
Developing Libraries Using Software
Transactional Memory

Ricardo Dias and João Lourenço

CITI–Centre for Informatics and Information Technology, and
Departamento de Informática, Universidade Nova de Lisboa

Portugal
{rjfd,joao.lourenco}@di.fct.unl.pt

Abstract. Software transactional memory is a promising programming
model that adapts many concepts borrowed from the databases world
to control concurrent accesses to main memory (RAM) locations. This
paper aims at discussing how to support apparently irreversible opera-
tions within software libraries that will be used in a (software memory)
transactional context.

1 Introduction

The current trend of having multiple cores in a single CPU chip is leading to a
situation that many would believe absurd not long ago: we may have more com-
putational processing power then we can (easily) use. To invert such a situation
one needs to find and explore concurrency where before would write sequential
code. The transactional programming model is an appealing approach towards
such a goal, by making use of high-level constructs to deal with concurrency,
being in this way a potential alternative to the classical lock based constructs
such as mutexes and semaphores.

Since the introduction of Software Transactional Memory (STM) [9], this
topic has received a strong interest by the scientific community. Opposed to the
pessimistic approach used in locks-based constructs, transactional memory use
optimistic methods for concurrency control, stimulating and enhancing concur-
rency. Until now, most STM implementations reside mainly in software libraries
(e.g., for C or Java programs) with minimal or no changes at all to the syntax
and semantics of the programing language, therefore relying in the programmer
to explicitly call a library API to do transactional memory accesses. Significant
research work is using Concurrent Haskel as a testbed for runtime and compiler
changes to support STM [7]. Many problems and difficulties still persist in us-
ing the STM programming model, supported by both software libraries [3] or
directly by the compiler [1].

In this paper we will report on a problem that arose while developing small
applications examples for the CTL [2] transactional memory library. CTL is a
library-based STM implementation for the C programming language, derived
from the TL2 [4] library. CTL extends the TL2 framework with new features
and optimizations, and also solves some bugs found in the original framework [8].



Section 2 describes the motivation and context for the problem covered in
this paper; Sec. 3 describes a new idea to overcame the difficulties found; in Sec. 4
will present the implementation of the solution; Sec. 5 will introduce some use
case examples; inSec. 6 and Sec. 8 concludes and presents some future research
work on this line.

2 Motivation

Programming using the STM model is straight forward: if we plan to do a set
of memory operations atomically (do all or none of the operations) and/or want
to do an access to a memory location that will potentially conflict with another
concurrent control flow (thread), the set of operations should be enclosed within
a memory transaction.

When the STM programming model is directly supported by a programming
language, a transactional code block may look as illustrated in Fig. 1 on the left.
When the STM programming model is supported by a software library, the same
code block may look as illustrated in Fig. 1 on the right. Semantically, both code
blocks are equivalent.

atomic {

transact_code_block ();

}

start_T ();

transact_code_block ();

end_T ();

Fig. 1. Transactional code block supported by the programming language (left) or by
a software library (rigth).

Using the transactional memory model in every day programming may seem
to be a simple idea, but it may turn out to be a nuisance. The fact is that
an application is not solely made of memory changes and, typically, need to
perform other operations that are not reversible by the STM libraries, such
as write data into a file, read data from a socket and memory management
(allocation/deallocation).

When developing a library, the programmer aims at creating a black box
behind a well defined interface, hiding all the implementation details from the
library user. If such libraries are to be used in concurrent environments, program-
mers must protect them against concurrency hazards, and Software Transac-
tional Memory can be an approach towards such a goal. However, this approach
can raise problems as illustrated in Fig. 2.

If a library code block is supposed to be executed within a memory trans-
action whose boundaries (start and end of the transaction) are defined by the
library user, than the library developer has no control over neither the start nor
the end of the transaction.



Fig. 2. Calling a transaction code block in a library.

Allocating and freeing memory are irrevocable operations and, thus, cannot
be executed freely inside a memory transaction. Although these operations are
non-trnasactional, some of them are compensable. This means that the oper-
ations can be undone not by reverting their effects but by execution a second
operation that will compensate the effects of the first one. However, not all irre-
vocable operations are compensable and those that are compensable must obey
to an isolation restriction: the effects of an irrevocable, but compensable, oper-
ation may be compensated only if no other section of code outside the currents
transaction depends on (the effects of) the operation to be compensated.

