SmART: An Application Reconfiguration
Framework

Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

Abstract SmART (Smart Application Reconfiguration Tool) is a framework for the
automatic configuration of systems and applications. The tool implements an appli-
cation configuration workflow that resorts to the similarities between configuration
files (i.e., patterns such as parameters, comments and blocks) to allow a syntax in-
dependent manipulation and transformation of system and application configuration
files. Without compromising its generality, SmART targets virtualized IT infrastruc-
tures, configuring virtual appliances and its applications. SmART reduces the time
required to (re)configure a set of applications by automating time-consuming steps
of the process, independently of the nature of the application to be configured. In-
dustrial experimentation and utilization of SmART show that the framework is able
to correctly transform a large amount of configuration files into a generic syntax and
back to their original syntax. They also show that the elapsed time in that process is
adequate to what would be expected of an interactive tool. SmART is currently be-
ing integrated into the VIRTU bundle, whose trial version is available for download
from the project’s web page.

Key words: Automatic configuration, Virtualization, Virtual appliance

Hervé Paulino - Jodo Lourengo
CITI / Departamento de Informdtica, Faculdade de Ciéncias e Tecnologia, Universidade Nova de
Lisboa, 2829-516 Caparica, Portugal. e-mail: {herve, Joao.Lourenco}@di.fct.unl.pt

Jodao André Martins
Departamento de Informatica, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal. e-mail: citanul86@gmail.com

Nuno Duro
Evolve Space Solutions, Centro de Incubag@o e Desenvolvimento, Lispolis, Estrada Paco do Lu-
miar, Lote 1, 1600-546 Lisboa, Portugal. e-mail: nuno.duro@evolve.pt

2 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

1 Introduction

Virtualization techniques and technologies have been around for quite some time
in mainframe environments. However, only more recently, with the advent of low
cost multi-core processors with support for hardware virtualization, and a wider
operating system support, the use of virtualization is spreading at a fast pace.

This widespread use raises several issues on the automation of the configuration
and deployment of applications to be executed in Virtual Appliances (VA — cus-
tomized virtual machine image). Anticipating some of these issues, a consortium
including both Industry and Academic/Research partners is currently tackling the
automation of the configuration and deployment of applications in VAs in the scope
of the VIRTU project [3]. The consortium involves Evolve Space Solutions, the Eu-
ropean Space Agency, Universidade Nova de Lisboa, and Universidade de Coimbra.

The goal of VIRTU is to enable on-demand configuration and deployment of
Virtual Machines (VMs) and applications, independently from the vendor, enabling
virtual infrastructure management for the IT industry and for the experimental/test-
ing of complex systems [2]. The configuration of VMs at the application level (fine
control over the installed applications) provides the means for the fine-grained cre-
ation and provisioning of configurable virtualized application stacks.

One of the challenges addressed by the VIRTU project is to enable the configu-
ration of such application stacks in large scale virtualized environments. A process
that must be scalable, automatic and executed with no administrator intervention,
goals that antagonize with the flexibility required by user customized installations.

Applications are usually parameterizable through configuration files, whose ba-
sic concepts crosscut most applications. The absence of an adopted standard rep-
resentation makes the systemic configuration of computer systems a hard and time
consuming task. Automatic configuration can be achieved by processing the system
and application configuration file(s) and applying a set of regular expression based
search-and-replace operations. However, this approach has several limitations: 1) it
only applies to text-based configuration files; ii) it limits the scope of the changes to
be applied to the scope of the search string, and; iii) it assumes the configuration file
keywords and syntax will not change in future versions of the application. In order
to overcome these limitations, we propose the Smart Application Reconfiguration
Framework (SmART), that automatically configures systems (Including Virtual Ma-
chines) and application stacks (possibly inside Virtual Appliances), regardless of the
application being configured.

