
Efficient support for in-place metadata in Java software

transactional memory

Ricardo J. Dias Tiago M. Vale João M. Lourenço
{ricardo.dias, t.vale}@campus.fct.unl.pt joao.lourenco@fct.unl.pt

CITI and Departamento de Informática
FCT—Universidade Nova de Lisboa, Portugal

November 5, 2013

Abstract

Software Transactional Memory (STM) algorithms associate metadata with the
memory locations accessed during a transaction’s lifetime. This metadata may be
stored in an external table, by resorting to a mapping function that associates
the address of a memory cell with the table entry containing the corresponding
metadata (out-place or external strategy). Alternatively, the metadata may be
stored adjacent to the associated memory cell by wrapping the cell and metadata
together (in-place strategy). The implementation techniques to support these two
approaches are very different and each STM framework is usually biased towards one
of them, only allowing the efficient implementation of STM algorithms which suit
one of the approaches, and inhibiting a fair comparison with STM algorithms suiting
the other. In this paper we introduce a technique to implement in-place metadata
that does not wrap memory cells, thus overcoming the bias and allowing STM
algorithms to directly access the transactional metadata. The proposed technique
is available as an extension to Deuce, and enables the efficient implementation of a
wide range of STM algorithms and their fair (unbiased) comparison in a common
STM framework. We illustrate the benefits of our approach by analyzing its impact
in two popular TM algorithms with several transactional workloads, TL2 and multi-
versioning, each befitting out-place and in-place respectively.

1 Introduction

Software Transactional Memory (STM) algorithms differ in the properties and guaran-
tees they provide. Among others differences, one can list distinct strategies used to read
(visible or invisible) and update memory (direct or deferred), the consistency (opacity or
snapshot isolation) and progress guarantees (blocking or non-blocking), the policies ap-
plied to conflict resolution (contention management), and the sensitivity to interactions

0This research was partially supported by the EU COST Action IC1001 (Euro-TM) and the Por-
tuguese Fundação para a Ciência e Tecnologia in the research project PTDC/EIA-EIA/113613/2009
(Synergy-VM), and the research grant SFRH/BD/41765/2007.

1

with non-transactional code (weak or strong atomicity). Some STM frameworks (e.g.,
DSTM2 [1] and Deuce [2]) address the need of experimenting with new STM algorithms
and their comparison, by providing a unique transactional interface and different alter-
native implementations of STM algorithms. However, STM frameworks tend to favor
the performance for some classes of STM algorithms and disfavor others. For instance,
the Deuce framework favors algorithms like TL2 [3] and LSA [4], which are resilient to
false sharing of transactional metadata (such as ownership records) stored in an external
table, and disfavor multi-version algorithms, which require unique metadata per memory
location. This paper addresses this issue by proposing an extension to the Deuce frame-
work that allows the efficient support of transactional metadata records per memory
location.

STM algorithms manage information per transaction (frequently referred to as a
transaction descriptor), and per memory location (or object reference) accessed within
that transaction. The transaction descriptor is typically stored in a thread-local memory
space and maintains the information required to validate and commit the transaction.
The per memory location information depends on the nature of the STM algorithm,
and may be composed by, e.g., locks, timestamps or version lists, will henceforth be
referred as metadata. Metadata is stored either adjacent to each memory location (in-
place strategy), or in an external table (out-place or external strategy). STM libraries
for imperative languages, such as C, frequently use the out-place strategy, while those
addressing object-oriented languages bias towards the in-place strategy.

The out-place strategy is implemented by using a table-like data structure that ef-
ficiently maps memory references to its metadata. Storing the metadata in such a pre-
allocated table avoids the overhead of dynamic memory allocation, but incurs in the
overhead for evaluating the location-to-metadata mapping function. The bounded size
of the external table induces a false sharing situation, where multiple memory locations
share the same table entry and hence the same metadata, in a many-to-one relation
between memory locations and metadata units.

The in-place strategy is usually implemented by using the decorator design pattern [5],
by extending the functionality of an original class by wrapping it in a decorator class that
contains the required metadata. This technique allows the direct access to the object
metadata without significant overhead, but is very intrusive to the application code,
which must be heavily rewritten to use the decorator classes instead of the original ones.
The decorator pattern based technique bears two other problems: additional overhead
for non-transactional code, and multiple difficulties while working with primitive and
array types. This technique implements a one-to-one relation between memory locations
and metadata units, thus no false sharing occurs. Riegel et al. [6] briefly describe the
trade-offs of using in-place versus out-place strategies.

Deuce is among the most efficient STM frameworks for the Java programming lan-
guage and provides a well defined interface that is used to implement several STM
algorithms. On the application developer’s side, a memory transaction is defined by
adding the annotation @Atomic to a Java method, and the framework automatically
instruments the application’s bytecode to intercept the read and write memory accesses
by injecting call-backs to the STM algorithm. These call-backs receive the referenced
memory address as argument, hence limiting the range of viable STM algorithms to
be implemented by forcing an out-place strategy. To implement an algorithm in Deuce

2

that requires a one-to-one relation between metadata and memory locations, such as a
multi-version algorithm, one needs to use a external table that handles collisions, which
significantly degrades the throughput of the algorithm.

This paper reports on an extension of our previous work [7], which proposes a novel
approach to support the in-place metadata strategy without making use of the decorator
pattern, and thoroughly evaluates its implementation in Deuce. This extension allows the
efficient implementation of algorithms requiring a one-to-one relation between metadata
and memory locations, such as multi-version algorithms. The developed extension has
the following properties:

Efficiency The extension fully supports primitive types, even in transactional code. It
does not rely on an external mapping table, thus providing fast direct access to
the transactional metadata. Transactional code does not require the extra memory
dereference imposed by the decorator pattern. Non-transactional code is in general
oblivious to the presence of metadata in objects, hence no significant performance
overhead is introduced. And we propose a solution for supporting transactional
n-dimensional arrays with a negligible overhead for non-transactional code.

Flexibility The extension supports both the original out-place and the new in-place
strategies simultaneously, hence it is fully backwards compatible and imposes no
restrictions on the nature of the STM algorithms to be used, nor on their imple-
mentation strategies.

Transparency The extension automatically identifies, creates and initializes all the nec-
essary additional metadata fields in objects. No source code changes are required,
although some light transformations are applied to the non-transactional bytecode.
The new transactional array types — that support metadata at the array cell level
— are compatible with the standard arrays, therefore not requiring pre- and post-
processing of the arrays when used as arguments in calls to the standard JDK or
third-party non-transactional libraries.

Compatibility Our extension is fully backwards compatible and the already existing
implementations of STM algorithms are executed with no changes and with zero
or negligible performance overhead.