Memory management (allocation and deallocation of memory) fall into the
class of irrevocable but compensable operations. Allocating a memory block may
be compensated by freeing that memory block. But freeing a memory block can-
not be always compensated by allocating another memory block, as the initial
memory contents may have been lost. Assuming that this irrevocable opera-
tions may be compensated, one must define when to execute the compensating
operations.

We propose a solution that is, simultaneously, generic and elegant. Generic
because it can be used to solve this and many other problems that arise when
using the STM programming model. Elegant because allows the software library
to execute compensating operations without the intervention and/or knowledge
from the library user.

3 Concept and Model

Our proposal allows the programmer to create inverse functions and to decide
when such inverse functions must (and will) be executed. Such a functionality
is accomplished by the use of handlers. Handlers will be called at important
moments in the life-time of a transaction, as illustrated in Fig. 3.

These important moments are:

– Pre-commit handlers: These handlers are executed in the context of the
transaction to be committed. The memory validation step is done prior to the
execution of the pre-commit handlers, thus, these handlers execute knowing
that the memory transaction may commit;



commit

tx_body

abort

pre_commit_handlers()

pos_commit_handlers()

pre_abort_handlers()

pos_abort_handlers()

Fig. 3. Handlers for STM compensation actions.

– Post-commit handlers: These handlers are executed after committing the
transaction and, therefore, are outside the transactional context;

– Pre-abort handlers: These handlers are executed just before aborting, there-
fore in the context of the transaction to be aborted. If the STM engine
supports automatic retry of a transaction, the handlers are executed just
before retrying;

– Post-abort handlers: These handlers are executed right after aborting the
transaction, therefore outside the scope of a transaction.

All these type of handlers must be registered in the context of a transaction
(inside the bounds of a transaction). The life-time of any type of handler is
determined by the time of registration until the end of a transaction, either
by committing or aborting/retrying. On registering a handler, the programmer
may, optionally, pass some data to the handler. This data will be considered
later when the handler is executed.

Pre-commit handlers are divided into two categories: prepare-commit han-
dlers and commit handlers. The former may decide to allow (or not) the mem-
ory transaction to commit. The latter are still executed before committing the
transaction, but the transaction will irreversibly commit. These handlers are ex-
ecuted sequentially: all prepare-commit handlers are executed in first place, then
followed by the execution of the commit handlers.

Figure 4 represents the execution of each type/category of handler as a state
in a transaction life-time state diagram.

BOT active

partially 
commited

pre-abort

committed

terminatedfailed

pos-
commit

pos-abort

prepare 
commit

commit

Fig. 4. Transaction life-time state diagram with handler support.



Although pre-commit and pre-abort handlers are executed within the context
of the transaction, they cannot make use of transactional memory accesses, as the
memory transaction has already been validated and new transactional accesses to
memory could require new validations to be carried out. Thus, the programmer
has the responsibility of preventing and managing any data-races that may arise
when processing/executing handlers.

4 Implementation

The model described in the previous section, was implemented as an extension to
CTL, a Software Transactional Memory library for the C programming language.

Each handler is identified as a function pointer that is registered in the han-
dler system. There are two different types of function pointers:

typedef void (* ctl_handler_t )(void *);

typedef int (* ctl_prepare_handler_t )(void *);

The type ctl_prepare_handler_t declares a pointer to a function to be exe-
cuted as a prepare-commit handler.

This function has one parameter that will point to a user-defined data struc-
ture to be passed as an argument to the handler when it is executed, and returns
a boolean (true=1 or false=0) indicating that the overall transaction can pro-
ceed, or that it must abort. If all of the prepare-commit handlers return true
the commit handlers will be executed and the memory transaction will commit,
otherwise none of the commit handlers will be executed and the transaction will
abort.

Each transaction has a list for each type of handlers. Each handler has a
priority attribute. The priority controls the order in which the handlers are
executed. Handlers with a high priority are executed before handlers with a
lower priority. Within the same priority, handlers are executed by registering
order.

