional
variables set IS = {c1, c2}, and m3 calls method m2 with the current condi-
tional variables set IS = {c3, c4}, then the initial set of conditional variables
when analyzing method m2 is IS = {c1, c2, c3, c4}.

In the end of this analysis the resulting graph of dependencies is merged
with the one that resulted from the data dependencies analysis, described in the
previous section, thus forming the complete graph of causal dependencies.

For every kind of assignment we create a dependency between the current
conditional variables and the assigned variable. This situation may occur in the
rules Assign, Heap Read, Heap Write, Allocation and Meth Call. In
the case of a return statement, as in rule Return, we create a dependency with
the special variable retVar.

In the rules Conditional and Loop, we analyze each branch with a new
set of conditional variables composed by the current conditional variables plus
the variable of the condition. The variable is actually a variable version with
an unique hash value. When we exit the scope of the condition we remove the



〈IS,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D′, S2〉 =⇒ 〈IS ′′,D′′〉
〈IS,D, S1;S2〉 =⇒ 〈IS ′′,D′′〉

(Seq)

h = nhash(x := y) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := y〉 =⇒ 〈IS,D′〉

(Assign)

h = nhash(x := y.f) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := y.f〉 =⇒ 〈IS,D′〉

(Heap Read)

c = typeof(x)
h = nhash(x.f := y) D′ = D ∪ {v ↪→ ((c, f), h) | v ∈ IS}

〈IS,D, x.f := y〉 =⇒ 〈IS,D′〉
(Heap Write)

h = nhash(x := newC()) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := newC()〉 =⇒ 〈IS,D′〉

(Allocation)

h = nhash(x := meth(~y))
spec(meth) = 〈ISf ,Df 〉 D′ = D ∪Df ∪ {v ↪→ (x, h) | v ∈ IS}

〈IS,D, x := meth(~y)〉 =⇒ 〈IS,D′〉
(Meth Call)

IS ′ = IS ∪ {b}
〈IS ′,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D, S2〉 =⇒ 〈IS ′,D′′〉

〈IS,D, if b thenS1 elseS2〉 =⇒ 〈IS,D′ ∪ D′′〉
(Conditional)

IS ′ = IS ∪ {b} 〈IS ′,D, S〉 =⇒ 〈IS ′,D′〉
〈IS,D,while b doS〉 =⇒ 〈IS,D ∪D′〉

(Loop)

D′ = D ∪ {v ↪→ retVar | v ∈ IS}
〈IS,D, returnx〉 =⇒ 〈IS,D′〉

(Return)
〈IS,D, skip〉 =⇒ 〈IS,D〉

(Skip)

Fig. 5: Symbolic execution rules of control dependencies analysis

condition variable and proceed with the analysis. The remaining rules are self-
explanatory.

The result of these two analysis generate the graph of causal dependencies
that is used to detect the existence of atomicity violations in a concurrent pro-
gram, as we will show in the following sections.

5 Atomicity Violations

The purpose of our work is to detect two kinds of atomicity errors, the high-
level datarace and the stale-value error, that may occur during the execution of
concurrent programs that use atomic blocks to guarantee mutual exclusion in
the access to shared data.

The definition of both errors assume that the concurrent program has no
low-level dataraces, meaning that all accesses to shared variables are done inside
atomic blocks.



5.1 High Level Dataraces

A view, as described by Artho et al. in [2], expresses what variables are accessed
inside a given atomic code block. We extend this definition by also keeping the
kind of access (read or write) that was made for each variable in the view.

Please note that a view only stores global variables. Local variables are not
shared between threads and thus do not require synchronized accesses.

We denote as Accesses the set of memory accesses made inside an atomic
block. An access a ∈ Accesses is a pair of the form (α, v) where α ∈ {r, w}
represents the kind of access (r-read or w-write) and v ∈ GlobalVars is a global
variable1. A view is a subset of Accesses and the set of all views in a program is
denoted as Views. A view is always associated with one atomic method, and we
define the bijective function Γ that given a view returns the associated atomic
method as:

Γ : Views→ Atomics

The inverse function, denoted as Γ−1, returns the view associated with a given
atomic method. The set of generated views of a process p, denoted as V (p),
corresponds to the atomic blocks executed by one process, and is defined as:

v ∈ V (p)⇔ m = Γ (v) ∧ executes(p,m)

The predicate executes asserts if a method m may be executed by process p, and
is defined by an auxiliary static analysis that computes the set of processes and
the atomic methods that are called in each process.