Compliance The extension and bytecode transformations are fully-compliant with the
Java specification, hence supported by standard Java compilers and JVMs.

The paper is structured as follows. Section 2 describes the Deuce framework and
its out-place strategy. Section 3 describes properties of the in-place strategy, its im-
plementation, and its limitations as an extension to Deuce. Section 4 describes the
implementation of three multi-version algorithms; one using the out-place strategy and
the other two using the in-place strategy. We evaluate our implementation with several
benchmarks and algorithms in Section 5, and discuss the related work in Section 6. We
finish with some concluding remarks in Section 7.

3

2 Deuce and the Out-Place Strategy

Algorithms such as TL2 [3] or LSA [4] use an out-place strategy by resorting to a very
fast hashing function and storing a single lock in each table entry. However, due to
performance issues, the mapping table does not avoid hash collisions and thus two mem-
ory locations may be mapped to the same table entry, resulting in the false sharing of
a lock by two different memory locations. In these algorithms, the false sharing may
wrongly cause transactions to fail and abort, hurting the system performance but never
compromising their correctness.

The out-place strategy suits algorithms where metadata information does not depend
on the memory locations, such as locks and timestamps, but not algorithms that need
to keep location-dependent metadata information, e.g., multi-version algorithms. The
out-place implementations of these algorithms require a mapping table with collision
lists, which significantly degrades performance.

Deuce provides the STM algorithms with a unique identifier for each object field,
composed by the reference to the object and the field’s logical offset within that object.
This unique identifier can then be used by the STM algorithms as the key to any map
implementation that associates the object’s field with the transactional metadata. Like-
wise for arrays, the unique identifier of an array’s cell is composed by the array reference
and the index of that cell. It is worthwhile to mention that Deuce supplies a single
@Atomic Java annotation, and relies heavily on bytecode instrumentation to provide a
transparent transactional interface to application developers, which are unaware of how
the STM algorithms are implemented and of the strategies used to store the transactional
metadata.

The performance of STM algorithms varies with both the hardware and the trans-
actional workload, and a thorough experimental evaluation is required to assess the
optimal combination of the triple hardware–algorithm–workload. Deuce is an extensible
STM framework that may be used to address such comparison of different STM algo-
rithms. However, Deuce is biased towards the out-place strategy, allowing very efficient
implementations for some algorithms like TL2 and LSA, but hampering some others,
like the multi-version oriented STM algorithms.

To support the out-place strategy, Deuce identifies an object’s field by the object
reference and the field’s logical offset. This logical offset is computed at compile time,
and for every field f in every class C an extra static field fo is added to that class,
whose value represents the logical offset of f in class C. No extra fields are added for
array cells, as the logical offset of each cell corresponds to its index. Within a memory
transaction, when there is a read or write memory access to a field f of an object O, or to
the array element A[i], the run-time passes the pair (O, fo) or (A, i) respectively as the
argument to the call-back function. The STM algorithm shall not differentiate between
field and array accesses. If an algorithm wants to, e.g., associate a lock with a field, it
has to store the lock in an external table indexed by the hash value of the pair (O, fo) or
(A, i). STM algorithm implementations must comply with a well defined Java interface,
as depicted in Figure 1. The methods specified in the interface are the call-back functions
that are injected by the instrumentation process in the application code. For each read
and write of a field of an object, the methods onReadAccess and onWriteAccess, are
invoked respectively. The method beforeReadAccess is called before the actual read of

4

public interface Context {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();

void beforeReadAccess(Object obj, long field);

int onReadAccess(Object obj, int value, long field);
// ... onReadAccess for the remaining types

void onWriteAccess(Object obj, int value, long field);
// ... onWriteAccess for the remaining types

}

Figure 1: Context interface for implementing an STM algorithm.

an object’s field.
We have extended Deuce to support an efficient in-place strategy, in addition to the

already existing out-place strategy, while keeping the same transparent transactional
interface to the applications.

3 Support for In-Place Strategy

In our approach to extend Deuce to support the in-place strategy, we replace the previous
pair of arguments to call-back functions (O, fo) with a new metadata object fm, whose
class is specified by the STM algorithm’s programmer. We guarantee that there is a
unique metadata object fm for each field f of each object O, and hence the use of fm

to identify an object’s field is equivalent to the pair (O, fo). The same applies to arrays,
where we ensure that there is a unique metadata object am for each position of any array
A.

3.1 Implementation

Although the implementation of the support for in-place metadata objects differs con-
siderably for class fields and array elements, a common interface is used to interact with
the STM algorithm implementation. This common interface is supported by a well de-
fined hierarchy of metadata classes, illustrated in Figure 2, where the rounded rectangle
classes are defined by the STM algorithm developer.

All metadata classes associated with class fields extend directly from the top class
TxField (see Figure 3). The constructor of TxField class receives the object ref-
erence and the logical offset of the field. All subclasses must call this constructor.
For array elements, we created specialized metadata classes for each primitive type in
Java, the TxArr*Field classes, where * ranges over the Java primitive types1. All the

1int, long, float, double, short, char, byte, boolean, and Object.

5

TxField

TxArrIntField TxArrObjectField...
...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Figure 2: Metadata classes hierarchy.

public class TxField {
public Object ref;
public final long offset;

public TxField(Object ref, long offset) {
this.ref = ref;
this.offset = offset;

}
}

Figure 3: TxField class.

TxArr*Field classes extend from TxField, providing the STM algorithm with a simple
and uniform interface for call-back functions.

We defined a new interface for the call-back methods (see Figure 4). In this new
interface, the read and write call-back functions (onReadAccess and onWriteAcess

respectively) receive only the metadata TxField object, not the object reference and
logical offset of the Context interface. This new interface coexists with the original one
in Deuce, allowing new STM algorithms to access the in-place metadata while ensuring
backward compatibility.

The TxField class can be extended by the STM algorithm programmer to include
additional information required by the algorithm for, e.g., locks, timestamps, or version
lists. The newly defined metadata classes need to be registered in our framework to
enable its use by the instrumentation process, using a Java annotation in the class
that implements the STM algorithm, as exemplified in Figure 5. The programmer may
register a different metadata class for each kind of data type, either for class field types
or array types. As shown in the example of Figure 5, the programmer registers the
metadata implementation class TL2IntField for the fields of int type, by assigning the
name of the class to the fieldIntClass annotation property.

The STM algorithm must implement the ContextMetadata interface (Figure 4) that
includes a call-back function for the read and write operations on each Java type. These
functions always receive an instance of the super class TxField, but no confusion arises
from there, as each algorithm knows precisely which metadata subclass was actually used
to instantiate the metadata object.

