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Abstract. This paper describes a debugging interface that has been developed for a parallel software en-
gineering environment and that was developed on top of the PVM environment in the scope of the SEPP
and HPCTTI projects of the COPERNICUS Programme. The main goal of this interface is to provide the
basic debugging functionalities that are required by some components of that environment. We give special
attention to the requirements posed by high-level tools of the environment, and to the need of providing a
flexible debugging support layer that can be suitably adapted and extended. We present the system logical
architecture and the interface specification of the debugging engine. We discuss its interfacing with other
components of the environment, namely a graphical editor for the GRAPNEL visual parallel programming
language, and a testing tool. We finally describe current work on the improvement of the debugging engine.
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1 Introduction

The task of developing parallel and distributed programs faces many difficulties making it very hard to understand
and predict the logical behavior of a program as well as its performance. This justifies the need to develop suitable
tools and to integrate such tools in a flexible and user-friendly environment.

The work we describe in this paper is part of an ongoing project which aims at the development of a software
engineering environment for parallel applications [15] [26]. Overall, this project encompasses issues in the design
and implementation of visual programming components for graph-based design of parallel programs, mapping
components for specific hardware target distributed-memory architectures, simulation support tools, real parallel
execution with monitoring and load-balancing support, and testing and debugging tools. Here we discuss design
and implementation issues for one component of such parallel programming environment: the debugging tool.

The organization of the paper is as follows. In the next section we discuss the main design issues for a distributed
and parallel debugging tool, and briefly review the current state of the art. Then we present the distributed
debugging engine DDBG we have developed on top of the PVM environment. A section follows with the description
of how our tool interfaces with two components of the SEPP environment, namely the GRAPNEL graphical editor
[16] [24] and the STEPS testing tool [17]. In the conclusions we discuss our ongoing work and future research on
this topic.

2 Debugging Parallel and Distributed Systems

Traditional sequential debugging techniques offer the following typical functionalities: cyclic interactive debug-
ging, memory dumps, tracing, and breakpoints [1]. However, these techniques cannot be directly applied in a
parallel and distributed environment. This is due to the following facts: parallel and distributed programs ex-
hibit non-deterministic and nonreproducible behavhior; lack of global state makes it very difficult to manage global
predicates on the system state; and there is an intrusion effect of the debugging system upon the observed program.

The most immediate approach to support debugging functionalities in a parallel and distributed environment
is through the collection of multiple sequential debuggers, each attached to an application process. This may
provide similar commands as available in conventional debuggers, possibly extended to deal with parallelism and
communication. However, this does not solve any of the above difficulties.

In the past 10 years, several proposals have been made to address these problems [12] [5] [2] [8] [11] [13] [7] [14].
We are particularly interested in an approach that models the debugger as an event-based system. This provides
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several interesting characteristics: it uses a previously recorded event trace, in order to analyze the execution
history, and to guide program replay with reproducible behavior, and so it can make use of (suitably adapted)
conventional debugging techniques; it may rely upon monitoring techniques, for event generation and recording;
it can benefit from optimizations that allow to reduce the amount of collected information, namely based on the
instant replay technique [12]) and so it can greatly reduce the intrusion effect; it eases the management involved
in the global coordination of parallel processes and inspection of global system states.

There are already several systems offering some of the above characteristics. However, most of these systems
have several limitations in the help they offer towards a better user understanding of the application behavior,
and in the type of user interaction towards a selective user-driven examination of the causes of incorrect program
behavior, as well an inadequate integration with other tools of the parallel programming environment (such as
simulator and visualization tools). Additionally some of those systems are very much dependent upon a specific
hardware or operating system plataform.

2.1 Integrating Testing and Debugging Tools

One important issue concerns reaching a close integration of static analysis and dynamic analysis methods in
order to guarantee the final quality of the parallel and distributed software. Besides formal methods to assure
the quality of parallel programs, systematic testing approaches play a very important role in this process. The
development of a methodology and tool to aid the user in the process of identifying the paths which should be
generated and tested, is a key component of an advanced testing and debugging environment, and encompasses
several issues: test case design, data generation, test generation and execution, test evaluation, and global quality
assessment with the help of decision support systems. This aspect is being investigated within the scope of the
mentioned Copernicus projects [15] [17], and a detailed discussion is beyond the scope of this paper. However,
an important aspect of the approach followed in our project is to allow the testing and evaluation stages to be
performed through a close interaction with the dynamic debugging tool. This is achieved by supporting user
controlled execution of the paths under test, allowing the user to inspect program behavior at the desired level of
abstraction and with the guarantee of the reproducibility of its execution.