We can refine the previous definition of V (p) with a parameter α, where
α ∈ {r, w}, to get only the views of a process with read (Vr) or write accesses
(Vw).

Definition 5 (Procedure Views).

Vα(p) = {v2 | v1 ∈ V (p) ∧ v2 = {(α, x) | (α, x) ∈ v1}} where α ∈ {r, w}

We defined a static analysis to compute a view of an atomic method. Every
time a global variable is read or written, the corresponding read or write access is
created and added to the view. The view resulting from a method call is merged
with the current view that is being computed. In the case of conditional and
loop statements we perform an over-approximation union of the views of each
branch. In the end of the analysis we have the set of views corresponding to the
atomic methods present in the program code.

The maximal views of a process, denoted as Mα, are all the views of the
process that are not a subset of any other view in that same process. A maximal
view is defined as follows:

1 Please remember that global variables are represented as a pair with a class identifier
and the field accessed.



Definition 6 (Maximal Views). Given a process p, a maximal view vm is
defined as:

vm ∈Mα(p)⇔ vm ∈ Vα(p) ∧ (∀v ∈ Vα(p) : vm ⊆ v ⇒ v = vm) where α ∈ {r, w}

Each maximal view represent the set of variables that should be accessed
atomically, i.e., should always be accessed in the same atomic block.

Given a set of views of a process p and a maximal view vm of another process,
we define the read or write overlapping views of process p with view vm as all
the non empty intersection views between vm and the views of process p.

Definition 7 (Overlapping Views). Given a process p and maximal view
vm:

overlapα(p, vm) , {vm ∩ v | v ∈ Vα(p) ∧ vm ∩ v 6= ∅} where α ∈ {r, w}

The notion of compatibility between a process p and a view vm, defined in [2],
states that a process p and a view vm are compatible if all their overlapping
views form a chain. We extended this definition with the information given by
the causal dependencies graph, and we additionally require that, even if the
read overlapping views do not form a chain, there may not exist a common
correlation (Definition 2) between the variables in the read overlapping views.

Definition 8 (Process Compatibility). Given a process p and maximal view
vm:

compw(p, vm)⇔ ∀v1, v2 ∈ overlapw(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

compr(p, vm)⇔ ∀v1, v2 ∈ overlapr(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

∨ ¬CommonCorrelation(v1, v2)

The intuition behind this additional condition is that, even if two shared variables
that belong to a maximal view were read in different atomic blocks, only if both
variables are used in a common write operation we will consider that there is an
incompatibility.

We can now define the view consistency safety property in terms of the
compatibility between all pairs of processes of a program. A process may only
have views that are compatible with all maximal views of another process. A
program is free from high-level dataraces if the following condition holds:

Definition 9 (View Consistency).

∀p1, p2 ∈ PS ,mr ∈Mr(p1),mw ∈Mw(p1) : compw(p2,mr) ∧ compr(p2,mw)

where PS is the set of processes.



5.2 Stale-Value Error

Stale-value errors are a class of atomicity violations that are not detected by the
view consistency property. Our approach to detect these kind of errors uses the
graph of causal dependencies to detect values that escape the scope of an atomic
block (e.g., by assigning a shared variable to a local variable) and are later used
inside another atomic block (e.g., by assigning the previous local variable to a
shared variable).

First we define the set IVersions ⊆ Versions, which stores all global variable
versions that were accessed inside an atomic block. Each variable version has a
parameter m that indicates in which atomic method it was defined, or has the
value ⊥ if it was not used inside an atomic method.

Definition 10 (Atomic Variable Version). A global variable version (x, h,m)
is an atomic variable if:

(x, h,m) ∈ IVersions⇔ (x, h,m) ∈ Versions ∧ x ∈ GlobalVars ∧ m 6= ⊥

Now we define a new graph, denoted as DV , which represent the dependencies
between views. A labeled edge of this graph DV is represented as (m1, x,m2)
where m1,m2 ∈ Atomics and x ∈ GlobalVars, and can be interpreted as atomic
method m2 depends on atomic method m1 through global variable x. Intuitively,
this means that the value of variable x exited the scope of methodm1 and entered
the scope of method m2, and while it was out of the atomic scopes, it might have
become outdated.