6

public interface ContextMetadata {
void init(int atomicBlockId, String metainf);
boolean commit();
void rollback();

void beforeReadAccess(TxField field);
int onReadAccess(int value, TxField field);
// ... onReadAccess for the remaining types

void onWriteAccess(int value, TxField field);
// ... onWriteAccess for the remaining types

}

Figure 4: Context interface for implementing an STM algorithm supporting in-place
metadata.

@InPlaceMetadata(
fieldObjectClass="TL2ObjField",
fieldIntClass="TL2IntField",
...
arrayObjectClass="TL2ArrObjectField",
arrayIntClass="TL2ArrIntField",
...

)
public class TL2Context implements ContextMetadata {
...

}

Figure 5: Declaration of the STM algorithm specific metadata.

Lets now see where and how the metadata objects are stored, and how they are used
on invocation of the call-back functions. We will explain separately the management of
metadata objects for class fields and for array elements.

3.1.1 Adding Metadata to Class Fields

During the execution of a transaction, there must be a metadata object fm for each
accessed field f of object O. Ideally, the metadata object fm would be accessible by
a single dereference operation from object O, and this was achieved by adding a new
metadata field (of the appropriate type) for each field declared in a class C. The general
rule for this process can be described as: given a class C that has a set of declared fields
F = {f1, . . . , fn}, for each field fi ∈ F we add a metadata object field fm

i+n to C, such
that the class ends with the set of fields Fm = {f1, . . . , fn, fm

1+n, . . . , f
m
n+n}, where the

field fi is associated with the metadata field fm
i+n for any i ≤ n. In Figure 6 we show a

concrete example of the transformation of a class with two fields.

7

class C {
int a;
Object b;

}
=⇒

class C {
int a;
Object b;
final TxField a_metadata;
final TxField b_metadata;

}

Figure 6: Example transformation of a class with the in-place strategy.

Instance and static fields are expected to have instance and static metadata fields,
respectively. Thus, instance metadata fields are initialized in the class constructor, while
static metadata fields are initialized in the static initializer (static { ... }). This
ensures that whenever a new instance of a class is created, the corresponding metadata
objects are also new and unique, while static metadata objects are the same in all in-
stances. Since a class can declare multiple constructors that can call each other, using
the telescoping constructor pattern, blindly instantiating the metadata fields in all con-
structors would be redundant and impose unnecessary stress on the garbage collector.
Therefore, the creation and initialization of metadata objects only takes place in the
constructors that do not rely in another constructor to initialize its target.

Opposed to the transformation approach based in the decorator pattern, where prim-
itive types must be replaced with their object equivalents (e.g., in Java an int field is
replaced by an Integer object), our transformation approach keeps the primitive type
fields untouched, simplifying the interaction with non-transactional code, limiting the
code instrumentation and avoiding auto-boxing and its overhead.

3.1.2 Adding Metadata to Array Elements

The structure of an array is very strict, with each array cell containing a single value
of a well defined type, and no other information can be added to those elements. The
common approach to overcome this limitation and add some more information to each
cell, is to change the original array to an array of objects that wrap the original value and
the additional information. This straight-forward transformation has strong implications
in the application, as code statements accessing the original array or array elements will
now have to be rewritten to use the new array type or wrapping class respectively.
This problem is even more complex if the new arrays with wrapped elements are to be
manipulated by non-instrumented libraries, such as the JDK libraries, which are unaware
of the new array types.

While the instrumentation process can replace the original arrays with the new ar-
rays where needed, the straight-forward transformation approach needs to be able to
revert back to the original arrays when presented with non-instrumented code. For
example, consider that the application code is invoking the non-instrumented method
Arrays.binarySearch(int[], int) from the Java platform. Throughout the instru-
mented code int[] has been replaced by a new type, which we denote IntWrapper[]. As
the binarySearch method was not instrumented, the array parameter remains of type
int[], thus one needs to construct an int[] with the same state of the IntWrapper[],

8

class D {
int[] a; //base array

}

index=0
array
index=1
array
index=2
array

5

3

8

[0]

[2]

[1]

[0]

[1]

[2]

TxArrIntField[3] int[3]

=⇒
class D {
TxArrIntField[] a;
TxField a_metadata;

}

class TxArrIntField {
int[] array; //base array
int index;

}

Figure 7: Memory structure of a TxArrIntField array.

which can then be passed as an argument to the binarySearch method. From the
caller perspective, the non-instrumented method itself is a black box which may have
modified some array cells.2 Hence, unless we were to build some kind of black/white list
with such information for all methods, the values from int[] have to be copied back
to IntWrapper[]. All these memory allocation and copies significantly hamper the per-
formance when executing non-instrumented code, which should not be affected due to
transactional-related instrumentation. We call this straight-forward approach the näıve
solution.

The solution we propose is also based on changing the type of the array to be manipu-
lated by the instrumented application code, but with minimal impact on the performance
of non-instrumented code. We keep all the values in the original array, and have a sibling
second array, only manipulated by the instrumented code, that contains the additional
information and references to the original array. The type in the declaration of the
base array is changed to the type of the corresponding sibling array (TxArr*Field),
as shown in Figure 7. This Figure also illustrates the general structure of the sibling
TxArr*Field arrays (in this case, a TxArrIntField array). Each cell of the sibling array
has the metadata information required by the STM algorithm, its own position/index in
the array, and a reference to the original array where the data is stored (i.e., where the
reads and updates take place). This scheme allows the sibling array to keep a metadata
object for each element of the original array, while maintaining the original array always
updated and compatible with non-transactional legacy code. With this approach for
adding metadata support to arrays, the original array can still be retrieved with two
dereferences from the sibling TxArr*Field array, with minimal overhead implications.
Since the original array serves as the backing store, no memory allocation or copies need
to be performed, even when array elements are changed by non-instrumented code. We
call our proposed solution the efficient solution.

Non-transactional methods that have arrays as parameters are also instrumented to
replace the array type by the corresponding sibling TxArr*Field. For non-instrumented
methods, relying on the method signature is not enough to identify the need to revert to

2In this example we used the binarySearch method which does not modify the array, but in
general we do not know.

9

void foo(int[] a) {
// ...
t = a[i];

}

=⇒

void foo(TxArrIntField[] a) {
// ...
t = a[0].array[i];

}

Figure 8: Example transformation of array access in the in-place strategy.

Table 1: Comparison between primitive and transactional arrays.