2.2 Providing Basic Debugging Support to other Tools

A large diversity of debugging tools have been developed for distinct parallel and distributed programming
languages, as well as for distinct parallel computer systems. In particular, the appearance of shared-memory
and distributed-memory multiprocessors during the 80s has originated the need to develop specific debugging
support, both at the level of the operating system and at the level of the communication libraries [5] [8] [7].
The problem with these debugging tools is that usually they are specific to a particular runtime or hardware
environment, and as such they are very difficult to adapt to other parallel platforms. On the other hand, the
evolution of parallel and distributed systems towards more user-friendly environments requires a very flexible
software development platform for the experimentation with new programming models and the corresponding
development tools, e.g. for monitoring, debugging, animation, visualization, and performance analysis. Several
years of experimentation with these parallel computing platforms still show a need to provide a more unified
framework to support the implementation of high-level debugging functionalities. This framework must address
two fundamental issues:

e A well-defined interface must be provided to be used by high-level tools of the parallel development envi-
ronment, namely graphical editors, graphical interfaces, runtime support systems for distinct parallel and
distributed language models, and testing and high-level debugging tools;

o A well-defined interface must be provided to the underlying operating system and hardware platform, assuring
portability and adaptability of the debugging support architecture, while still allowing efficient implementa-
tion on top of each specific physical environment.

Each of the above issues may be separately addressed, to a certain extent.

Concerning the first issue, we have defined an interface to a library of debugging primitives, as described in the
next section. Besides providing the commands that are typically supported by conventional debuggers for sequential
computation models, this interface provides the basic primitives to inspect and control distributed processes. The
design of the debugging interface assumes an asynchronous mode of interaction with the client tools, and its current
implementation relies upon a TCP/IP socket-based communication protocol. However, as this protocol is hidden
within well-defined interface functions it may change without the need to modify the client tool.

Concerning the second issue, we are exploiting the fact that most of the basic debugging support functionalities
can be integrated into a monitoring layer. The goal of a monitoring activity is to gather runtime information
about an observed system, including several aspects such as collecting information, registering the detected events,
generating and maintaining suitable event trace formats, and providing suitable interfaces to high-level tools [10].
The results provided by a monitoring tool can be used by very distinct tools, at distinct levels of a computing system,



and for very distinct purposes, namely to provide qualitative descriptions of program behavior, to feed performance-
oriented tools, and to support program testing and debugging. Concerning the latter aspect, the debugging activity
requires some monitoring support, namely for inspection of processes and communication channels, and for process
control.

A discussion of monitoring issues is beyond the scope of this paper although they are also being addressed in
the above mentioned project [18]. However, it is interesting to note that it is also being recognized that, in order
to handle the distinct and evolving requirements posed by high-level tools, a monitoring layer should provide well-
defined interfaces, and support easy definition of new interfaces. A uniform set of mechanisms for event handling,
i.e. accessing, filtering, searching, and manipulation, is required. This is the only way to offer a stable monitoring
layer that will be used by a large number of tools, and will be able to evolve, as new needs arise. Only a few
experiments have been proposed towards such goal, namely involving object-based interfaces for event access. A
significant and very broad effort has recently been launched towards meeting the above mentioned goals [9]. We
are currently pursuing a similar goal, as far as debugging support is concerned.

In order to experiment with the issues involved in the design of a flexible and general-purpose debugging archi-
tecture, we have implemented the above mentioned interface library on top of the PVM [21] system. From the
user point of view, any application or tool can be linked with the interface library and access all the distributed
debugging functionalities. From the implementation point of view, the current design has a distributed organization
consisting of multiple monitor/debugger instances which are scattered on the nodes of a PVM platform.

3 A Distributed Debugging Engine

In this section we present the interface provided by our distributed debugging tool called DDBG and its logical
architecture. The debugging functionalities may be summarized as follows:

e Dynamic attachment and deattachment of debugger instances to already running distributed processes; con-
trol of remote debugger instances from a central debugging user interface;

e An interface library that gives access to such control of remote debuggers, and which can be used by high-level
tools, like a graphical editor, and testing tools;

e An event trace is collected with minimal information to support program replay in PVM programs. This
allows reproducible behavior and will make the debugging control commands available during a replay session;
a checkpoint facility under replay mode will support execution replay from an intermediate point, instead of
from the beginning of the program only.

Currently there is a working prototype implementing the first two of the above functionalities. Full support
for program replay and checkpointing is still under development. The prototype runs on the PVM environment,
and relies upon a well known debugger—the GNU gdb—to provide conventional debugging commands within each
sequential process.