Each edge (m1, x1,m2) of a view dependency graph DV , is created when,
given two version variables a1 = (x1, h1,m1) ∈ IVersions and a2 = (x2, h2,m2) ∈
IVersions, and a causal dependency graph D, the following conditions hold:

(DirectCorrelation(D, a1, a2) ∧m1 6= m2) ∨ (m1 = m2

∧ DirectCorrelation(D, a1,m1 . ret) ∧ DirectCorrelation(D,m1 . ret ,m1 . pi)

∧ DirectCorrelation(D,m1 . pi, a2))

The predicate DirectCorrelation asserts if two variables are directly correlated
according to Definition 1. These conditions state that there is a dependency
between m1 and m2 through variable x1, if the variable version a1 is directly
correlated with a2 when m1 and m2 are two different atomic methods, or if the
two methods m1 and m2 are the same, then we must be sure that the value of
x1 left out the scope of the method and then entered it again.

A process p writes in a variable x ∈ Vars if there is a write access on variable
x in one of the views of process p:

writes(x, p)⇔ ∃v ∈ Vw(p) : (w, x) ∈ v

The safety property for stale-value errors can be defined as the case where
no process writes to a global variable that leaves, and then enters, the scope of
an atomic method of another process.



Table 1: Results for benchmarks — Set 1

AV False Negatives False Positives Acc. LOC Time
Tests MoTH Artho Teix. MoTH Artho Teix. Vars (sec.)

Connection [4] 2 0 1 1 0 0 1 34 112 45

Coord03 [2] 1 0 0 0 0 0 3 13 170 43
Local [2] 1 0 1 0 0 0 1 3 33 42
NASA [2] 1 0 0 0 0 0 0 7 121 43

Coord04 [3] 1 0 0 0 0 0 3 7 47 40
Buffer [3] 0 0 0 0 1 0 7 8 64 41
DoubleCheck [3] 0 0 0 0 1 0 2 7 51 41

StringBuffer [5] 1 0 1 1 0 0 0 12 52 44

Account [9] 1 0 1 0 0 0 0 3 65 40
Jigsaw [9] 1 0 0 0 0 0 1 33 145 40
OverReporting [9] 0 0 0 0 0 0 2 6 52 42
UnderReporting [9] 1 0 1 0 0 0 0 3 31 39

Allocate Vector [6] 1 0 1 0 0 0 1 24 304 41

Knight [7] 1 0 1 0 0 0 2 10 223 41
Arithmetic Database [7] 3 0 3 1 1 0 0 24 416 54

Total 15 0 10 3 3 0 23 – – –

Definition 11 (Stale-Value Safety).

∀p ∈ PS , (m1, x,m2) ∈ DV : ¬writes(x, p) where PS is the set of processes

If there is a view dependency for variable x and there is a process p that
writes on that variable then a stale-value error is detected.

6 Evaluation

To evaluate the accuracy of our algorithms and techniques, we adapted and
implemented the theoretical framework described in the previous sections to
the Java Bytecode language, where the atomic methods are defined using the
@Atomic method annotation. We used the data-flow analysis infrastructure of
the Soot framework [8] to implement all the described analysis.

Our tool starts by parsing a Java bytecode program and computing a set
of analysis, namely: process analysis to identify which threads may exists when
executing the program; instance type analysis to handle Java interfaces and dy-
namic dispatching; views analysis, to compute the views of each atomic method;
inter-procedural causal dependency analysis, to compute dependencies between
variables used in assignments and conditional code blocks. Once all these analy-
sis are concluded, the tool creates the causal dependency graph. Another analysis
is then ran over this dependency graph to identify atomic blocks that break the
atomicity violation safety properties.

Besides comparing our results with those reported on the literature for indi-
vidual benchmarks, we did an exhaustive comparison with two other approaches:
Artho et al’s [2], because our approach is an extension of this work; and Teix-
eira’s [7], because their results are currently a reference for the field. The results



Table 2: Results for benchmarks — Set 2

AV False Negatives False Positives Acc. LOC Time
Tests Ours Artho Ours Artho Vars (sec.)