Arrays Access nth dimension Objects Non-transactional methods

Primitive arrays n derefs
n∑

i=1

li−1 —

Instrumented arrays 2n+ 1 derefs
n∑

i=1

2li−1 + (li × li−1) 2 derefs

n (dimensions), li (length of ith dimension)

primitive arrays. Take, for example, the System.arraycopy(Object, int, Object, int, int)
method from the Java platform. The signature refers Object but it actually receives ar-
rays as arguments. We identify these situations by inspecting the type of the arguments
on a virtual stack3 and if an array is found, despite the method’s signature, we revert
to primitive arrays. The value of an array element is then obtained by dereferencing the
pointer to the original array kept in the sibling, as illustrated in Figure 8. When passing
an array as argument to an uninstrumented method (e.g., from the JDK library), we can
just pass the original array instance. Although the instrumentation of non-transactional
code adds an extra dereference operation when accessing an array, we still do avoid the
auto-boxing of primitive types, which would impose a much higher overhead.

3.1.3 Adding Metadata to Multi-Dimensional Arrays

The special case of multi-dimensional arrays is tackled using the TxArrObjectField

class, which has a different implementation from the other specialized metadata array
classes. This class has an additional field, nextDim, which may be null in the case
of a unidimensional reference type array, or may hold the reference of the next array
dimension by pointing to another array of type TxArr*Field. Once again, the original
multi-dimensional array is always up to date and can be safely used by non-transactional
code.

Figure 9 depicts the memory structure of a bi-dimensional array of integers. Each
element of the first dimension of the sibling array has a reference to the original integer
matrix. The elements of the second dimension of the sibling array have a reference to
the second dimension of the matrix array.

Table 1 provides a comparison between the regular primitive arrays, used in the out-
place strategy, and our instrumented arrays, used in the in-place strategy. The instru-

3During the instrumentation process we keep the type information of the operand stack.

10

index=0
array

nextDim

[0]

index=1
array

nextDim

[1]

index=0
array
index=1
array
index=2
array

index=0
array
index=1
array
index=2
array

[0]

[2]

[1]

[0]

[2]

[1]

[0]

[1]
[0]

[1]

[2]

[0]

[1]

[2]

TxArrObjectField[2]

TxArrIntField[3]

TxArrIntField[3]

int[2][3]
int[3]

int[3]

Figure 9: Memory structure of a multi-dimensional TxArrIntField array.

mented arrays follow the strategy described above. For accessing a cell in a n-dimensional
array (Table 1, second column), in a primitive array it takes n object dereferences, i.e.,
dereferencing all intermediate dimension arrays and directly accessing the cell. With our
array instrumentation it takes 2n + 1 dereferences, introducing an extra dereference per
dimension (2n) because each cell is now a TxArr*Field. Since the original array is used
as the backing store, there is an additional dereference of the original array in the last di-
mension to access the value. Regarding the number of objects that each approach needs
for an n-dimensional array (Table 1, third column), for simplicity’s sake let’s assume
that all intermediate ith-dimensional arrays have the same length, li. Primitive arrays
have li−1 objects per dimension, i.e., each dimension’s array cell is a reference to another
array, except in the last dimension. The instrumented arrays have twice the number of
arrays, i.e., 2li−1, corresponding to the the original array (which is kept) and the sibling
array, plus an extra TxArr*Field in every array cell (li × li−1). When an array is to be
used by a non-instrumented method (Table 1, fourth column), the instrumented arrays
require two dereferences to obtain the backing-store primitive array, i.e., dereferencing
the sibling array followed by a dereference of a TxArr*Field cell, from which the array

field can be used. These two dereferences required by our instrumented arrays contrast
with the expensive memory allocation and copies necessary for the straight-forward näıve
solution, described in Section 3.1.2.

3.2 Instrumentation Limitations

Some Java core classes, mostly in the java.lang package, are loaded and initialized
during the JVM bootstrap. Because these classes are loaded upon JVM startup, they
can either be redefined online after the bootstrap, or require an offline, static, instrumen-
tation. Online redefinition of classes has many and strong limitations, and its support is
an optional functionality for JVMs [8]. For this reason, instead of online redefinition of
bootstrap-loaded classes, Deuce provides an offline instrumentation process.

Most JVMs are very sensitive with regard to the order in which classes are loaded
during the bootstrap. If that order is changed due to the execution of instrumented
code during the bootstrapping phase (i.e., because instrumented code may depend on

11

certain classes that need to be loaded before the instrumented code can be executed),
the JVM may crash [9]. The Deuce online instrumentation injects static fields and their
initialization, which would disrupt the class loading order if done on bootstrap-loaded
classes. They solve this problem in the offline instrumentation by creating a separate
class to hold the fields instead. This is possible because the necessary fields are static.

The instrumentation to support the in-place metadata strategy is more complex,
requiring the injection of instance fields and modifying arrays. For this reason, the
instrumentation of bootstrap-loaded classes is not supported by our current instrumen-
tation process, as these transformations disrupt the bootstrap class loading order by
loading the metadata and transactional array classes.

At the moment there is no support for structural modification of arrays inside non-
instrumented code, such as the java run-time library, because the solution for metadata at
array element level relies on a sibling array where a structural invariant exists between
the sibling array and the original array. If a non-instrumented method modifies the
original array, the structural invariant is broken and both structures become different.

4 Use case: multi-version algorithm implementation

Our main purpose for extending Deuce with support for in-place metadata was to allow
the efficient implementation of a class of STM algorithms that require a one-to-one
relation between memory locations and their metadata. Multi-version based algorithms
fit into that class, as they associate a list of versions (holding past values) with each
memory location.

To evaluate our extension to Deuce, we started by implementing the JVSTM multi-
version algorithm as described in [10]4. We did two implementations of the algorithm, one
using the original Deuce interface and an out-place strategy (referred to as jvstm-outplace),
and another using our new interface and extension supporting an in-place strategy (re-
ferred to as jvstm-inplace). We also implemented a new multi-version algorithm, based
in TL2 (referred to as mvstm), which has a bounded number of versions for each memory
location and does not use a global lock in the commit. Instead, at commit time it uses a
lock per memory location and only the write-set is locked. In the following sections we
describe the implementation details of each of the above algorithms.

4.1 Implementing JVSTM

The JVSTM algorithm defines the notion of version box (vbox), which maintains a
pointer to the head of an unbounded list of versions, where each version is composed by a
timestamp and the data value. Each version box represents a distinct memory location.
The timestamp in each version corresponds to the timestamp of the transaction that
created that version, and the head of the version list always points to the most recent
version.

During the execution of a transaction, the read and write operations are done in
versioned boxes, which hold the data values. For each write operation a new version is

4Recent ongoing work in JVSTM algorithm [11] reports considerable performance improvements over
the version we used in this paper.