Any user tool can access the debugging engine as a client process that uses the debugging library to interact
with the main debugging daemon. The main daemon manages all the interactions with the client process, by
forwarding the debugging commands to the machines where the application processes are placed, and gathering
their corresponding answers. This is achieved by having a local daemon on each machine that is responsible for
the activation and control of multiple debugger instances located in that machine. Each application process can be
dynamically attached (detached) to (from) a distinct debugger instance. The master daemon and the set of local
daemons form a distributed architecture that can also be used to perform distributed monitoring functions.

Communication between the master and the local daemons is based on the PVM primitives. Communication
between the master daemon and the user client process is based on UNIX sockets. In a first design UNIX domain
sockets were used which requires the master daemon to run on the same machine as the user client process. However
this limitation is removed by using UNIX Internet sockets for that communication. Communication between the
local daemons and the debugger instances on each machine is currently based on UNIX pipes.

This is illustrated in the following figure where the main components of the debugging architecture are shown.

4 Debugging Library functions

PVM uses task ID’s (integers) to identify the processes, but an user application or tool may use specific Process
ID’s (strings) to do the same. In order to support the mapping between the user symbolic name and the PVM
naming scheme, a name mapping function is provided. This allows any of the library primitives, as well as the
corresponding user consoles, to refer to string or integer process identifiers, although in the following description
we always use string identifiers.
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Figure 1. The debugging architecture

Currently the communication between a client and the master debugging daemon requires the client to invoke a
system call (see init() below?) to initialize the library 3. If there is no main debugging daemon running at the time
the initialization is requested, it will be started automatically. This initialization also establishes a communication
channel that will be used for future interactions between this client and the debugging engine®.

All the services provided by the debugging engine are classified as belonging to one of two classes:

¢ Immediate answer services. These services will either fail or are immediately executed by returning the
relevant data as output parameter(s) to the corresponding system call function.

¢ Delayed answer services. These services—e.g. next()—will either fail with an immediate return, or they
may take an unpredictable amount of time until its execution is finished. In the latter case, the corresponding
library function also returns immediately to the calling process but informs the user about the unavailability
of the data, which can later be gathered by invoking the function get_special_info(), as defined below.

All the library primitives return a status code concerning the immediate or delayed type of answer, although
this is not shown in the function description that is presented in the following.

In principle the interaction with the debugging system can be completely transparent. The client just invokes
library functions, and gets the corresponding returns in an immediate way or in a delayed way. In the latter case,
the following function can be used:

e int get_special_info(char *procid, struct code_info *info)
If there is returning data available (from a delayed answer command), the funtion will return a corresponding
status indication with the user Process ID in procid and the data in info. Otherwise it will inform about
the unvailability of the data.

This function has a non-blocking semantics so that the asynchronous execution of the user application that
controls the debugging interface is allowed. It is up to the user to poll the return status by repeated invocation of
this function, or alternatively by selectively waiting on the UNIX file descriptor that was returned by the function
init().

4.1 Data types used

The library uses several different structured types which describe information concerning relevant program loca-
tions, breakpoints, stack frames, processes, variables and function argumentsi[19]. As an example, the information
given by struct code_info is presented below and it is used to describe references to the program code.

struct code_info {
int 1line_no;
char function_namel[];
char source_filel[];

};

The functionalities currently offered by the debugging interface are summarized in the following sections®.

2 Actually, all library function names are prefixed with dbg_.

3The current prototype assumes that the PVM system is already running.

4Currently, a UNTX file descriptor is returned corresponding to an interprocess communication socket.

5They are adapted from identical functions provided by the GNU gdb debugger, but they operate upon multiple distributed processes.



4.2 Controlling the debugging session

The functions init() and end() support, respectively, the initialization and the cleanup of the debugging envi-
ronment.

The dynamic attachment of existing processes to new debugger instances is supported by the function attach(
char *procid, struct code_info *info ). It starts a new debugger and attaches it to the process specified in
procid. The process will be stopped and will become under control of the debugger. The relevant data is returned
in info to determine where the process was stopped. A complementary function (detach( char *procid )) kills
the debugger associated with a given process and leaves the process running free. The function kill( char *procid
) kills the specified process and its associated debugger.

Information about new components in the debugging environment may be obtained with the function get_news(
struct news_info *info ). Currently, only information on new processes on the system is available. It returns
a status code indicating if there are news or not, and the information may be obtained referring to user symbolic
process identifiers or to PVM task IDs, depending on a selection field in the info structure.