The SmART framework implements an application configuration workflow by
recognizing the syntax and, to some extent, the semantic of a configuration file,
and producing a structured generic (application independent) equivalent intermedi-
ate representation. SmART also embeds the syntax of the original configuration file
into the generic intermediate representation. Configuration transformation scripts
may operate over the intermediate (structured) representation, with or without ad-
ministrator support, to safely generate a customized configuration. A generic com-
ponent uses the embedded syntax information in the intermediate representation to

SmART: An Application Reconfiguration Framework 3

generate a new configuration file, equivalent to the original one but reflecting the
applied customizations.

SmART deals with the heterogeneity of configuration file formats by explor-
ing the similarities between configuration files of different applications. For exam-
ple, text based configuration files include typically parameter definitions, parameter
blocks and comments. In this paper we limit our scope to text-based configuration
files, not covering, for now, the processing of binary configuration files.

The remainder of the document is structured as follows: Section 2 analyses the
format and structure of the configuration files of widely used applications; Section 3
presents the SmART architecture and concrete implementation; Section 4 shows
how we chose to evaluate the tool and reflects on the obtained results; Section 5
discusses the integration of SmART in the VIRTU project; Section 6 covers the
related work; and, finally, Section 7 states our final conclusions on the carried work.

2 An Analysis of Application Configuration Files

This section focuses on identifying patterns in the structure and contents of ap-
plication text-based configuration files, in order to attain a uniform representation.
We performed a comprehensive analysis of the configuration files of well known
and widely used applications, such as Apache, Eclipse, MySQL, PostgresSQL,
GNUstep, and Mantis. The study was, for now, confined to open-source applica-
tions. As anticipated, the concrete syntax of configuration files tends to differ, but
they resort to a limited number of concepts. In fact, only four distinct concepts were
identified in all of the inspected files:

e Parameter assignment — set the value of an application configuration parameter;
e Block — group configuration settings;

o Comment — explain the purpose of one or more lines of the file;

e Directive — denote commands or other directives, such as the inclusion of a file.

Our analysis also focused on the actual representation used by the applications
to express these concepts. Although no standard exists, we observed that some for-
mats, such as INI [1] and XML [10], have emerged as community standards. Conse-
quently, we were able to classify all studied applications under the following three
categories:

INI-based (Listing 1): The syntax follows the INI format or similar. Assignments
conform to the syntax “parameter separator value”, where value can be either
a single value (line 4), a list of values, or even empty (lines 2 and 3). Blocks
are explicitly initialized (line 1) but are implicitly terminated by the beginning
of the next block, which discards block-nesting support. For instance, the block
that begins at line 6 implicitly terminates the previous block that began at line 1.
Comments are denoted by a special character (line 9).

OO 0NN W=

B

O 001NN B W —

—— =
N = O

4 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

XML-based (Listing 2): This category addresses applications that store their con-
figurations as XML variants, encompassing syntaxes a little more permissive than
pure XML. This category has a broader scope than the INI-based, since explicitly
initialized and terminated blocks (lines 2 to 4) can nest other blocks.

Block-based (Listing 3): This category addresses a wider scope of formats on
which blocks are delimited by symmetric symbols, such as { } or (). The de-
picted example contains three of such blocks. The first one is anonymous and
envelops the entirety of the file; the second, NSGlobalDomain, ranges from line 2
to 3, and; and the third, sogod, ranges from line 4 to 11.

Listing 1 MySQL configuration file snippet - INI-based example

[mysqgldump]

quick

quote—names
max_allowed_packet = 16M
[isamchk]

key_buffer = 16M

The MySQL database server configuration file.
lincludedir /etc/mysql/conf.d/

Listing 2 Eclipse configuration file snippet - XML-based example

<workbenchAdvisor/>

<fastViewData fastViewLocation="1024">

<orientation view="org.eclipse.ui.views.ContentOutline" position="512"/>
</fastViewData>

Listing 3 GNUstep configuration file snippet - Block-based example

{
NSGlobalDomain = {
N
sogod = {
NGUseUTF8AsURLEncoding = YES;
SOGoACLsSendEMailNotifications = NO;
SOGoAppointmentSendEMailNotifications = NO;
SOGoAuthenticationMethod = LDAP;
SOGoDefaultLanguage = English;
SOGoFoldersSendEMailNotifications = NO;

The conclusions drawn from our analysis sustain our premises: the basic concepts
of application configuration are crosscutting, and thus can be reduced to a structured
generic representation, detached from the application specifics. This generic repre-
sentation can then be modified systemically and once altered be converted back to
the original syntax, reflecting the applied modifications.

SmART: An Application Reconfiguration Framework 5

3 An Application Reconfiguration Framework

This Section presents SmART, a framework that builds on the idea of reducing con-
figuration files to a generic (application independent) intermediate representation,
in order to provide scalable means to systematically apply configuration transfor-
mations, with or without administrator support, for IT infrastructure administration
and maintenance. We will address the framework’s architecture, execution flow, ex-
tensibility concerns, concrete implementation, and produced output.

As depicted in Figure 1, the reconfiguration process is divided in five steps:
i) Identification (and extraction) of the configuration files to be customized; ii) Trans-
lation of the configuration file from its original representation to a generic one
(stage 1); iii) Customization of the (generic) configuration file to reflect the desired
configuration (stage 2); iv) Translation of the generic configuration file back to its
original representation (stage 3); and v) Incorporation of the new configuration file
into the application/system.

The stages 1 to 3 are independent, requiring only the use of the same intermediate
representation. Such design enhances flexibility, for instance: file modification can
be performed manually (e.g., a graphic tool that displays all the editable settings)
or automatically (e.g., a script); several executions of stage 2 can be performed
over a single output of stage 1; and stage 3 can convert a file back to its original
representation with no extra information besides the one included in the input file.

Application Files

Extraction of
Configuration Flle

Incorporation of
Configuration Flle

Modified
Configuration File in
Original Syntax

Configuration File in
Original Syntax

Generic to Original
Representation Converter

Original to Generic
Representation Converter

Modified
Configuration File in
Structured Format

Configuration File in
Structured Format

O

Configuration File
Customization

Fig. 1 Configuration file transformation workflow in SmART

The emphasis of this paper is on the systemization of the whole configuration
process, namely on stages 1 and 3, covered in Sections 3.1 and 3.2, respectively.

6 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

3.1 Original to Generic Representation (02G)

The purpose of the O2G component is to convert configuration files from their orig-
inal syntax into the structured generic intermediate representation. The converter
must be equipped with a set of parsers capable of recognizing as much configura-
tion files as possible. A given file is translated into an internal uniform representa-
tion that is dumped to a file, according to a concrete generic syntax. This syntax is
implementation specific and no restrictions are imposed at the architectural level.

Although our analysis revealed that three categories are sufficient to classify the
totality of our case studies, it is clear that other formats are or will be used. Thus,
for the sake of extensibility, new parsers can be added to the O2G, either directly,
as long as framework compliance is preserved (see Section 3.1.3), or by submitting
a grammar that the O2G will use to produce the parser itself. Section 3.1.3 also
addresses the concern of extending the concepts recognizable in a configuration
file.

3.1.1 Architecture

Regarding its internals, the O2G comprises six components organized in a three-tier
software architecture as illustrated in Figure 2.