12

created and tagged with the transaction timestamp. For read operations, the version
box returns the version with the highest timestamp less than or equal to the transac-
tion’s timestamp. A particularity of this algorithm is that read-only transactions never
abort, neither do write-only transactions. Only read-write transaction may conflict, thus
aborting.

On committing a transaction, a global lock must be acquired to ensure mutual ex-
clusion with all other concurrent transactions. Once the global lock is acquired, the
transaction validates the read-set, and in case of success, creates the new version for
each memory location that was written, and finally releases the global lock. To prevent
version lists from growing indefinitely, versions that are no more necessary are cleaned
up by a vbox garbage collector.

To implement the JVSTM algorithm, we need to associate a vbox with each field
of each object. For the sake of the correctness of the algorithm, this association must
guarantee a relation of one-to-one between the vbox and the object’s field. We will detail
the implementation of this association for both, the out-place and the in-place strategies.

4.1.1 Out-Place Strategy

To implement JVSTM algorithm in the original Deuce framework, which only supports
the out-place strategy, the vboxes must be stored in an external table5. The vboxes are
indexed by a unique identifier for the object’s field, composed by the object reference
and the field’s logical offset.

Whenever a transaction performs a read or write operation on an object’s field, the
respective vbox must be retrieved from the table. In the case where the vbox does not
exists, we must create one and add it into the table. These two steps, verifying if a vbox
is present in the table and creating and inserting a new one if not, must be performed
atomically, otherwise we would incur in the case where two different vboxes may be
created for the same object’s field. Once the vbox is retrieved from the table, either
it is a read operation and we look for the appropriate version using the transaction’s
timestamp and return the version’s value, or it is a write operation and we add an entry
to the transaction’s write-set.

We use weak references in the table indices to reference the vbox objects and not
hamper the garbage collector from collecting old objects. Whenever an object is collected
our algorithm is notified in order to remove the respective entry from the table.

Despite using a concurrent hash map, this implementation suffers from a high over-
head penalty when accessing the table, since it is a point of synchronization for all the
transactions running concurrently. This implementation (jvstm-outplace) will be used
as a base reference when comparing with the implementation of JVSTM algorithm us-
ing the in-place strategy (jvstm-inplace) and with the new multi-version algorithm
(mvstm).

4.1.2 In-Place Strategy

The in-place version of JVSTM algorithm makes use of the metadata classes to hold the
same information as the vbox in the out-place variant. This will allow direct access to

5We opted to use a concurrent hash table from the java.util.concurrent package.

13

public class VBox extends TxField {
protected VBoxBody body;

public VBox(Object ref, long offset) {
super(ref, offset);
body = new VBoxBody(read(), 0, null);

}

// ... methods to access and commit versions
}

Figure 10: VBox in-place implementation.

the version list whenever a transaction is reading or writing.
We extend the vbox class from the TxField class as shown in Figure 10.
The actual implementation creates a VBox class for each Java type in order to prevent

the boxing and unboxing of primitive types. When the constructor is executed, a new
version with timestamp zero is created, containing the current value of the field identified
by object ref and logical offset offset. The value is retrieved using the private method
read().

The code to create these VBox objects during the execution of the application is
inserted automatically by our bytecode instrumentation process. The lifetime of an
instance of the class VBox is the same as the lifetime of the object ref. When the
garbage collector decides to collect the object ref, all metadata objects of class VBox

associated with each field of the object ref, are also collected.
Our evaluation (see Section 5) shows that the direct access to the version list allowed

by the in-place strategy will greatly benefit the performance of the algorithm. The evalu-
ation of both variants of the JVSTM algorithm (jvstm-outplace and jvstm-inplace)
revealed a scalability bottleneck, which motivated the development of a new multi-version
algorithm (mvstm).

4.2 MVSTM – A New Multi-Version Algorithm

We developed and implemented a new multi-version algorithm (MVSTM) using the in-
place metadata support and inspired in TL2. It defines a fixed size for the list of versions,
imposing a bound in the number of versions for each memory location, and at commit
time it uses a lock per memory location listed in the write-set.

The structure for each version is the same as in JVSTM. Each version is composed
by a timestamp, which corresponds to the timestamp of the transaction that committed
the version, and the data value. Each metadata object has a pointer to the head of a
version list with a fixed size. Whenever a transaction commits a new version, and the
maximum size of the version list is reached, we discard half of the older versions. This
decision allows to limit the memory used by the algorithm and avoid complex garbage
collection algorithms to remove old versions. The drawback of this approach is that
read-only operations can now abort because they may try to read a version that was

14

already removed.
The commit operation is similar to the TL2 algorithm. Read-only transactions may

commit without any additional validation procedure, whilst read-write transactions need
to lock the write-set entries and then validate their read-set. In the case of a successful
validation of the read-set, the transaction applies the write-set by creating a new version
for each entry in the write-set, and finally unlocks the write-set locks. This locking
scheme allows two transactions to commit concurrently if their write-sets are disjoint.

4.3 Supporting the Weak Atomicity Model

Multi-version algorithms read and write the data values from and to the list of versions.
This implies that all accesses to fields in shared objects must be done inside a memory
transaction, and thus multi-version algorithms require a strong atomicity model [12].

Deuce does not provide a strong atomicity model, and hence it is possible to have
non-transactional accesses to fields of objects that were also accessed inside memory
transactions. This hinders the usage of multi-version algorithms in Deuce. One approach
to address this problem is to rewrite the existing benchmarks to wrap all accesses to
shared objects inside an atomic method, but such code changes are always a cumbersome
and error prone process. We addressed this problem by proposing an adaptation for the
multi-version algorithms to support the weak atomicity model.

When using a weak atomicity model, updates made by non-transactional code to
object fields are not seen by transactional code and, on the other way around, updates
made by transactional code are not seen by non-transactional code. The key idea for
our proposal is to store the value of the latest version in the object’s field instead of at
the head of the version list. When a transaction needs to read a field of an object, it
requests the version corresponding to the transaction timestamp. If it receives the head
version, then it reads the value directly from the object’s field instead, otherwise it reads
the value from the appropriate version node.

The problem with this approach is how to guarantee atomicity when committing a
new version, because now we have two steps: adding a new version node to the head of
the list and updating the field’s value. These two steps must appear atomic with respect
to the other concurrent transactions. Our solution is to create a temporary new version
with an infinite timestamp, making it invisible for other concurrent transactions, until
we update the value and then change the timestamp to its proper value.

The pseudo-code of the commit algorithm of a new version is listed below. In this list,
t is the timestamp of the transaction that is performing the commit, t∞ is the highest
timestamp, val is the value to be written, vh is the pointer to the head version, and f is
the object’s field.