4.3 Managing breakpoints

Basic support is provided to control program execution through breakpoints which are currently only associated
with individual processes. The function set_break( char *procid, struct code_info *info ) sets a breakpoint
on a given process process in the line/function that is specified in info. An unique breakpoint id is returned. A
similar function sets a temporary breakpoint (one time only).

Breakpoints can be set conditionally, depending on the evaluation of an expression, by invoking set_cond_break (
char *procid, struct code_info *info, char *exp ). If the expression exp evaluates to TRUE, a breakpoint is set
in the specified process, in the line/function specified in info (conditional breakpoint). The expression is evaluated
every time the breakpoint is reached. An unique breakpoint id is returned.

Watchpoints can also be specified for a given process by invoking the function set_watch( char *procid,
char *exp ). This function sets a watchpoint on the given process procid such that the process will stop when
the condition in exp will become TRUE.

Breakpoints can be temporarily disabled, enabled, cleared (permanently removed), or ignored a certain number
of times by invoking corresponding library primitives.

4.4 Managing the program stack

Detailed inspection of stack frames is possible within an specified process by invoking the function select_frame(
char *procid, int count ). This function selects a new current frame for that process such that the frame is
located count frames up or down referring to the current frame. If count = 0, it does nothing. The distance
between the previous and the new current frames is returned by the function.

4.5 Controlling the execution of the (debugged) processes

The library supports classical debugging commands to control the execution of each individual process in a
detailed way. Using these commands, as well as the other commands that handle breakpoints, and display or
update process information, it is possible to implement higher level debugging functionalities. This was used to
implement the interfacing of DDBG to other tools.

The function run( char *procid ) allows to start running a (previously spawned) process from the beginning,
until a breakpoint is found or the expression of a watchpoint is true, or until the end, if none above the conditions
ocurs. The execution of a stopped process can be continued by invoking continue( char *procid ). The execution
proceeds until one of the above mentioned conditions occurs. Another function finish( char *procid ) allows to
run a process until the selected stack frame returns, as defined by the select_frame() function. It is also possible
to pop the selected stack frame without executing and return in info the relevant data to determine where the
process was stopped.

Step by step execution is supported by the functions next( char *procid ) and step( char *procid ) which
execute the code until the next instruction, by respectively executing subroutine code as one instruction only or as
normal code.

Interrupting the execution of a process is supported by the interrupt( char *procid, struct code_info *info
). The returned info contains information to determine where the process was stopped.

4.6 Information

These primitives allow to inspect or modify local information in each process.

The function print( char *procid, char *fmt, char *exp, char *value ) returns in value the result of the
evaluation of expression exp in the context of the given process procid, according to the given format fmt.

By specifying the var_info structure, where a variable’s name is given, it is possible to get and set the values
of individually named process variables, by invoking, respectively, the function get_var( char *procid, struct
var_info *var ) or set_var( char *procid, struct var_info *var ).



Information on process breakpoints is also possible using info_break( int brkptid, struct brkpt_info *info
). The information about the specified breakpoint is returned in the info structure, including e.g. number, type
(simple or conditional), line number or expression associated.

The following text could be printed based on a set of return values of this function:

Num Type Process Filename Where Condition State Hits
1 Breakpoint  0x0abf8abc  main.c f:main() tempign 1
2 TempBrkpt 0xa8762345 main.c frevent() disabled 5
3 CondBrkpt  0x00546543  utils.c 1:123 n==>5 ignored 0
3 Watchpoint  0x4a7f6bc3  main.c event==32 enabled 2

Inspection of the process stack is obtained by calling several functions which return a trace of selected stack
frames in a given process with information such as the function name, arguments, number of local variables and
for each variable, its name and value.

Finally, information about the status of a process can be obtained through the function info_process( char *pro-
cid, struct proc_info *info ) as illustrated below.

If process 0x45677654 is running, and process 0x56784321 is stopped at a breakpoint, then the following infor-
mation could be reported:

Symbols from ” /home/guest/myprogram”

TaskId Status File Line Function
0x45677654 running

0x6798ab3c  ready

0x56784321 stopped main.c 123  fibb

5 Interfacing the Debugging Engine to other Tools

In order to assess the usefulness of our distributed debugging interface, we discuss our experimentation with
its interfacing to two components of the SEPP programming environment. Here we just focus on the specific
requirements put upon the distributed debugging system by those tools, which are described elsewhere [15].

5.1 X-based Interface to the Debugging System

In order to provide a more user-friendly interface to the debugging commands, another client of the master
debugging daemon actually implements an X-based interface allowing the user to control and inspect the distributed
processes. All the interfacing of this client to the master debugging daemon actually relies upon the already
described functionalities. So this is a good test to evaluate the flexibility of the debugging interface.

5.2 Interface to the GRAPNEL editor

The SEPP environment is centered around the GRAPNEL model, a graph-based parallel programming language
that is described elsewhere [16] [24]. This model supports a structured style for designing parallel applications,
and it is implemented through a set of integrated tools, such as a graphical editor, a compiler to an intermediate
textual representation, and to the C language extended with PVM primitives, a visualization tool, a simulator, a
testing and debugging tool, and monitoring and a load-balancing tools. The development of those tools is a major
effort being undertaken within the mentioned projects [26].

Concerning debugging, the GRAPNEL editor offers an user-friendly interface that allows to invoke debugging
commands with reference to the graphical entities that are displayed in the user windows. On the other hand,
there is a requirement to display in a convenient way the debugging outputs such that only GRAPNEL abstractions
should be handled by the user at this level. This offers a very high-level interface to the user, such that the infor-
mation on specific debugging commands is directly related to the GRAPNEL source program, e.g. by highlighting
corresponding entities in the graphical representation, and their corresponding lines of source code in the textual
program representation. The editor interface also accesses a X-based window which displays, under user control,
the variables defined within the GRAPNEL structures. This X-based interface is automatically started when the
user hits the debugger item under one of the menu options provided by the editor. Then a display is presented
including the user processes and the user can select the processes to be monitored, and individual variables within
these processes. This is part of the functionality that is provided by the X-based interface to the debugging system
as mentioned above.

The GRAPNEL editor [25] runs as a process that handles asynchronously generated events, namely user inter-
action events. When interfacing the editor to the distributed debugger, this asynchronous mode of operation is
handled by using the described function get_special_info()). A more efficient control is possible by having the
editor directly accessing the interprocess communication socket that is created by the function init(). Although



this is not so transparent when compared to the exclusive use of the above function get_special_info(), it allows
the editor to selectively wait & on that socket.

5.3 Interface to a Testing tool

Within the scope of the SEPP project, a significant effort has been centered upon the study and development
of a testing methodology and associated software tools [17]. Namely, an interactive tool was developed providing
the expertise to systematically generate reproducible test patterns for the concurrency and communication-based
program structures. During the testing stage, distinct testing scenarios are identified, their corresponding program
paths are generated, and then corresponding scripts are produced so that it is possible to submit them to a
real parallel execution. Based on that information, generated during the testing phase, it is possible to control
the replay of program execution, suitable instrumented with calls to the debugging system breakpoints, stepwise
execution, etc. The interfacing of such testing tool (called STEPS [17]) to the distributed debugging system is
directly supported by the mentioned script files which consist of sequences of debugging commands such that
specific execution paths are followed under real execution.

5.4 Interface to a Parallel Logic Programming Language

Our distributed debugging system is currently being used to develop a distributed debugger for PVM-Prolog
[23]. PVM-Prolog is an extension to Prolog [27] that provides full access to the PVM environment. Parallel and
distributed applications are built by specifying multiple Prolog processes, which cooperate by message-passing
primitives. The interface predicates closely match the corresponding primitives of the PVM system, with suitable
interpretations according to Prolog semantics, e.g. messages are interpreted as Prolog terms. In this implementation,
the debugging library is made accessible to each Prolog process through a similar set of basic predicates for process
control and inspection.

6 Conclusions and Future Work

We have discussed issues in the design and implementation of a flexible distributed debugging engine. Many
existing debugging tools are tied to specific hardware and software environments, or are integrated within specific
programming environments. We decided to built the DDBG system due to our goal of investigating issues in the
design and implementation of an unified layer for monitoring and debugging.

In summary the current design of the distributed debugging engine provides a resonable flexibility as it allows the
user tool, the master daemon, and the remote debuggers to run on distinct machines or processors. On the other
hand, our experimentation shows that the current definition of the interface has enough flexibility to accomodate
very different tools, and it is extensible to support, for instance, the development of the program replay facility.
The identification of the sources of non-determinism which arise in a PVM program is the first step in the design
of such a replay facility. Once identified such events, the tracing mechanism is supposed to collect them so that
their effective execution ordering may be reproduced during further executions. We are developing a basic design
for the support of such a functionality under the DDBG architecture for the PVM system.

Ongoing work relates to the implementation of the DDBG architecture, coupled with the support of distributed
monitoring functionalities, on top of a heterogeneous distributed architecture consisting of several UNIX nodes, a
cluster of ALPHA DEC workstations and two multicomputer machines. The internal architecture of the DDBG
system as well as the communication schemes between daemons, debugger instances and application processes will
be evaluated and adapted to such environment.
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