User Interface

| | Grammar Compiler | | Code Generator

Presentation Layer

Configuration File
Parser

Logical Layer

. Tentative Grammar
Parser Repository

Repository

Storage Layer

Fig. 2 Original to generic representation converter components

The Parser Repository is the database that stores the parsers currently available
to the framework. It provides the means to add, remove and update parsers. The
Tentative Grammar Repository stores all the grammars defined by the user on the
process of producing a new parser. The repository can be logically viewed as a tree,
providing a simple way of iterating previous attempts. The actual parser genera-
tion is performed by the Grammar Compiler that resorts to an external parser gener-
ator (e.g., JavaCC [5]) to compile the grammar and, consequently, produce the new
parser. The return value indicates whether the compilation was successful or not.
The Configuration File Parser produces the abstract syntax tree (AST) of a given
configuration file. The operation can be performed by all the available parsers or by
a given single one. Each parsing attempt produces an output that includes the AST

SmART: An Application Reconfiguration Framework 7

and the statistics regarding the percentage of file successfully parsed. Naturally, the
all parsers option produces a list of such results. The AST itself provides an inter-
nal uniform representation of a recognizable file. It is composed of nodes denoting
the concepts identified in Section 2 (parameters, blocks, comments, and directives)
or denoting new concepts introduced by the user. Its output to a file, according a
chosen concrete generic syntax, is performed by a specialized implementation of
the Code Generator. Finally, the User Interface poses as an intermediate between the
lower layers and the user, exposing all the framework’s functionalities.

3.1.2 Execution Flow

Figure 3 illustrates interactions between the O2G component modules. Each file
received by the O2G is passed to the Configuration File Parser that iterates the Parser
Repository to check if, at least, one of the available parsers in the repository is able
to perform a successful recognition. If such is the case, the result of the operation
is made available to the user, in order to be validated. A positive evaluation will
cause the AST to be translated into generic representation via Code Generator, whilst
a negative will force the Configuration File Parser to continue its iteration of the
repository, until no more parsers are available. When none of the parsers is capable
of completely recognizing a given file, the user will have to supply a new one to the
framework. This can be achieved by directly importing an already existing parser, or
by submitting a grammar to the O2G so that the parser can be internally generated
by the framework. To ease the burden of this latter task, statistics are collected for
each parsing attempt and the parser that performed better is made available to be
used as a working base.

Tentative Grammar
Repository

|Grammar Compiler Igl Parser Generator |

522 Code Generator
Configuration File
(User)gl User Interface |g Parser

=x\[Configuration File
Uﬁ in XML
Application Files Parser Repository
Application | | Configuration

Fig. 3 Original to generic representation component interactions

Binaries Files

The Grammar Compiler is the component responsible for producing a parser from

a submitted grammar. The parser will be added to the Parser Repository if it fully
recognizes the target file and its output is validated by the user.

The whole parser creation process is assisted by the Tentative Grammar Repository

that keeps every submitted grammar, allowing for the rollback of modifications

8 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

by iterating the previous attempts. As soon as the parser is added to the Parser
Repository the Tentative Grammar Repository is cleared.

3.1.3 Extensibility

The import of existing parsers is disciplined by an interface that specifies the frame-
work’s compliance requirements, i.e., the Grammar Compiler/parser interaction pro-
tocol. This includes the format of the parsing output, which must recognizable to
SmART, i.e., comply with the existing AST node types (a direct mapping from the
concepts the framework is able to recognize in a configuration file).

The set of the recognizable concepts can also be extended. Once again the com-
pliance requirements are specified by an interface that determines which data ex-
tracted from the source file is to be passed to the generic representation.

3.1.4 Implementation

A Java prototype of the SmART framework has been implemented and evaluated.
The implementation required technology decisions concerning the concrete syntax
for the generic representation and the external parser generator. The choice fell,
respectively, on XML [10] for its widespread use and support in mainstream pro-
gramming languages, and JavaCC [5] for its functionalities and ease of use.

A major design and implementation challenge was how to communicate the de-
tails of original file’s syntax to the Generic to Original Converter (stage 3), providing
it with the information required to later generate a valid customized configuration
file from the generic representation. A clean and flexible solution is to code this in-
formation in the XML file, along with the generic representation. For that purpose
we defined two dedicated XML elements: Metadata and FStr. The first is present
once, at the beginning of the file, and contains immutable information about each
concept that the file exhibits. The second is a format string present at each concept
instance, and specifies how such instance must be written in its original syntax. The
string is composed by a list of placeholders that indicate where the actual data to be
written is stored. The placeholder possibilities are:

%a.x Print the value of attribute x from the current XML element;

%e Print the value delimited by the next inner XML element;

%m.x Print the value delimited by x within the metadata XML element storing

information about the concept being processed;

%C Recursively print the next inner XML element, using its format string;
%s Print a blank space;
%n Issue a new line.

We exemplify the XML produced output with the translation of part of the
MySQL configuration file snippet of Listing 1. The generated metadata is presented
in Listing 4, while Listings 5 and 6 contain, respectively, the translation of the block

B N S

SmART: An Application Reconfiguration Framework 9

ranging from lines 1 to 4, and of the comment in line 10. Space restrictions do not
permit the exposure of complete real-life examples, but these can be found in [6].

Listing 4 Metadata Listing 5 XML generic representation of a block
1 || <Metadata> 1 || <Block name="mysqldump">
2 <Comment> 2 <FStr>%m. start%a.name%m. end%n%c%c%c%c </ FStr>
3 <start >#</start> 3 <Parameter>
4 </Comment> 4 <FStr>%e%n </FStr>
5 <Parameter> 5 <Key>quick </Key>
6 <equal >=</equal > 6 </Parameter >
7 </Parameter > 7 <Parameter>
8 <Block> 8 <FStr>%e%n </FStr >
9 <start >[</start> 9 <Key>quote —names </Key>
10 <end >]</end> 10 </Parameter>
11 </Block > 11 <Parameter>
12 || </Metadata> 12 <FStr>%e%n. equal%e%n </FStr>
13 <Key>max_allowed_packet </Key>
14 <Value>16M</Value>
15 </Parameter>
16 || </Block>

Listing 6 XML generic representation of a comment

<Comment>

<FStr>%m. start%e%n </FStr>

<Text>The MySQL database server configuration file.</Text>
</Comment>

3.2 Generic to Original Representation (G20)

G20 performs the operation complementary to O2G, by converting configuration
files from their generic representation back into their original syntax. It is composed
of a single component which is able to reconstruct the configuration file by pro-
cessing the metadata available in the generic representation. The module traverses
the XML representation, outputting each concept according to the specified format
string and metadata information.

Observe the XML generic representation depicted in Listing 5. The output format
string for the block (line 2) is “%m.start%a.name%m.end%n%c%c%c%c” with the
following meanings:

e %m.start — inspect the metadata element holding information about the concept
current being processed (a Block) to retrieve the data delimited by start, i.e., [;

e %a.name — retrieve the value of the name attribute of the current concept, i.e.,
mysqgldump;

e %m.end — retrieve | from the metadata;

e %n — issue a new line;

e The three %c — process the next three inner blocks (all of type Parameter in this
example) according to their own format strings.

The output will be equivalent to the original contents displayed in Listing 1.

10 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

4 Evaluation

The framework was evaluated from three different angles: functionality, opera-
tionally and performance. The functional evaluation aimed at verifying if the re-
quirements towards which the framework was designed were all met. For instance,
a requirement was that the framework should be extensible to accommodate con-
figuration files with new/different syntaxes. This was accomplished by featuring a
process on which a user is able to build parsers by submitting grammars, or sim-
ply by adding a new parser to the ParserRepository, as long as it complies with the
framework’s parsing invocation protocol. The comprehensive requirement list can
be found in [6].

The objective of the operational evaluation was to determine if the framework
can correctly transform configuration files into the XML generic representation and
back to their original syntax. Several tests were performed upon real configuration
files [6] of the three categories presented in Section 2. The initial and final files,
with no customization in the intermediate representation, were compared using the
UNIX diff utility. Overlooking ignorable characters, such as extra black spaces in
the considered formats, all compared files were identical.

The performance evaluation focused on the time required by the O2G and G20
converters to apply their transformations. A first test aimed at assessing if the time
required by the transformations is proportional to the size of the source file. The
graphic displayed on Figure 4 refers to the processing of INI-based PostgreSQL
configuration files (available at http://asc.di.fct.unl.pt/smart).

05
0,45
0,4
0,35
03
0,25

Time (seconds)

02 w026

’ G20 02G | G20 | Total
0.15 File 1.4KB| 0.143s| 0.073s| 0.216s
0.1 File 3.5KB| 0.191s| 0.086s| 0.277s
0,05 File 16.6KB | 0.463s| 0.262s| 0.725s

0 2 4 6 8 10 12 14 16 18
File size (Kbytes)

Fig. 4 Performance evaluation

We can observe, the processing time in both converters grows linearly with the
size of the file to be processed, but in both cases is suitable for an interactive tool.
The largest evaluated file, of 16.6 KB, spent only 0.46 seconds on stage 1 and 0.26
seconds on stage 3.

A second test focused on another aspect worthy of monitoring. The time required
to generate a parser from a given grammar. Table 1 presents the time spent by
JavaCC to generate the parsers for the three format categories of Section 2. The
results indicate that parser compilation time is also sustainable. Nevertheless, to

SmART: An Application Reconfiguration Framework 11

have a more accurate assessment we compiled a parser for Java, a language likely
to be more complex than any configuration file format. The elapsed time was 0.55
seconds, which sustains the previous conclusions.

[INI-based | Block-based | XML-based |
[0275 | 028 | 030s |

Table 1 Elapsed times for parser compilation in JavaCC

Both tests were performed on a system comprising an Intel Pentium Dual T3200
processor with 2GB DDR?2 main memory, and running the Linux 2.6.31 kernel.

5 VIRTU Integration

This section briefly discusses the integration of SmART in VIRTU [3], a platform
conceived to enable on-demand configuration and deployment of VMs and applica-
tion stacks independently of the vendor.

VMs in VIRTU are constructed by assembling building blocks (operating system,
and applications) whose configuration is specified in special purpose files, named
publication files. Configuration is decoupled from assembling, allowing many-to-
many relationships. Thus, a VM is only configured when deployed. The publication
files specifying the configurations of the assembled building blocks are retrieved
from a pre-determined database and handled by a script, to perform the desired
configurations before the system is on-line.

SmART integrates with VIRTU at two levels. The O2G converter is used by the
administrator to transpose one or more configuration files into a building block pub-
lication file, in order to define the block’s default configuration and user editable
parameters. The G20 is used in the VM’s on-boot configuration process. It converts
the building block’s publication file back into its original format, so that the config-
uration script may carry its work. Reconfigurations can also be performed by having
a daemon (on every running VM) listening for reconfiguration requests. The process
is equivalent to the on-boot configuration process, with the exception that the target
application may have to be restarted.

6 Related work

To the best of our knowledge, our approach is the first to exploit the similarities
among configuration files to allow for automatic, vendor-independent and on-the-
fly application reconfiguration. Similar existing projects, such as AutoBash [8] or
Chronus [11], take on automatic application configuration as a way to assist the
removal of configuration bugs. AutoBash employs the causality support within the
Linux kernel to track and understand the actions performed by a user on an appli-

12 Hervé Paulino, Jodo André Martins, Jodo Lourenco, and Nuno Duro

cation and then recurs to a speculative execution to rollback a process, if it moved
from a correct to an incorrect state. Chronus, on the other hand, uses a virtual ma-
chine monitor to implement rollback, at the expense of an entire computer system. It
also focuses a more limited problem: finding the exact moment when an application
ceased to work properly.

Two other projects, better related to this work, are Thin Crust [9] and Smart-
Frog [4]. Both projects aim at automatic application configuration, but take an ap-
proach different from ours. Thin Crust is an open-source set of tools and meta-
data for the creation of VAs. It features three key components: Appliance Operating
System (AOS), Appliance Creation Tool (ACT) and Appliance Configuration En-
gine (ACE). The AOS is a minimal OS built from a Fedora Kickstart file, which
can be cut down to just the required packages to run an appliance. SmartFrog is a
framework for the creation of configuration-based systems. Its objective is to make
the design, deployment and management of distributed component-based systems
simpler and more robust. It defines a language to describe component configura-
tions and a runtime environment to activate and manage those components.

7 Conclusions and Future Work

The work described makes evidence that systemic configuration of applications can
be safely achieved by abstracting configuration files from their format specificities.
The SmART framework enables this idea by featuring two complementary modules
(02G and G20), that perform transformations between the application dependent
syntax and a generic representation and back, regardless of the original application.

A proof-of-concept prototype has been implemented. By default it supports the
three format categories that, according to the analysis in Section 2, cover the major-
ity of the existing applications with text-based configurations files. Nonetheless, a
major effort was put on extensibility. The framework allows for the addition of new
configuration file parsers, and of the concepts that can be recognized on a file.

The carried evaluation certifies that all of the tested use case files can be trans-
formed into our generic representation and back. Moreover, both these operations
(as well as grammar compilation) are performed in a time that is adequate for an
interactive application, i.e., less than one second. The prototype is being integrated
into the VIRTU product line and is being further extended by Evolve.

We can therefore conclude that, once having a parser able to recognize the source
configuration file, SmART contributes to accelerate the configuration process, since
it does not require the knowledge of the source file format in order to apply the
desired modifications. Moreover, the use of a generic representation allows for the
systemization and automation of the whole process.

Regarding future work, naturally that there is room for improvement at different
levels. For instance, to broad the scope to include binary files, which may even re-
quire the addition of new recognizable concepts. However, in our opinion, the main
research challenge is on the use of grammar inference [7] to create new parsers.

SmART: An Application Reconfiguration Framework 13

By inferring grammars, instead of delegating their definition on the user, the cre-
ation of new parsers can be perform almost entirely without the user’s intervention,
enhancing usability and generality.

Acknowledgements This work was partially funded by ADI in the framework of the project
VIRTU (contract ADI/3500/VIRTU) and by FCT-MCTES.

References

. Cloanto: Cloanto implementation of INI file format. http://www.cloanto.com/

specs/ini/ (2009)

Duro, N., Santos, R., Lourenco, J., Paulino, H., Martins, J.A.: Open virtualization framework
for testing ground systems. In: PADTAD 2010: Proceedings of the 8th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging. Trento, Italy (2010)

Evolve Space Solutions: VIRTU Tool. http://virtu.evolve.pt/ (2009)

Goldsack P. et al: The SmartFrog configuration management framework. SIGOPS Oper. Syst.
Rev. 43(1), 16-25 (2009)

Kodaganallur, V.: Incorporating language processing into Java applications: A JavaCC tutorial.
IEEE Software 21, 70-77 (2004)

Martins, J.: SmART: An application reconfiguration framework. Master’s thesis, Faculdade
de Ciéncias e Tecnologia, Universidade Nova de Lisboa (2009)

. Parekh, R., Honavar, V.: Learning DFA from simple examples. Machine Learning 44(1/2),

9-35 (2001)
Su, Y.Y., Attariyan, M., Flinn, J.: AutoBash: improving configuration management with oper-
ating system causality analysis. SIGOPS Oper. Syst. Rev. 41(6), 237-250 (2007)

. Thin Crust: Thin crust main page. http://www.thincrust.net/
10.
11.

W3C: Extensible Markup Language (XML). http://www.w3.0rg/XML/

Whitaker, A., Cox, R.S., Gribble, S.D.: Configuration debugging as search: finding the needle
in the haystack. In: OSDI’04: Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation, pp. 77-90. Berkeley, CA, USA (2004)