1. vn := create version(val , t∞, vh)

2. vh.value := read(f)

3. vh := vn

4. write(f, val)

5. vh.timestamp := t

15

The first step is to create a new version with the new value to be written in field f ,
an infinite timestamp, and the pointer to the current head version. Then we update the
value of the head version with the current value of field f . This update is safe because
until this point transactions that retrieve the head version read the value directly from
field f , as described above. In the third step, we make the new version vn the current
head version and it becomes visible to all concurrent transactions. This version will never
be accessed by any concurrent transaction because of the infinite timestamp. Then we
can safely update the field’s value in the fourth step because no concurrent transaction
accesses the head version. In the last step we change the timestamp of the current head
version to its proper value making accessible to concurrent transactions.

We adapted the three multi-version algorithms (jvstm-outplace, jvstm-inplace
and mvstm) to include the new commit algorithm, which enabled the execution all bench-
marks available in the Deuce framework with no modification.

5 Performance Evaluation

We evaluated our work in three dimensions: the performance overhead introduced by the
support of the in-place strategy; and the performance improvements achieved by multi-
versioning STM algorithms when using our in-place strategy; the memory consumption
of some STM algorithms that use the in-place and/or out-place strategies, while running
several benchmarks. To measure the transactional throughput we used the vanilla micro-
benchmarks6 available in the Deuce framework, the Vacation, KMeans and Genome
benchmarks from the STAMP7 test suite [13], and the STMBench78 benchmark [14]. All
these benchmarks were executed in our extension of Deuce with in-place metadata with
no changes whatsoever, as all the necessary bytecode transformations were performed
automatically by our instrumentation process.

The benchmarks were executed on a computer with four AMD Opteron 6168 12-Core
processors @ 1.9 GHz with 12×512 KB of L2 cache and 128 GB of RAM, running Red
Hat Enterprise Linux Server Release 6.2 with Linux 2.6.32 x86 64.

5.1 Performance Overhead

To evaluate the performance overhead of our extension, we compared the performance
of the TL2 algorithm as provided by the original Deuce distribution, with another im-
plementation of TL2 (tl2-overhead) using the new interface provided by our Deuce
extension (Figure 4). The original Deuce interface for call-back functions provide a pair
with the object reference and the field logical offset. The new interface provides a ref-
erence to the field metadata (TxField) object. Despite using the in-place metadata
feature, the tl2-overhead implementation resembles the original one as much as pos-
sible and still uses an external table to map memory references to locks. By comparing

6LinkedList, RBTree, and SkipList. Run parameters: -i 16384 (initial size) -r 262144 (range).
7Run parameters: Vacation -q90 -u90 -r32768 -t262144 -n8 (vacation-high+); KMeans

-m40 -n40 -t0.001 -irandom-n16384-d24-c16 (kmeans-low+); Genome -g512 -s32 -n32768
(genome+).

8Run parameters: -w r -g stm --no-traversals.

16

 0

 5

 10

 15

 20

 25

 30

 35

LinkedList 0%
LinkedList 10%
R
B
Tree 0%

R
B
Tree 10%

S
kipList 0%

S
kipList 10%

S
TM

B
ench7

V
acation

K
M

eans

G
enom

e
O

v
e
rh

e
a
d
 (

%
)

In-place metadata management overhead

22%
21%

8%

9%

15%

14%

1%

4%

15%
22%

Figure 11: Performance overhead measure of the usage of metadata objects relative to
out-place TL2.

these two similar implementations, we can make a reasonable estimation of the perfor-
mance overhead introduced by the management of the metadata object fields and sibling
arrays.

Figure 11 depicts the performance overhead, and its standard deviation, of tl2-overhead
with respect to the original Deuce TL2 implementation for several benchmarks, with
executions ranging form 1 to 48 threads. In average, the overhead of the additional
management of metadata objects and sibling arrays is about 13%. The benchmarks that
use metadata objects for arrays (SkipList, KMeans, Genome) have in general higher
overhead than the benchmarks that only use metadata objects for class fields (RBTree,
STMBench7, Vacation). The LinkedList benchmark does not use metadata objects for
arrays and still has a high overhead. This benchmark has long running transactions that
perform a very large number of read operations, and our extension requires an external
table lookup and an additional object dereference to retrieve the metadata object for each
memory read operation. The transactions in STMBench7 are computationally heavier,
which hides the small overhead introduced by the management of in-place metadata.

The micro-benchmarks were all tested in two scenarios: with a read-only workload
(0% of updates), and a read-write workload (10% of updates). Although the differences
in the average overhead are negligible for all three micro-benchmarks, there is a clear
trend for a larger standard deviation in read-write workloads. This trend is justified by
the higher variability in the behavior of the read-write transactions, due to the conflicts
and changes in the state of the program.

5.2 Performance

From the evaluation of the in-place management overhead, we concluded that this strat-
egy is a viable option for implementing algorithms biased to in-place transactional
metadata. Hence, we implemented and evaluated two versions of the JVSTM algo-
rithm as proposed in [10], one in the original Deuce using the native out-place strategy
(jvstm-outplace), and another in the extended Deuce using our in-place strategy

17

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

IntSet LinkedList update=10%

jvstm-inplace
mvstm

4x
3x 3x

4x

6x

10x

13x
14x

16x

5x
4x 4x 4x

5x

8x

11x

13x
14x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

IntSet RBTree update=10%

jvstm-inplace
mvstm

4x 4x 4x

13x

21x

24x

27x

29x 29x

5x
4x 4x

7x
8x

7x

5x
4x 4x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

IntSet SkipList update=10%

jvstm-inplace
mvstm

3x 3x
4x

15x

22x

25x 25x
26x

22x

3x 3x 3x

7x 7x
6x

4x 4x 4x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

IntSet STMBench7 Read-Dom. w/ SMS w/o Long Trav.

jvstm-inplace
mvstm

3x 3x 3x

8x
7x 7x 7x

6x 6x

3x 3x 3x

7x
6x 6x 6x

5x
6x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

Vacation (-q90 -u90 -r32768 -t262144 -n8)

jvstm-inplace
mvstm

3x 3x

6x

10x

12x
13x 13x

12x

10x

3x 3x

5x
6x 6x 6x 6x 6x 6x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 40 48

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

Threads

Kmeans (-m40 -n40 -t0.001 -irandom-n16384-d24-c16)

jvstm-inplace
mvstm

1x
2x

10x

21x

33x 45x 61x 50x 45x

1x
2x

8x

13x

16x

19x

21x
20x

16x

Figure 12: Speedup of jvstm-inplace and mvstm relative to jvstm-outplace.

18

(jvstm-inplace), as described in Section 4.1. We also implemented and evaluated
the new multi-version algorithm (mvstm), as described in Section 4.2.