The API contains two functions for each type of handler: one requires the
programmer to explicitly specify the priority attribute while the other does not,
assuming a default priority.

Figure 5 shows the registering function for the prepare-commit handlers.
When registering a handler, it is possible to pass data into the handler. This
data must be passed as a void pointer.

Handlers are eliminated once the associated transactions commit or abort.
In CTL, transactions aborting due to a concurrency conflict are automatically
restarted. In this case, the handlers are eliminated after executing the last pre-
abort handler and before the transaction is restarted. Also, pos-abort handler
will only be executed for user-aborted transactions, otherwise they are restarted
automatically and always finishes with a commit state.



void ctl_register_prepare_handler_priority (

ctl_prepare_handler_t handler , void *args , int priority );

void ctl_register_prepare_handler (

ctl_prepare_handler_t handler , void *args);

Fig. 5. Handler System API: prepare-commit handler registering functions.

5 Using the Handlers

We will describe how to use the handler system as described above to solve the
problem introduced in Sec. 2, where a library needs to manage memory inside
memory transactions.

When implementing the add operation of a linked list, this operation needs
to allocate memory to a new list node. If this memory allocation is executed
inside a memory transaction, and if the transaction aborts and is automatically
restarted, a new list node will be allocated and the previous one will originate
a memory leak in the program. In this case the library developer could register
a pre-abort handler to free the allocated memory in case of the abort/restart of
the transaction.

Figure 6 ilustrates the use of a pre-abort handler to compensate the operation
of memory allocation, when the transaction aborts while adding a new node to
a linked list.

void freevar (void *args) {

free (args);

}

void add (List *list , void *item) {

Node *node;

node = malloc (sizeof (*node ));

ctl_register_pre_abort_handler (freevar , node);

node ->next = NULL;

node ->value = item;

TxStore (&(list ->tail ->next), node);

TxStore (&(list ->tail), node);

}

Fig. 6. Linked list add operation with handler system support.

The inverse problem of compensating a memory deallocation problem is also
easy to solve with a pos-commit handler. As an example, we will consider the
removing of the head node of the linked list, as illustrated in Fig. 7.



void *removehead (List *list) {

Node *node;

void *value;

node = (Node *) TxLoad (&(list ->head);

TxStore (&(list ->head), node ->next);

value = (void *) TxLoad (&(node ->value ));

free (node);

return value;

}

Fig. 7. Linked list removehead operation.

If this removehead() function is called inside a memory transaction, and the
transaction aborts after the free() operation, the transactions will be restarted
and the function will be called once again, but now the head pointer list->head

is pointing to an invalid memory block, because it was already released in the
call to free in the previous execution. To solve this problem, one must delay
the memory deallocation until the transaction commits. This can be achieved
by registering a pos-commit handler to free the respective node as depicted in
Fig. 8.

void freevar (void *args) {

free(args);

}

void *removehead(List *list) {

Node *node;

void *value;

node = (Node *) TxLoad (&(list ->head);

TxStore (&(list ->head), node ->next);

value = (void *) TxLoad (&(node ->value ));

ctl_register_pos_commit_handler (freevar , node);

return value;

}

Fig. 8. Linked list removehead operation with handler system support.

This solution could be supported at either, programming language/compiler
or library level. The library based solution was illustrated before. A compiler
based solution would have the compiler to transparently generate all the nec-
essary code for registering the handlers and calling the replacement front-ends
instead of the original functions.



In terms of general library development, each library can register the appro-
priate handlers to delay or reverse its effects to the commit/abort time, without
the library user being aware of such handlers.

6 Performance Evaluation

We preformed a simple test to evaluate the overhead introduced by handler
system into the CTL engine. The test uses a single linked list, protected with
CTL using the handler system support, and random inserts, removes and lookup
of nodes to/from the linked list. The test ran in a computer with two dual-core
nodes, Intel(R) Xeon(R) CPU 5150 @ 2.66GHz with 4096 KB cache, and the
obtained results can be depicted in Fig. 9. We ran tests with as much as 16
threads competing for the 4 available computing nodes.

0

20000

40000

60000

80000

100000

120000

1  2  4  8  16 

ins=5% del=5% get=90%

without handlers with handlers

60000

65000

70000

75000

80000

85000

90000

95000

1  2  4  8  16 

ins=45% del=45% get=10%

without handlers with handlers

Fig. 9. Overhead introduced by the handler support in read-dominated (left) and write-
dominated (right) environments.

In the evaluation test, write operations (insert and remove) require handlers
to be executed, while the read-only operation (lookup) does not.

In the read-dominate environment, depicted in the left sub-figure, 5% of the
transactions are inserts, other 5% are removes (deletes) and 90% are lookups.
Only 10% of the completes transactions require a handler to be executed. From
the results one can infer that the overhead introduced by the handler system
when it is not used is null.

In the write-dominate environment, depicted in the right sub-figure, 45% of
the transactions are inserts, other 45% are removes (deletes) and only 10% are
lookups. Handlers are invoked in 90% of the completed transactions. From the
results one can infer that the overhead introduced by the handler system is less
than 4% in the worst case.

7 Related Work

Tim Harris in [6], also uses call-back handlers in the form of external actions to
provide support for operations with side-effects, such as console I/O, in the Java



programming language. This work was derived by an earlier approach by the
same author in [5]. These external actions are implemented using a copy of the
heap in the moment of the invocation of an I/O operation inside a transaction.
This invocation is delayed until the end of the transaction, and then executes the
I/O operation in the same context (using the heap copy) in which the invocation
was made. A drawback of this approach is that, if used to implment libraries as
described in this paper, the library would have to have control over start and end
of the transaction. To our best knowledge to date, no other work has addressed
this matter.

8 Conclusions and Future Work

The handler-based technique presented in this paper is a generic and elegant
approach to solve the problem of executing irrevocable (but compensable) op-
erations in the context of a software memory transaction, at a negligible cost.
It can also be used to easily revert irrevocable (but, again, compensable) oper-
ations inside a library that will be executed within a memory transaction. This
technique is not tied to any specific problem and, therefore, to the solution of a
single/unique problem; neither it is dependent on the specific model or imple-
mentation of a STM framework. The proposed technique only depends on the
programmer to correctly use the handlers and create the operationally effective
solution.

This handler system could also be a good solution to integrate database
transactions with memory transactions, using the two phase commit to commit
both memory and database transactional systems or none. Also, this solution
can scale to use more than one database at the same time. Ongoing work towards
such a goal is being carried out by the paper authors.

Acknowledgements

This work was partially funded by the CITI–Centro de Informática e Tecnologias
da Informação and by the FCT/MCTES–Fundação para a Ciência e Tecnologia
in the context of the Byzatium research project.

References

1. Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin
Saha, and Tatiana Shpeisman. Compiler and runtime support for efficient soft-
ware transactional memory. In Proceedings of the 2006 Conference on Programming
language design and implementation, pages 26–37. Jun 2006.

2. Gonçalo Cunha. Consistent state software transactional memory. Master’s thesis,
Universidade Nova de Lisboa, November 2007.

3. Luke Dalessandro, Virendra J. Marathe, Michael F. Spear, and Michael L. Scott.
Capabilities and limitations of library-based software transactional memory in c++.
In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing.
Portland, OR, Aug 2007.



4. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Distributed
Computing, volume 4167, pages 194–208. Springer Berlin / Heidelberg, October
2006.

5. Tim Harris. Design choices for language-based transactions. Technical report,
UCAM-CL-TR, August 2003.

6. Tim Harris. Exceptions and side-effects in atomic blocks. Sci. Comput. Program.,
58(3):325–343, 2005.

7. Tim Harris and Keir Fraser. Language support for lightweight transactions. In
OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pages 388–402, New
York, NY, USA, 2003. ACM.

8. João Lourenço and Gonçalo Cunha. Testing patterns for software transactional
memory engines. In PADTAD ’07: Proceedings of the 2007 ACM workshop on
Parallel and distributed systems: testing and debugging, pages 36–42, New York,
NY, USA, 2007. ACM.

9. Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Pro-
ceedings of the fourteenth annual ACM symposium on Principles of distributed com-
puting, pages 204–213, New York, NY, USA, 1995. ACM.


