
A Debugging Engine

for a Parallel and Distributed Environment�

Jos�e C� Cunha� Jo�ao Louren�co� Tiago Ant�ao

Universidade Nova de Lisboa
Faculdade de Ci�encias e Tecnologia

Departamento de Inform�atica
���� Monte Caparica

Portugal
fjcc�jml�trag�di�fct�unl�pt

Abstract� This paper describes a debugging interface that has been developed for a parallel software en�
gineering environment and that was developed on top of the PVM environment in the scope of the SEPP
and HPCTI projects of the COPERNICUS Programme� The main goal of this interface is to provide the
basic debugging functionalities that are required by some components of that environment� We give special
attention to the requirements posed by high�level tools of the environment� and to the need of providing a
	exible debugging support layer that can be suitably adapted and extended� We present the system logical
architecture and the interface speci
cation of the debugging engine� We discuss its interfacing with other
components of the environment� namely a graphical editor for the GRAPNEL visual parallel programming
language� and a testing tool� We 
nally describe current work on the improvement of the debugging engine�

Keywords� Debugging� monitoring� parallel processing� software tools�

� Introduction

The task of developing parallel and distributed programs faces many di�culties making it very hard to understand
and predict the logical behavior of a program as well as its performance� This justi�es the need to develop suitable
tools and to integrate such tools in a 	exible and user
friendly environment�
The work we describe in this paper is part of an ongoing project which aims at the development of a software

engineering environment for parallel applications ��
� ����� Overall� this project encompasses issues in the design
and implementation of visual programming components for graph
based design of parallel programs� mapping
components for speci�c hardware target distributed
memory architectures� simulation support tools� real parallel
execution with monitoring and load
balancing support� and testing and debugging tools� Here we discuss design
and implementation issues for one component of such parallel programming environment� the debugging tool�
The organization of the paper is as follows� In the next section we discuss the main design issues for a distributed

and parallel debugging tool� and brie	y review the current state of the art� Then we present the distributed
debugging engine DDBG we have developed on top of the PVM environment� A section follows with the description
of how our tool interfaces with two components of the SEPP environment� namely the GRAPNEL graphical editor
���� ���� and the STEPS testing tool ����� In the conclusions we discuss our ongoing work and future research on
this topic�

� Debugging Parallel and Distributed Systems

Traditional sequential debugging techniques o�er the following typical functionalities� cyclic interactive debug

ging� memory dumps� tracing� and breakpoints ���� However� these techniques cannot be directly applied in a
parallel and distributed environment� This is due to the following facts� parallel and distributed programs ex

hibit non
deterministic and nonreproducible behavhior� lack of global state makes it very di�cult to manage global
predicates on the system state� and there is an intrusion e�ect of the debugging system upon the observed program�
The most immediate approach to support debugging functionalities in a parallel and distributed environment

is through the collection of multiple sequential debuggers� each attached to an application process� This may
provide similar commands as available in conventional debuggers� possibly extended to deal with parallelism and
communication� However� this does not solve any of the above di�culties�
In the past �� years� several proposals have been made to address these problems ���� �
� ��� ��� ���� ���� ��� �����

We are particularly interested in an approach that models the debugger as an event
based system� This provides

�In �Proceedings of DAPSYS���� �st Autro�Hungarian Workshop on Distributed and Parallel Systems�� Misckolc� Hungary� October

�����



several interesting characteristics� it uses a previously recorded event trace� in order to analyze the execution
history� and to guide program replay with reproducible behavior� and so it can make use of �suitably adapted�
conventional debugging techniques� it may rely upon monitoring techniques� for event generation and recording�
it can bene�t from optimizations that allow to reduce the amount of collected information� namely based on the
instant replay technique ����� and so it can greatly reduce the intrusion e�ect� it eases the management involved
in the global coordination of parallel processes and inspection of global system states�
There are already several systems o�ering some of the above characteristics� However� most of these systems

have several limitations in the help they o�er towards a better user understanding of the application behavior�
and in the type of user interaction towards a selective user
driven examination of the causes of incorrect program
behavior� as well an inadequate integration with other tools of the parallel programming environment �such as
simulator and visualization tools�� Additionally some of those systems are very much dependent upon a speci�c
hardware or operating system plataform�

��� Integrating Testing and Debugging Tools
One important issue concerns reaching a close integration of static analysis and dynamic analysis methods in

order to guarantee the �nal quality of the parallel and distributed software� Besides formal methods to assure
the quality of parallel programs� systematic testing approaches play a very important role in this process� The
development of a methodology and tool to aid the user in the process of identifying the paths which should be
generated and tested� is a key component of an advanced testing and debugging environment� and encompasses
several issues� test case design� data generation� test generation and execution� test evaluation� and global quality
assessment with the help of decision support systems� This aspect is being investigated within the scope of the
mentioned Copernicus projects ��
� ����� and a detailed discussion is beyond the scope of this paper� However�
an important aspect of the approach followed in our project is to allow the testing and evaluation stages to be
performed through a close interaction with the dynamic debugging tool� This is achieved by supporting user
controlled execution of the paths under test� allowing the user to inspect program behavior at the desired level of
abstraction and with the guarantee of the reproducibility of its execution�

��� Providing Basic Debugging Support to other Tools
A large diversity of debugging tools have been developed for distinct parallel and distributed programming

languages� as well as for distinct parallel computer systems� In particular� the appearance of shared
memory
and distributed
memory multiprocessors during the ��s has originated the need to develop speci�c debugging
support� both at the level of the operating system and at the level of the communication libraries �
� ��� ����
The problem with these debugging tools is that usually they are speci�c to a particular runtime or hardware
environment� and as such they are very di�cult to adapt to other parallel platforms� On the other hand� the
evolution of parallel and distributed systems towards more user
friendly environments requires a very 	exible
software development platform for the experimentation with new programming models and the corresponding
development tools� e�g� for monitoring� debugging� animation� visualization� and performance analysis� Several
years of experimentation with these parallel computing platforms still show a need to provide a more uni�ed
framework to support the implementation of high
level debugging functionalities� This framework must address
two fundamental issues�

� A well
de�ned interface must be provided to be used by high
level tools of the parallel development envi

ronment� namely graphical editors� graphical interfaces� runtime support systems for distinct parallel and
distributed language models� and testing and high
level debugging tools�

� A well
de�ned interface must be provided to the underlying operating system and hardware platform� assuring
portability and adaptability of the debugging support architecture� while still allowing e�cient implementa

tion on top of each speci�c physical environment�

Each of the above issues may be separately addressed� to a certain extent�
Concerning the �rst issue� we have de�ned an interface to a library of debugging primitives� as described in the

next section� Besides providing the commands that are typically supported by conventional debuggers for sequential
computation models� this interface provides the basic primitives to inspect and control distributed processes� The
design of the debugging interface assumes an asynchronous mode of interaction with the client tools� and its current
implementation relies upon a TCP�IP socket
based communication protocol� However� as this protocol is hidden
within well
de�ned interface functions it may change without the need to modify the client tool�
Concerning the second issue� we are exploiting the fact that most of the basic debugging support functionalities

can be integrated into a monitoring layer� The goal of a monitoring activity is to gather runtime information
about an observed system� including several aspects such as collecting information� registering the detected events�
generating and maintaining suitable event trace formats� and providing suitable interfaces to high
level tools �����
The results provided by a monitoring tool can be used by very distinct tools� at distinct levels of a computing system�



and for very distinct purposes� namely to provide qualitative descriptions of program behavior� to feed performance

oriented tools� and to support program testing and debugging� Concerning the latter aspect� the debugging activity
requires some monitoring support� namely for inspection of processes and communication channels� and for process
control�
A discussion of monitoring issues is beyond the scope of this paper although they are also being addressed in

the above mentioned project ����� However� it is interesting to note that it is also being recognized that� in order
to handle the distinct and evolving requirements posed by high
level tools� a monitoring layer should provide well

de�ned interfaces� and support easy de�nition of new interfaces� A uniform set of mechanisms for event handling�
i�e� accessing� �ltering� searching� and manipulation� is required� This is the only way to o�er a stable monitoring
layer that will be used by a large number of tools� and will be able to evolve� as new needs arise� Only a few
experiments have been proposed towards such goal� namely involving object
based interfaces for event access� A
signi�cant and very broad e�ort has recently been launched towards meeting the above mentioned goals ���� We
are currently pursuing a similar goal� as far as debugging support is concerned�
In order to experiment with the issues involved in the design of a 	exible and general
purpose debugging archi


tecture� we have implemented the above mentioned interface library on top of the PVM ���� system� From the
user point of view� any application or tool can be linked with the interface library and access all the distributed
debugging functionalities� From the implementation point of view� the current design has a distributed organization
consisting of multiple monitor�debugger instances which are scattered on the nodes of a PVM platform�

� A Distributed Debugging Engine

In this section we present the interface provided by our distributed debugging tool called DDBG and its logical
architecture� The debugging functionalities may be summarized as follows�

� Dynamic attachment and deattachment of debugger instances to already running distributed processes� con

trol of remote debugger instances from a central debugging user interface�

� An interface library that gives access to such control of remote debuggers� and which can be used by high
level
tools� like a graphical editor� and testing tools�

� An event trace is collected with minimal information to support program replay in PVM programs� This
allows reproducible behavior and will make the debugging control commands available during a replay session�
a checkpoint facility under replay mode will support execution replay from an intermediate point� instead of
from the beginning of the program only�

Currently there is a working prototype implementing the �rst two of the above functionalities� Full support
for program replay and checkpointing is still under development� The prototype runs on the PVM environment�
and relies upon a well known debugger�the GNU gdb�to provide conventional debugging commands within each
sequential process�
Any user tool can access the debugging engine as a client process that uses the debugging library to interact

with the main debugging daemon� The main daemon manages all the interactions with the client process� by
forwarding the debugging commands to the machines where the application processes are placed� and gathering
their corresponding answers� This is achieved by having a local daemon on each machine that is responsible for
the activation and control of multiple debugger instances located in that machine� Each application process can be
dynamically attached �detached� to �from� a distinct debugger instance� The master daemon and the set of local
daemons form a distributed architecture that can also be used to perform distributed monitoring functions�
Communication between the master and the local daemons is based on the PVM primitives� Communication

between the master daemon and the user client process is based on UNIX sockets� In a �rst design UNIX domain
sockets were used which requires the master daemon to run on the same machine as the user client process� However
this limitation is removed by using UNIX Internet sockets for that communication� Communication between the
local daemons and the debugger instances on each machine is currently based on UNIX pipes�
This is illustrated in the following �gure where the main components of the debugging architecture are shown�

� Debugging Library functions

PVM uses task ID�s �integers� to identify the processes� but an user application or tool may use speci�c Process

ID�s �strings� to do the same� In order to support the mapping between the user symbolic name and the PVM
naming scheme� a name mapping function is provided� This allows any of the library primitives� as well as the
corresponding user consoles� to refer to string or integer process identi�ers� although in the following description
we always use string identi�ers�



(local deamon)

process

front-end

debugger

library
controller

debugger

(main deamon)

Central
controller

library
debugging

debugger

Other processes

Request / Answer (imediate)

Other Machines

Answer (delayed)

library
debugging

front-end

User Tool

library
debugging process

VarWatch

User Machine

process

Figure �� The debugging architecture

Currently the communication between a client and the master debugging daemon requires the client to invoke a
system call �see init�� below�� to initialize the library �� If there is no main debugging daemon running at the time
the initialization is requested� it will be started automatically� This initialization also establishes a communication
channel that will be used for future interactions between this client and the debugging engine��
All the services provided by the debugging engine are classi�ed as belonging to one of two classes�

� Immediate answer services� These services will either fail or are immediately executed by returning the
relevant data as output parameter�s� to the corresponding system call function�

� Delayed answer services� These services�e�g� next���will either fail with an immediate return� or they
may take an unpredictable amount of time until its execution is �nished� In the latter case� the corresponding
library function also returns immediately to the calling process but informs the user about the unavailability
of the data� which can later be gathered by invoking the function get special info��� as de�ned below�

All the library primitives return a status code concerning the immediate or delayed type of answer� although
this is not shown in the function description that is presented in the following�
In principle the interaction with the debugging system can be completely transparent� The client just invokes

library functions� and gets the corresponding returns in an immediate way or in a delayed way� In the latter case�
the following function can be used�

� int get special info�char �procid	 struct code info �info�
If there is returning data available �from a delayed answer command�� the funtion will return a corresponding
status indication with the user Process ID in procid and the data in info� Otherwise it will inform about
the unvailability of the data�

This function has a non
blocking semantics so that the asynchronous execution of the user application that
controls the debugging interface is allowed� It is up to the user to poll the return status by repeated invocation of
this function� or alternatively by selectively waiting on the UNIX �le descriptor that was returned by the function
init���

��� Data types used
The library uses several di�erent structured types which describe information concerning relevant program loca


tions� breakpoints� stack frames� processes� variables and function argumentsi����� As an example� the information
given by struct code info is presented below and it is used to describe references to the program code�

struct code�info �

int line�no�

char function�name���

char source�file���

��

The functionalities currently o�ered by the debugging interface are summarized in the following sections��

�Actually� all library function names are pre�xed with dbg �
�The current prototype assumes that the PVM system is already running�
�Currently� a UNIX �le descriptor is returned corresponding to an interprocess communication socket�
�They are adapted from identical functions provided by the GNU gdb debugger� but they operate upon multiple distributed processes�



��� Controlling the debugging session
The functions init�� and end�� support� respectively� the initialization and the cleanup of the debugging envi


ronment�
The dynamic attachment of existing processes to new debugger instances is supported by the function attach�

char �procid	 struct code info �info �� It starts a new debugger and attaches it to the process speci�ed in
procid� The process will be stopped and will become under control of the debugger� The relevant data is returned
in info to determine where the process was stopped� A complementary function �detach� char �procid �� kills
the debugger associated with a given process and leaves the process running free� The function kill� char �procid
� kills the speci�ed process and its associated debugger�
Information about new components in the debugging environment may be obtained with the function get news�

struct news info �info �� Currently� only information on new processes on the system is available� It returns
a status code indicating if there are news or not� and the information may be obtained referring to user symbolic
process identi�ers or to PVM task IDs� depending on a selection �eld in the info structure�

��� Managing breakpoints
Basic support is provided to control program execution through breakpoints which are currently only associated

with individual processes� The function set break� char �procid	 struct code info �info � sets a breakpoint
on a given process process in the line�function that is speci�ed in info� An unique breakpoint id is returned� A
similar function sets a temporary breakpoint �one time only��
Breakpoints can be set conditionally� depending on the evaluation of an expression� by invoking set cond break�

char �procid	 struct code info �info	 char �exp �� If the expression exp evaluates to TRUE� a breakpoint is set
in the speci�ed process� in the line�function speci�ed in info �conditional breakpoint�� The expression is evaluated
every time the breakpoint is reached� An unique breakpoint id is returned�
Watchpoints can also be speci�ed for a given process by invoking the function set watch� char �procid	

char �exp �� This function sets a watchpoint on the given process procid such that the process will stop when
the condition in exp will become TRUE�
Breakpoints can be temporarily disabled� enabled� cleared �permanently removed�� or ignored a certain number

of times by invoking corresponding library primitives�

��� Managing the program stack
Detailed inspection of stack frames is possible within an speci�ed process by invoking the function select frame�

char �procid	 int count �� This function selects a new current frame for that process such that the frame is
located count frames up or down referring to the current frame� If count � �� it does nothing� The distance

between the previous and the new current frames is returned by the function�

��
 Controlling the execution of the �debugged� processes
The library supports classical debugging commands to control the execution of each individual process in a

detailed way� Using these commands� as well as the other commands that handle breakpoints� and display or
update process information� it is possible to implement higher level debugging functionalities� This was used to
implement the interfacing of DDBG to other tools�
The function run� char �procid � allows to start running a �previously spawned� process from the beginning�

until a breakpoint is found or the expression of a watchpoint is true� or until the end� if none above the conditions
ocurs� The execution of a stopped process can be continued by invoking continue� char �procid �� The execution
proceeds until one of the above mentioned conditions occurs� Another function �nish� char �procid � allows to
run a process until the selected stack frame returns� as de�ned by the select frame�� function� It is also possible
to pop the selected stack frame without executing and return in info the relevant data to determine where the
process was stopped�
Step by step execution is supported by the functions next� char �procid � and step� char �procid � which

execute the code until the next instruction� by respectively executing subroutine code as one instruction only or as
normal code�
Interrupting the execution of a process is supported by the interrupt� char �procid	 struct code info �info