Elevator [9] 16 0 16 6 4 39 558 46
Philo [9] 0 0 0 2 0 9/594 96 45/612
Tsp [9] 0 0 0 2 0 635 795 869
Store 2 0 1 0 1 44/608 901 149/1763

Total 18 0 17 10 5 – – –

presented were obtained by running our tool with the algorithms described in
this paper; by using Artho et al’s algorithm implemented with static analysis
techniques (rather than the dynamic analysis reported in [2]); and by running
Teixeira’s tool on the Java source (instead of the Bytecode).

Tables 1 and 2 summarize the results achieved by applying our tool to a set
of benchmarking programs, most of them well known from related works and
compares them with the two works cited above. Teixeira’s tool was unable to
process some of the benchmarks, so they are reported in a separate second set.
Columns AV indicate the number of known atomicity violations, false negatives
indicate the number of known program atomicity violations that were missed by
the approach2, false positives indicate the number of reported but non-existing
atomicity violations, Acc. Vars indicate the number of variables accessed inside
atomic regions and is an indication of the problem size, together with the number
of LOC, and how long it took for our analysis to run.

In the case of Table 2, the benchmarks Philo and Store have two different
values for accessed variables and time. The second values report on the original
benchmarks, which includes some (non-essential) calls to I/O methods in the
JDK library. The first values report on a tailored version of the benchmarks
where those calls to the JDK library were commented.

For the benchmarks listed in Table 1, our approach revealed a very high
accuracy by reporting no false negatives and only three false positives. The
false positive in the Buffer benchmark is due to an assumption claim from its
authors that is not implemented in the actual code. The information collected
by the Causal Dependency Analysis is incomplete and imprecise and originates
false positives in the Double Check and Arithmetic Database benchmarks while
checking for stale-value errors, which are not detected by Artho et al’s approach.

For the benchmarks listed in Table 2, our appropriate again reveled very high
accuracy, as although it reported 10 false positives (vs. only 5 from Artho et al’s),
it reported zero false negatives (vs. 17 from Artho et al’s). These benchmarks
also indicate that our algorithms scale well with the the size of the problem, both
in the number of accessed variables inside the atomic blocks and the number of
lines of code.

2 The identification of false negative is only possible because the sets of atomicity
violations in the benchmarking programs are well known.



7 Conclusions

In this paper we presented a novel approach to detect high-level dataraces and
stale-value errors in concurrent programs. The proposed approach relies on the
notion of causal dependencies to improve the precision of previous detection
techniques. The high-level dataraces are detected using an algorithm based on
a previous work by Artho et al. refined to distinguish between read and write
accesses and extended with the information given by the causal dependencies.
The stale-value errors are detected using the information given by the causal
dependencies, which exposes the values of variables that escaped an atomic block
and entered into another atomic block.

Our detection analysis still remains unsound mainly due to the absence of
pointer analysis and to the way that views are computed. But these design
decisions allowed us to maintain the scalability of our approach without incurring
in a strong precision loss, as our experimental results confirm.

We evaluated our analysis techniques with well known examples from the
literature and compared them to previous works. Our results show that we are
able to detect all atomicity violations present in the examples, while reporting
a low number of false positives.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proc. of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. pp. 1–11. POPL ’88, ACM, New York, NY, USA (1988)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. Software Testing, Veri-
fication and Reliability 13(4), 207–227 (Dec 2003)

3. Artho, C., Havelund, K., Biere, A.: Using block-local atomicity to detect stale-value
concurrency errors. In: ATVA. pp. 150–164 (2004)

4. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. SIGPLAN Not. 43(10), 227–244 (2008)

5. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 256–267. ACM,
New York, NY, USA (2004)

6. IBM HRL - Concurrency Testing Repository
7. Teixeira, B., Lourenço, J.M., Farchi, E., Dias, R.J., Sousa, D.G.: Detection of

transactional memory anomalies using static analysis. In: Proceedings of the 8th
Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging.
pp. 26–36. PADTAD ’10, ACM, New York, NY, USA (2010)

8. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot
- a Java optimization framework. In: Proceedings of CASCON 1999. pp. 125–135
(1999), http://www.sable.mcgill.ca/publications

9. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. In: Journal of Object Technology. p. 2004 (2003)

10. Wang, L., Stoller, S.: Run-Time Analysis for Atomicity. Electronic Notes in The-
oretical Computer Science 89(2), 191–209 (Oct 2003)