Figure 12 depicts the speedup of our implementation of the jvstm-inplace and
mvstm algorithms relative to our implementation of the jvstm-outplace algorithm.
The speedup observed for the micro-benchmarks, where transactions are small and con-
tention is low, shows that the multi-versioning algorithm greatly benefit from our in-place
support. This benefit is even more evident for the mvstm algorithm, which scales very
well with the number of threads.

In the Vacation and KMeans macro-benchmarks, the in-place multi-version algo-
rithms perform much better than the out-place multi-version algorithm, and also scale
well with the number of threads. The STMBench7 macro-benchmark has many long-
running transactions and the overall throughput for all the algorithms is relatively low.
Even so, the in-place algorithms are in average 5× and 6× faster for the jvstm-inplace
and mvstm algorithms respectively.

These results also show that the mvstm algorithm clearly outperforms both the
jvstm-outplace and the jvstm-inplace algorithms, mainly due to the way ver-
sions are managed in mvstm, eliminating the need of a garbage collector for old versions
and the associated overhead.

These results prove that our strategy to support in-place metadata in Deuce gave
it leverage to implement algorithms that need a one-to-one relation between memory
locations and transactional metadata, thus enabling the fair comparison of a wider range
of STM algorithms, including those that could not be implemented efficiently in the
original Deuce framework. In Figure 13 we show an absolute performance comparison,
between the TL2 and LSA (out-place) algorithms and the three multi-version algorithms:
jvstm-outplace, jvstm-inplace, and mvstm. In all benchmarks, jvstm-outplace
clearly under-performs all the other algorithms, with no scalability and low throughput,
confirming our claims that it is not possible to implement efficiently a multi-version
algorithm in the original Deuce. On the other hand, the two multi-version algorithms
implemented with the in-place support (jvstm-inplace and mvstm) clearly compete
with the very performant TL2 in some workloads, evidencing that a good infrastructure
support for those algorithms was a key requirement for their comparative evaluation.

5.3 Memory Consumption

Figure 14 depicts the maximum memory used for each benchmark that we executed.
The difference between the memory used by the tl2 algorithm (out-place) and the
tl2-overhead algorithm (in-place) is very low for benchmarks that do not create many
objects during their execution (LinkedList, Vacation, KMeans, and Genome). In bench-
marks that create many objects (RBTree, SkipList, and STMBench7), tl2-overhead
uses about 3× more memory than tl2.

In all benchmarks, jvstm-outplace and jvstm-inplace always use a large
amount of memory. This is due to the JVSTM algorithm properties, which do not
limit the size of the version lists. Additionally, in the case of jvstm-outplace, the
external table used to hold the vboxes also requires a large amount of memory. In the
SkipList benchmark, mvstm has the largest memory footprint, even higher than both
jvstm variants. This result is due to the poor performance of jvstm variants, which

19

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
/s

x
1

0
3
)

Threads

IntSet LinkedList update=10%

tl2
lsa

jvstm
jvstm-inplace

mvstm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
/s

x
1

0
5
)

Threads

IntSet RBTree update=10%

tl2
lsa

jvstm
jvstm-inplace

mvstm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
/s

x
1

0
5
)

Threads

IntSet SkipList update=10%

tl2
lsa

jvstm
jvstm-inplace

mvstm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
/s

)

Threads

IntSet STMBench7 Read-Dom. w/ SMS w/o Long Trav.

tl2
jvstm

jvstm-inplace
mvstm

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 24 32 40 48

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads

Vacation (-q90 -u90 -r32768 -t262144 -n8)

tl2
lsa

jvstm
jvstm-inplace

mvstm

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 40 48

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads

KMeans (-m40 -n40 -t0.01 -irandom-n16384-d24-c16)

tl2
lsa

jvstm
jvstm-inplace

mvstm

Figure 13: Performance comparison between TL2, LSA, and the multi-version algo-
rithms.

20

 0

 5

 10

 15

 20

 25

LinkedList 10%

R
B
Tree 10%

S
kipList 10%

S
TM

B
ench7

V
acation

K
M

eans

G
enom

e

A
v
e

ra
g

e
 M

a
x
im

u
m

 M
e

m
o

ry
 (

G
B

) Memory Consumption

tl2

0.2

0.6
1.3

3.8

0.3 0.2 0.1

tl2-overhead

0.2

1.1

4.7

8.8

0.5 0.4 0.3

jvstm-outplace12.5

7.2

6.2

14.7

7.8

4.7

1.9

jvstm-inplace

14.7

4.5

5.5

12.7

3.8
3.5

1.2

mvstm

0.2

3.8

8.6

11.7

0.9 1.0

0.3

Figure 14: Maximum memory usage for each benchmark.

limits their memory usage during the benchmark. On the other hand, mvstm performs
very well, and due to the intensive use of array structures, the consumed memory is also
very high. The mvstm algorithm has generally a much lower memory usage pattern, con-
firming that bounding the size of version lists is a good design choice for multi-version
algorithms, with advantages for both performance and memory usage.

6 Related Work

Several STM algorithms were developed in the last few years, and comparing their perfor-
mance always requires a great implementation effort while using the same transactional
interface and programming language. Some STM frameworks address this problem and
provide a uniform transactional interface front-end and a flexible run-time back-end, but
are normally biased towards either the in-place or the out-place strategy.

DSTM2 [1] is a flexible STM framework for the Java language which permits the use
of different synchronization techniques and recovery strategies as framework plug-ins.
DSTM2 creates transactional objects using the factory pattern, and new factories can
be implemented to test different properties of STM algorithms. DSTM2 only allows to
implement algorithms using the in-place strategy.

Deuce [2], which is the base of our work, is one of the most efficient STM frameworks
available for the Java programming language. It provides a well defined interface that
allows to implement several STM algorithms, and relies on Java bytecode instrumenta-
tion to intercept transaction boundaries and transactional memory accesses and invoke
developer-defined call-back functions. Deuce has a strong bias towards the out-place
approach.

STM algorithms such as TL2 [3], LSA [4] and SwissTM [15] are usually implemented
using an out-place strategy, thus viable for use in Deuce. Others, such as JVSTM [10, 11]
and SMV [16] are better fit for the in-place strategy and impracticable for Deuce. Our

21

extension of Deuce overcomes this limitation and allows the efficient implementation of
algorithms using any of those strategies and their fair comparison.

Anjo et al. [17] developed a specialized transactional array targeting specifically the
JVSTM framework, achieving considerable performance improvements in read-dominant
workloads that use arrays. Our approach when extending Deuce aimed at providing an
efficient implementation for transactional arrays that is backwards compatible, where no
autoboxing is required and whose values are kept in their original primitive format and
are accessible to both transactional and non-transactional code.

All the static optimizations proposed by Afek et al. [18] are orthogonal to our work
and can also be applied to algorithms using the new in-place strategy, thus increasing
the overall performance.

7 Concluding Remarks

To the best of our knowledge, the extension of Deuce as described in this paper creates
the first Java STM framework providing a balanced support of both in-place and out-
place strategies. This is achieved by a transformation process of the program bytecode
that adds new metadata objects for each class field, and that includes a customized
solution for N-dimensional arrays that is fully backwards compatible with primitive type
arrays.

We evaluated our system by measuring the overhead introduced by our new in-place
strategy with respect to the TL2 algorithm implementation provided in Deuce distri-
bution package as reference. Although we can observe a light slowdown in our new
implementation of arrays, we would like to reinforce that our solution has no limitations
whatsoever concerning the type of the array elements, the number of its dimensions,
fits equally algorithms biased towards in-place or out-place strategies, and all bytecode
transformations are done automatically requiring no changes to the source code. We also
evaluated the effectiveness of the new in-place interface by comparing the performance
of three multi-version STM algorithms: two of them using the newly proposed in-place
strategy, and the other using an out-place strategy resorting to an external mapping
table. The results show that, by using the in-place strategy, multi-version algorithms
can now be fairly compared with other STM algorithms such as TL2, which was not
possible when using the original Deuce framework.

A preliminary version of the work described in this paper was published in the Euro-
Par 2012 conference [7].

Acknowledgments

We would like to thank João Cachopo, of IST-UTL, for providing the hardware resources
for the execution of the benchmarks reported in this paper.

References

[1] Herlihy M, Luchangco V, Moir M. A flexible framework for implementing software
transactional memory. Proc. 21st conference on Object-Oriented Programming Sys-

22

tems, Languages, and Applications, ACM, 2006; 253–262, doi:http://doi.acm.org/
10.1145/1167473.1167495.

[2] Korland G, Shavit N, Felber P. Noninvasive concurrency with Java STM. Proc.
MultiProg 2010: Programmability Issues for Heterogeneous Multicores, 2010.

[3] Dice D, Shalev O, Shavit N. Transactional locking II. Proc. 20th Int. Symp. on
Distributed Computing, LNCS, vol. 4167, Springer, 2006; 194–208, doi:http://dx.
doi.org/10.1007/11864219 14.

[4] Riegel T, Felber P, Fetzer C. A lazy snapshot algorithm with eager validation. Proc.
20th Int. Symp. on Distributed Computing, LNCS, vol. 4167, Springer, 2006; 284–
298, doi:http://dx.doi.org/10.1007/11864219 20.

[5] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1994.

[6] Riegel T, Brum DBD. Making object-based STM practical in unmanaged environ-
ments. Proc. of the 3rd Workshop on Transactional Computing, 2008.

[7] Dias RJ, Vale TM, Lourenço JM. Efficient support for in-place metadata in trans-
actional memory. Euro-Par 2012 Parallel Processing, Lecture Notes in Computer
Science, vol. 7484, Kaklamanis C, Papatheodorou T, Spirakis P (eds.). Springer
Berlin / Heidelberg, 2012; 589–600.

[8] Oracle. java.lang.instrument.Instrument. http://docs.oracle.com/javase/
7/docs/api/java/lang/instrument/Instrumentation.html Nov 2012.

[9] Binder W, Hulaas J, Moret P. Advanced Java bytecode instrumentation. Proceedings
of the International Symposium on Principles and Practice of Programming in Java
(PPPJ), 2007; 135–144.

[10] Cachopo J, Rito-Silva A. Versioned boxes as the basis for memory transactions. Sci.
Comput. Program. Dec 2006; 63:172–185, doi:10.1016/j.scico.2006.05.009.

[11] Fernandes SM, Cachopo Ja. Lock-free and scalable multi-version software transac-
tional memory. Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming, PPoPP ’11, ACM: New York, NY, USA, 2011; 179–188,
doi:10.1145/1941553.1941579.

[12] Blundell C, Lewis EC, Martin MMK. Deconstructing transactions: The subtleties of
atomicity. Fourth Annual Workshop on Duplicating, Deconstructing, and Debunk-
ing. 2005.

[13] Cao Minh C, Chung J, Kozyrakis C, Olukotun K. STAMP: Stanford transactional
applications for multi-processing. IISWC ’08: Proc. IEEE Int. Symp. on Workload
Characterization, 2008.

[14] Guerraoui R, Kapalka M, Vitek J. Stmbench7: a benchmark for software transac-
tional memory. Proceedings of the 2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2007, EuroSys ’07, ACM: New York, NY, USA, 2007;
315–324, doi:10.1145/1272996.1273029.

23

http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

[15] Dragojević A, Guerraoui R, Kapalka M. Stretching transactional memory. Proc. Int.
Conf. on Programming Language Design and Implementation, ACM, 2009; 155–165,
doi:http://doi.acm.org/10.1145/1542476.1542494.

[16] Perelman D, Byshevsky A, Litmanovich O, Keidar I. SMV: Selective multi-
versioning STM. Proc. 25th Int. Symp. on Distributed Computing, LNCS, vol. 6950,
Springer, 2011; 125–140.

[17] Anjo I, Cachopo J. Lightweight transactional arrays for read-dominated work-
loads. Proc. 11th Int. Conf. on Algorithms and Architectures for Parallel Process-
ing, Springer-Verlag: Berlin, Heidelberg, 2011; 1–13, doi:http://dl.acm.org/citation.
cfm?id=2075462.2075464.

[18] Afek Y, Korland G, Zilberstein A. Lowering STM overhead with static analysis.
Proc. 23rd Int. Workshop on Languages and Compilers for Parallel Computing,
2010, doi:10.1109/IPDPS.2010.5470446.

24

	1 Introduction
	2 Deuce and the Out-Place Strategy
	3 Support for In-Place Strategy
	3.1 Implementation
	3.1.1 Adding Metadata to Class Fields
	3.1.2 Adding Metadata to Array Elements
	3.1.3 Adding Metadata to Multi-Dimensional Arrays

	3.2 Instrumentation Limitations

	4 Use case: multi-version algorithm implementation
	4.1 Implementing JVSTM
	4.1.1 Out-Place Strategy
	4.1.2 In-Place Strategy

	4.2 MVSTM – A New Multi-Version Algorithm
	4.3 Supporting the Weak Atomicity Model

	5 Performance Evaluation
	5.1 Performance Overhead
	5.2 Performance
	5.3 Memory Consumption

	6 Related Work
	7 Concluding Remarks