�� The returned info contains information to determine where the process was stopped�

��� Information
These primitives allow to inspect or modify local information in each process�
The function print� char �procid	 char �fmt	 char �exp	 char �value � returns in value the result of the

evaluation of expression exp in the context of the given process procid� according to the given format fmt�
By specifying the var info structure� where a variable�s name is given� it is possible to get and set the values

of individually named process variables� by invoking� respectively� the function get var� char �procid	 struct
var info �var � or set var� char �procid	 struct var info �var ��



Information on process breakpoints is also possible using info break� int brkptid	 struct brkpt info �info
�� The information about the speci�ed breakpoint is returned in the info structure� including e�g� number� type
�simple or conditional�� line number or expression associated�

The following text could be printed based on a set of return values of this function�

Num Type Process Filename Where Condition State Hits
� Breakpoint 
x
a�f�abc main�c f�main�� tempign �
� TempBrkpt 
xa������� main�c f�event�� disable d �
� CondBrkpt 
x

������ utils�c l���� n��� ignored 

� Watchpoint 
x�a�f�bc� main�c event���� enabled �

Inspection of the process stack is obtained by calling several functions which return a trace of selected stack
frames in a given process with information such as the function name� arguments� number of local variables and
for each variable� its name and value�
Finally� information about the status of a process can be obtained through the function info process� char �pro


cid	 struct proc info �info � as illustrated below�

If process �x�������� is running� and process �x�������	 is stopped at a breakpoint� then the following infor�
mation could be reported�

Symbols from ��home�guest�myprogram�

TaskId Status File Line Function

x�������� running

x����ab�c ready

x�������� stopped main�c ��� 
bb


 Interfacing the Debugging Engine to other Tools

In order to assess the usefulness of our distributed debugging interface� we discuss our experimentation with
its interfacing to two components of the SEPP programming environment� Here we just focus on the speci�c
requirements put upon the distributed debugging system by those tools� which are described elsewhere ��
��


�� X
based Interface to the Debugging System
In order to provide a more user
friendly interface to the debugging commands� another client of the master

debugging daemon actually implements an X
based interface allowing the user to control and inspect the distributed
processes� All the interfacing of this client to the master debugging daemon actually relies upon the already
described functionalities� So this is a good test to evaluate the 	exibility of the debugging interface�


�� Interface to the GRAPNEL editor
The SEPP environment is centered around the GRAPNEL model� a graph
based parallel programming language

that is described elsewhere ���� ����� This model supports a structured style for designing parallel applications�
and it is implemented through a set of integrated tools� such as a graphical editor� a compiler to an intermediate
textual representation� and to the C language extended with PVM primitives� a visualization tool� a simulator� a
testing and debugging tool� and monitoring and a load
balancing tools� The development of those tools is a major
e�ort being undertaken within the mentioned projects �����
Concerning debugging� the GRAPNEL editor o�ers an user
friendly interface that allows to invoke debugging

commands with reference to the graphical entities that are displayed in the user windows� On the other hand�
there is a requirement to display in a convenient way the debugging outputs such that only GRAPNEL abstractions
should be handled by the user at this level� This o�ers a very high
level interface to the user� such that the infor

mation on speci�c debugging commands is directly related to the GRAPNEL source program� e�g� by highlighting
corresponding entities in the graphical representation� and their corresponding lines of source code in the textual
program representation� The editor interface also accesses a X
based window which displays� under user control�
the variables de�ned within the GRAPNEL structures� This X
based interface is automatically started when the
user hits the debugger item under one of the menu options provided by the editor� Then a display is presented
including the user processes and the user can select the processes to be monitored� and individual variables within
these processes� This is part of the functionality that is provided by the X
based interface to the debugging system
as mentioned above�
The GRAPNEL editor ��
� runs as a process that handles asynchronously generated events� namely user inter


action events� When interfacing the editor to the distributed debugger� this asynchronous mode of operation is
handled by using the described function get special info���� A more e�cient control is possible by having the
editor directly accessing the interprocess communication socket that is created by the function init��� Although



this is not so transparent when compared to the exclusive use of the above function get special info��� it allows
the editor to selectively wait � on that socket�


�� Interface to a Testing tool
Within the scope of the SEPP project� a signi�cant e�ort has been centered upon the study and development

of a testing methodology and associated software tools ����� Namely� an interactive tool was developed providing
the expertise to systematically generate reproducible test patterns for the concurrency and communication
based
program structures� During the testing stage� distinct testing scenarios are identi�ed� their corresponding program
paths are generated� and then corresponding scripts are produced so that it is possible to submit them to a
real parallel execution� Based on that information� generated during the testing phase� it is possible to control
the replay of program execution� suitable instrumented with calls to the debugging system breakpoints� stepwise
execution� etc� The interfacing of such testing tool �called STEPS ����� to the distributed debugging system is
directly supported by the mentioned script �les which consist of sequences of debugging commands such that
speci�c execution paths are followed under real execution�


�� Interface to a Parallel Logic Programming Language
Our distributed debugging system is currently being used to develop a distributed debugger for PVM
Prolog

����� PVM
Prolog is an extension to Prolog ���� that provides full access to the PVM environment� Parallel and
distributed applications are built by specifying multiple Prolog processes� which cooperate by message
passing
primitives� The interface predicates closely match the corresponding primitives of the PVM system� with suitable
interpretations according to Prolog semantics� e�g� messages are interpreted as Prolog terms� In this implementation�
the debugging library is made accessible to each Prolog process through a similar set of basic predicates for process
control and inspection�

� Conclusions and Future Work

We have discussed issues in the design and implementation of a 	exible distributed debugging engine� Many
existing debugging tools are tied to speci�c hardware and software environments� or are integrated within speci�c
programming environments� We decided to built the DDBG system due to our goal of investigating issues in the
design and implementation of an uni�ed layer for monitoring and debugging�
In summary the current design of the distributed debugging engine provides a resonable 	exibility as it allows the

user tool� the master daemon� and the remote debuggers to run on distinct machines or processors� On the other
hand� our experimentation shows that the current de�nition of the interface has enough 	exibility to accomodate
very di�erent tools� and it is extensible to support� for instance� the development of the program replay facility�
The identi�cation of the sources of non
determinism which arise in a PVM program is the �rst step in the design
of such a replay facility� Once identi�ed such events� the tracing mechanism is supposed to collect them so that
their e�ective execution ordering may be reproduced during further executions� We are developing a basic design
for the support of such a functionality under the DDBG architecture for the PVM system�
Ongoing work relates to the implementation of the DDBG architecture� coupled with the support of distributed

monitoring functionalities� on top of a heterogeneous distributed architecture consisting of several UNIX nodes� a
cluster of ALPHA DEC workstations and two multicomputer machines� The internal architecture of the DDBG
system as well as the communication schemes between daemons� debugger instances and application processes will
be evaluated and adapted to such environment�

Acknowledgments

This work was partially supported by the CEE COPERNICUS Programme� SEPP Project �Contract CIPA

C���
��
�� and HPCTI Project �Contract CP
��

����� by the Portuguese CIENCIA Programme� and DEC
EERP PADIPRO �Contract no� P
��
��

References

��� C�E� McDowell� D�P� Helmbold� Debugging concurrent programs� ACM Computing Surveys vol �� no �� Dec
�����

��� W� Cheung� J� Black� E� Manning� A framework for distributed debugging� IEEE Software� Jan �����

��� M� Mackey� Program replay in PVM� Hewlett
Packard� Concurrent Computing Department� H�P� Laboratories�
May �����

�Using the select�� UNIX system call�



��� A� Fagot� J� Chassin
de
Kergommeaux� Optimized execution replay mechanism for RPC�based parallel pro�
gramming models� IMAG� Jul ���
�

�
� ACM Workshop on Parallel and Distributed Debugging� ACM SIGPLAN Notices vol �� no �� Jan �����

��� C� Fidge� Partial orders for parallel debugging� ACM Workshop on Parallel and Distributed Debugging� ACM
SIGPLAN Notices vol �� no �� Jan �����

��� ACM�ONR Workshop on Parallel and Distributed Debugging� ACM SIGPLAN Notices vol �� no ��� Dec
�����

��� ACM�ONR Workshop on Parallel and Distributed Debugging� ACM SIGPLAN Notices vol �� no ��� Dec
�����

��� T� Ludwig� R� Wismuller� V� Sunderam� A� Bode� OMIS � on�line monitoring interface speci�cation� LRR

TUM� Technical Univ� of Munich� Germany� and Emory Univ� USA� Feb �����

���� D�C� Marinescu� J�E� Lumpp� Jr�� T�L� Casavant� H�J� Spiegel� Models for monitoring and debugging tools for
paralell and distributed software� J� of Parallel and Distributed Computing� �� �������� Jun �����

���� P�S� Dodd� C�V� Ravishankar� Monitoring and debugging distributed real�time programs� Software�Practice
and Experience� vol ��� no ��� Oct �����

���� T�J� LeBlanc� J
M� Mellor
Crummey� Debugging parallel programs with instant replay� IEEE Trans� on
Computers� vol C
��� no �� Apr �����

���� Y� Manabe� M� Imase� Global conditions in debugging distributed programs� J� of Parallel and Distributed
Computing� �
� May �����

���� J�J
P�� Tsai� S�J�H� Yang� editors�Monitoring and debugging of distributed real�time systems� IEEEComputing
Society Press� ���
�

��
� University of Westminster� UK� Software Engineering for Parallel Processing� Copernicus Programme� Con

tract CIPA
C���
��
�� Progress Report no� �� Oct �����

���� G� D�ozsa� T� Fadgyas� P� Kacsuk GRAPNEL� A Graphical Programming Language for Parallel Programs Proc�
of uP���� The Eight Symposium on Microcomputer and Microprocessor Applications� Budapest� Hungary� �����

���� H� Krwaczyk� B� Wiszniewski Structural Testing of Parallel Software in STEPS Proc� of the �st SEIHPC
Workshop� COPERNICUS Programme� Braga� Portugal� �����

���� J�C� Cunha� H� Krwaczyk� B� Wiszniewski� P� Mork� P� Kacsuk� E� Luque� L� Sutovska� L� Hluchy� Monitoring
and Debugging Distributed Memory Systems� Proc� of uP���� The Eight Symposium on Microcomputer and
Microprocessor Applications� Budapest� Hungary� �����

���� J�C� Cunha� J� Louren�co� T� Ant�ao� Integrating a debugging engine to the GRAPNEL environment� HPCTI
Project� COPERNICUS Programme� �rd Progress Report� University of Westminster� �����

���� J�C� Cunha� Design of Parallel and Distributed Monitoring and Debugging Systems� SEPP Project� COPER

NICUS Programme� �th Progress Report� University of Westminster� �����

���� A� Beguelin� J�J� Dongarra� G�A� Geist� R� Manchek� V�S� Sunderam� A User�s Guide to PVM Parallel Virtual
Machine� Technical Report� ORNL�TM
������� Oak Ridge National Laboratory� �����

���� A� Beguelin� J�J� Dongarra� G�A� Geist� V�S� Sunderam� Visualization and Debugging in a Heterogeneous
Environment� IEEE Computer� Vol ��� No� �� �����

���� R� Marques� J�C� Cunha� PVM�Prolog� Parallel Logic Programming in the PVM System� Procs� of the ���

PVM User�s Group Meeting� Pittsburgh� May ���
�

���� P� Kacsuk� G� D�ozsa� T� Fadgyas� GRAPNEL� A Graphical Parallel Programming Language� Journal of
Systems Architecture� Special Issue on Parallel Software Engineering� ����� No� ��

��
� P� Kacsuk� G� D�ozsa� T� Fadgyas� Development of Graphical Parallel Programs in PVM Environments�
submitted to DAPSYS����

���� S� Winter�P� Kacsuk� Software Engineering for Parallel Processing� Proc� of the �th Symp� on Microcomputer
and Microprocessor Applications� Budapest� ����� pp� ��

����

���� W�F� Clocksin� C�C� Mellish� Programming in Prolog� Springer
Verlag� �����


