
Chapter 13

The DDBG Distributed Debugger

José C. Cunha, João Lourenço and Vítor Duarte

Abstract
This chapter presents the main issues involved in the design of the DDBG distributed debugger.

DDBG provides basic support for state based debugging of distributed C/PVM processes. Due to
its flexible architecture, DDBG enables the implementation of several debugging methodologies for
deterministic re-execution and systematic state exploration. This is achieved through its integration
with other tools in a parallel software development environment. The chapter describes how DDBG
was integrated with two tools of the SEPP/HPCTI environment: the STEPS testing tool and the
GRED graphical editor.

13.1 Introduction
As described in previous chapters, the SEPP/HPCTI projects have promoted the design and imple-
mentation of tools supporting visual graph-based parallel program development, including mapping
and load-balancing, simulation, monitoring, testing and debugging tools. The main goal of these
projects was to achieve an integrated environment that would ensure a suitable degree of consis-
tency among the above mentioned tools.

As discussed in Chapter 5, the debugging activity relies on the observation and control of a
computation in order to identify, locate and correct so-called program bugs. In a brief summary, the
following issues characterize the main dimensions of the distributed debugging activity:

1. Observation and control of distributed computations. The construction of consistent global
states of a distributed computation is a fundamental requirement to support the meaningful evalua-
tion of local and global predicates, which involve state variables in multiple processes. Concerning
control of the distributed computation, coordinated actions such as step-by-step execution and break-
point marking must be applied to individual processes, as in sequential debuggers, and to collections
of distributed processes.

2. Program analysis and testing. Distributed computations exhibit a very large space of al-
ternative computation paths that should be explored during debugging. Deterministic re-execution
schemes have a limitation here because they only allow to try the recorded trace that happened dur-
ing a previous computation and this trace may be the wrong one to inspect. So, the identification

271



of the desired traces that should be inspected under re-execution should be the result of applying a
testing tool. This aspect also relates to the ability to specify suitable global predicates that should be
submitted to an evaluation by the underlying system. So a debugger needs to be complemented by
program analysis and testing tools.

3. User level interfacing, program behavior interpretation and visualization. This includes
several aspects:

(i) Due to the complexity of the distributed computations we need to provide high-level views
to the user (high level debugging) that are close to the abstraction levels at which the application is
specified or programmed. This is opposed to the low-level view of debugging where system or
language (sometimes assembly-level) concepts are explicitly visible to the user.

(ii) Such views may be supported through the provision of graphical and visual interfaces.
Graphical user interfaces (GUI) support the already conventional windows and menu based access
to debugging commands and replies. Visual debugging is another aspect that concerns the suitable
interpretation and visualization of the relevant events of a distributed computation, ranging from
simple space-time diagrams to more sophisticated views offered by interactive visualization tools.

(iii) Internal consistency of the debugging tool means all the debugging functionalities (for
inspection and control of the distributed computation) are accessible through the graphical and visual
presentation interfaces as well as through text based command consoles and text based message
displays. Also, the user should be able to selectively enable/disable such graphical/visual views for
subsets of processes, communication channels, or any other components of a distributed program.
Furthermore, it should be possible to consistently observe/control a distributed computation at the
desired abstraction level, by changing from high level to low level debugging and vice versa.

The above dimensions cannot be supported by an isolated debugging tool as it is virtually im-
possible to anticipate all possible requirements posed by each user at each point in time. Several
complementary tools should be considered to support each individual aspect and they should be
able to cooperate with the debugging tool, as illustrated by the following simplified list:

1. A debugging console providing access to the control and inspection commands, in the form
of a textual command line oriented interface, and/or in the form of a graphical user interface with a
set of associated buttons, plus a text window to display the program source code, as well as several
information displays for the computation status.

2. A graphical display for the representation of a higher level view of the program structure
(e.g., a graph-based view) such that it is possible to perform debugging commands at a higher level
of abstraction, and to hide a more detailed view of the internal state transitions in each process.

3. A visualization tool that displays the evolution of processes or threads in space-time dia-
grams.

4. A testing tool that allows the generation of specific testing scenarios identifying suspect
computation paths that must be subject to a more detailed inspection under debugging control.

13.2 Design Issues for a Distributed Debugger
Two main requirements arise when designing a distributed debugging tool:

272



(i) Mechanisms for the observation and control of distributed computations. This includes
two dimensions, depending on the level of observation that is required at each point during debug-
ging. One level concerns the observation of individual process or thread states. The other level
concerns the observation of global states.

(ii) Frameworks to support testing and debugging methodologies. This concerns the support
provided by the distributed debugging tool to guide the user along the steps of identifying and
precisely locating bugs.

There are two main possibilities to try to meet the above requirements:

(i) A self-contained autonomous debugging tool. It incorporates mechanisms and strategies
for all the above aspects into a single debugging architecture. Such aspects are perhaps more easily
made transparently accessed by the user which is an advantage of this approach. It may also more
easily provide a uniform user interface. However, in general this kind solution is tied to a specific
parallel or distributed programming model and/or to a specific debugging methodology (if any).
Due to the self-contained design, it becomes difficult to adapt the tool to distinct abstractions and/or
testing and debugging methodologies.

(ii) A minimal distributed debugging architecture with a facility for integration of extended
services. This approach allows to separate, on one hand, the basic low level debugging mechanisms
for observation and control, and the higher level mechanisms that may relate to higher level abstrac-
tions. On the other hand it allows to separate the mechanisms from the debugging methodologies or
strategies that one wants to enforce in each case.

The DDBG distributed debugger that was developed within the SEPP project is an example of
the second approach. The basic mechanisms supported by DDBG are of the following kinds:

(i) Observation and control of multiple distributed sequential processes.

(ii) Tool integration based on an interface library.

13.2.1 Observation and control of distributed processes
Concerning the observation and control mechanisms, DDBG offers the following main functionali-
ties:

(i) Control of the debugging session. This includes commands to start or finish a debugging
session, to put a process under debugger control, and to remove a process from the debugging
environment.

(ii) Control of the process execution. This includes commands that directly control the exe-
cution path followed by a process, once it is under debugger control.

(iii) Process state inspection and modification. This includes commands to inspect the state
of a process in well-defined points which are reached due to the occurrence of breakpoints or other
types of events (process stopped or terminated). The information that can be accessed includes
process status, variable and stack frame records, and source code information.

Such functionalities provide direct support to state based interactive debugging of distributed
processes (see Chapter 5). All other aspects such as deterministic re-execution, systematic state
exploration, and correctness predicate specification, must be provided as extended services and im-
plemented through tool integration.

273



13.2.2 Tool integration
Besides text and graphic based user interfaces which give access to the debugging commands, DDBG
allows direct access to its services through an interface library that can be linked to each client tool.
Each client tool typically provides some high level debugging functionality and/or supports some
testing and debugging methodology that in the end must rely upon DDBG basic mechanisms. So the
concept underlying the DDBG design is to enable an open architecture on top of a low level built-in
distributed debugging framework. This concept was the basis of our experimentation during the
SEPP project, and several distinct kinds of tool integration were achieved with reasonable success,
as described in the following sections.

In order to support easy integration of the debugger with other tools in a parallel software engi-
neering environment, a well-defined debugging interface must be provided to be used by high-level
tools, namely graphical interfaces and graphical program editors, runtime support systems for dis-
tinct parallel and distributed language models, and testing and high-level debugging tools.

Concerning such interface to high-level tools, the following aspects must be taken under consid-
eration:

(i) Concurrent access from multiple separate client tools. Multiple tools can independently
and concurrently issue debugging commands over the same target application. Thus they all share
the same information concerning the program state and have the same abilities to issue inspection
and control commands.

(ii) Dynamic attachment and detachment of client tools to the debugging engine. Client tools
can join and exit the debugging process dynamically, having their own life cycle independent of the
DDBG debugger life cycle.

(iii) Support for heterogeneity. Heterogeneity is supported at multiple levels: hardware, oper-
ating system, programming language and model, as the client-server architecture accepts plug-and-
play node level debuggers that are used to access each individual target application process.

In order to allow access by distinct client tools, the DDBG interface provides a bidirectional
interaction scheme supporting an asynchronous operation mode. In fact, many client tools such as
editors and graphical interfaces exhibit an event-driven behavior. The debugging interface primi-
tives that are invoked by each high-level tool must support a non-blocking semantics because some
debugging commands don’t provide an immediate answer. On the other hand, the communications
interface must support the passing of the output information coming from such non-immediate de-
bugging commands back to the user tool (e.g., a graphical editor). A simple solution to this problem
is to provide a library function that allows the user tool to poll a communication channel that is asso-
ciated with this interaction with the debugging system. An alternative solution is to support a facility
for the handling of asynchronous events by the client tool such that the invocation of a previously
specified handler can be triggered by the arrival of the debugging information.

Multiple simultaneous client connections should be supported by the debugging system, so that
multiple cooperating tools can be accessing the debugging environment for inspection and control
of the distributed program execution.

A mapping service of high-level process names onto low-level system process identifiers allows
to integrate client tools which support distinct high level abstractions such symbolic virtual process
identifiers. Conceptually, it is up to any client tool to interpret its abstract entities and convert them
to low level DDBG entities. This can also be achieved by some intermediate tool, with the advantage
of allowing the clear separation of concerns when designing the high level client tool. An example
of this approach is described in Section 13.4.3.

274



As a consequence of the above aspects, DDBG has no built in fixed user interface. In SEPP, we
have implemented a command line user interface giving access to all the debugging functionalities.
We have also implemented an unsophisticated graphical user interface that is consistent with the
user views being offered by other tools in the environment. As far as SEPP project was concerned,
this graphical user interface only allowed selective inspection of the variables of each distributed
process. This approach is opposite to the usual approach of having highly sophisticated graphical
user interfaces for a parallel and distributed debugger (e.g. TotalView [7]), but lack of integration
support mechanisms.

13.2.3 Characteristics of DDBG

How do we classify DDBG according to the dimensions of Chapter 5?

(i) Debugging methodologies. DDBG directly supports state based interactive debugging of
distributed processes. It can support all other methodologies through tool integration. Within SEPP,
we have implemented systematic state exploration of C/PVM programs using DDBG, through the
integration of DDBG and the STEPS testing tool (see Chapter 16).

(ii) Debugging at distinct phases of development. DDBG directly supports on-line dynamic
analysis and control of distributed processes. This can be used to observe and enforce specific
testing scenarios. It can also be used to “manually” check dynamic program behavior, through the
user interfaces. Off-line analysis is not directly supported by DDBG. However, these facilities can
be integrated with DDBG.

(iii) DDBG observation model. DDBG is a state based distributed debugger. It supports obser-
vation and control of individual distributed processes. It can be used to support global observations
and global control of distributed computations, through an adequate integration with other tools.
Namely, deterministic re-execution and controlled re-execution facilities were achieved for C/PVM
programs within SEPP, based on the tool integration of STEPS and DDBG.

(iv) Debugging at multiple (hierarchical) levels of abstraction. Due to the support of multiple
concurrent client tools and to the minimal design of its architecture, DDBG naturally supports multi-
ple levels of observation and control of a distributed computation. This is illustrated in the following
through the integration of GRED (see Chapter 10) and DDBG.

13.3 The DDBG Parallel and Distributed Debugger
In this section we briefly describe the architecture and interface library which were developed for
the DDBG distributed debugger within the SEPP project.

13.3.1 Architecture
Figure 13.1 illustrates the DDBG architecture, where three different types of processes are involved
in a debugging session: client processes, DDBG processes and target application processes.

DDBG has a basic client-server architecture which follows the lines of the p2d2 design [8]. The
reader may find a more detailed presentation of DDBG in [4]. A brief summary is presented here.

The client processes are depicted in Figure 13.1 as user interfaces or other user tools. These pro-
cesses are linked to the DDBG Library that provides access to all DDBG debugging functionalities.

275



Main daemon

Controller library

DDBG library

Local daemon

User machine Machine 1

Machine 2

Front−end

Debugger

Debugger

Process P1

Process P2

Front−end

Debugger

Process P3

Graphical
interface

Central
controller

Other
user tools

Debugging
text console

Figure 13.1: The DDBG distributed debugger

The target processes belong to the application being debugged. This application can have mul-
tiple processes spread on multiple nodes, with different hardware and operating systems. Hetero-
geneity concerns are handled by DDBG at the level of its internal communication layer (the SEPP
implementation of this layer uses PVM for interprocess communication, and UNIX sockets for the
interactions between each client tool and the central controller). Heterogeneity is also handled by
allowing multiple possible types of local node debuggers to be integrated into DDBG architecture.
SEPP implementation relied upon GNU GDB as the only local node debugger supported.

The DDBG architecture internally consists of several component processes:

(i) Central Controller. It coordinates the handling of the client requests, converts them into
a set of commands and distributes them to the relevant local node debuggers. It is also responsible
for processing the local node debuggers’ replies, and sending them back to the client processes as
returns to the calls of functions of the debugging library.

(ii) Local Front-ends. There is one of these processes in each node. Besides some local
interpretation of the debugging commands, it locally distributes them to the local debuggers, and
gets the answers back so that they mat be conveyed to the central controller.

(iii) Local Node Debuggers. A system-dependent sequential debugger, for a specific program-
ming language and the underlying hardware. There is a local node debugger attached to each process
of the target application processes, that applies the inspection and control commands to that process.

13.3.2 Interface Library
Any user tool can access the DDBG system as a client process that uses an interface library to in-
teract with the central debugging controller. The interface library supports functions for the control
of the DDBG system and for supporting the interfacing with other tools, and functions supporting

276



distributed process control and state inspection. The latter type of functions are currently adapted
from identical functions provided by the GNU GDB debugger, but they operate upon multiple dis-
tributed processes. The functions for distributed process control and state inspection include support
for debugging commands that control the execution of each individual process in a detailed way, in-
cluding step by step execution, handling breakpoints and watchpoints, and displaying or modifying
local process information (variables, status, stack frames, current breakpoints). A detailed definition
of these functions is presented in [1, 2].

There are functions to support, respectively, the initialization and the cleanup of the debugging
environment. The initialization also establishes a connection between each user tool and the central
controller, that is used for further interaction with DDBG. It also sets up an interprocess communi-
cation channel that is used for the passing of delayed output information between the DDBG and the
user tool. This channel can be inspected by invoking another interface function with a non-blocking
semantics, corresponding to a design requirement that was discussed in a previous section.

There are also functions supporting the dynamic attachment and detachment of application pro-
cesses to new debugger instances, as well as to obtain information about new components (e.g., newly
spawned application processes) in the debugging environment.

In the implemented prototype for the debugging of C/PVM programs, an user application or tool
may use specific Process ID’s (strings) to identify the processes. In order to support the mapping
between the user processes symbolic names and the PVM task names, a name mapping function is
provided allowing to associate a tid, a PVM task identifier, to a given process identifier. This allows
any of the library primitives, as well as the corresponding user consoles, to refer to string process
identifiers, besides PVM task ID’s (integers). This solution currently solves the name mapping
problem and it is used by the current interface of the GRAPNEL and DDBG. A similar functionality
was implemented for the STEPS-DDBG integration.

13.4 Interfacing the DDBG Debugger with Other Tools
In this section we briefly discuss our experimentation with the interfacing of the DDBG system and
two high-level tools of a parallel software engineering environment: the GRED and the STEPS tools.
More detailed descriptions of these tools and interfaces is given in Chapters 10 and 16 and in several
references [3, 5, 6, 9–12].

13.4.1 User Interfaces
Graphical and text-oriented debugging user interfaces are two examples of client processes, not
being part of DDBG by themselves, but which are included in the SEPP distribution. Besides a
command line console that gives access to all the interface library functions, it is possible to interface
any kind of graphical user interface to the DDBG system. The SEPP prototype provided a X-based
window interface for the interactive display of selected process variables.

13.4.2 Graphical Debugging in GRED with the DDBG Debugger
The GRAPNEL model, a graph-based parallel programming language (see Chapter 10), supports
a structured style for designing parallel applications. In order to allow the debugging commands
and the output information from the debugger to be directly related to the GRAPNEL model, an
integration of GRED and DDBG was developed in SEPP. The main goal was to ensure that only
GRAPNEL abstractions should be handled by the user at this level.

277



Two main issues are considered in this integration:

(i) The design of the high-level user interface, with the specification of the adequate set of
debugging commands, and its coherent integration within the GRED level abstractions. A detailed
description of such interface can be found in [9]. The distinctive aspect is that the information on
specific debugging commands is directly related to the GRAPNEL source program, e.g., by highlight-
ing corresponding entities in the graphical representation, and their corresponding lines of source
code in the textual program representation [6, 10].

(ii) The design of the interface between GRED and DDBG. For each debugging action invoked
on the GRED editor, corresponding DDBG primitives are invoked, and process names are converted
as previously explained. GRED was linked to the DDBG library and so it became a client tool that
could be integrated into the DDBG architecture.

control
insp. &

insp. & control

DDBG client tools

User
DDBG library

DDBG Process P2

Process P1

Process Pn

Text console

interfaceGraphical

GRED

Text console

interface
Graphical

GRED
change in application
state (animation event)

inspection and control commands

Figure 13.2: The Integration of GRED and DDBG

The GRED-DDBG interface (Figure 13.2) and its SEPP implementation relies upon an UNIX
socket-based communication protocol to interact with the DDBG system, but this is hidden in the
interface library functions that send commands to the debugger. Output debugging information is
asynchronously passed back to GRED handler routines through a socket that is polled by the editor,
in an event-driven mode. A DDBG interface library function allows GRED to get that information.

Two-level (or hierarchical) debugging is allowed, so that the user may switch between high level
debugging through the GRED interface (see Chapter 10) for a structural level debugging view, to the
low level debugging of individual processes, for a component level, textual debugging view of the
C/PVM program, directly invoking DDBG commands through the DDBG user interface.

13.4.3 Tool Composition for Testing and Debugging
The SEPP project introduced an interesting approach to support testing and debugging methodolo-
gies. Instead of a monolithic approach based on a single testing-and-debugging tool, several specific
tools were separately designed and then their developers worked together towards the combination
of such tools.

278



Program analysis and testing of parallel programs were investigated by our partners of the Tech-
nical University of Gdansk. They have independently developed a testing tool called STEPS [11]
(Chapter 16), that generates selected execution scenarios for a given parallel (C/PVM) program.
After the generation of a testing scenario by the STEPS tool, and through a suitable integration with
the debugger, it is possible to submit an user controlled execution of the paths under test, allowing
the user to inspect program behavior at the desired level of abstraction and with the guarantee of
reproducible execution. The user is allowed to run a complete test scenario until the end or alterna-
tively it is possible to follow a step by step execution controlled by breakpoints. This is achieved
by converting the information associated with the specification of each testing scenario onto corre-
sponding information and commands known to the DDBG debugger. Such conversion is supported
by an interface component between the STEPS and DDBG tools.

One should note here that the main goal of tool composition or integration is to obtain a new
functionality as a result of the integration of two distinct tools, each with its own functionality.
Moreover this should be achieved with no change (or a minimal change) to each tool.

The above goal was achieved in the integration of STEPS and DDBG through the development
of an interfacing component, the DEIPA tool, as described in Figure 13.3.

control
insp. &control

insp. &

controlinsp. &

DDBG client tools

User
DDBG library

TeSS fileSTEPS

DDBG Process P2

Process P1

Process Pn

DEIPA

Text console

interfaceGraphical

DEIPA

Text console

interface
Graphical

generates is used by

Figure 13.3: The DDBG distributed debugger

DEIPA

The DEIPA tool (Deterministic (Re-)Execution and Interactive Program Analysis) [12] has an inter-
active console allowing the user to issue the following types of commands:

(i) Opening and closing intermediate TeSS files containing the specification of sequences
of global computation states that must be followed under actively controlled execution (see Chap-
ter 16).

(ii) Running the program under the control of DDBG, until the next global breakpoint is
reached or until the end. Global step-by-step execution from one global breakpoint to the next
one is also allowed.

279



DEIPA interprets each line of the TeSS file and is responsible for the local interpretation of these
commands (e.g., in case of open or close) or for the generation of corresponding sequences of DDBG
commands, e.g., in case of the global step command.

The internals of the DEIPA tool, e.g., concerning the handling of virtual process identifiers, or
the detailed interpretation of the TeSS file are not described here, but can be found in [12].

Observation of a distributed computation at the level of global states is possible, as the STEPS-
DDBG integration does in fact implement global breakpoints. The DEIPA tool controls program
execution until a global breakpoint is reached. Then the user can switch to the DDBG console and
perform a state based observation of individual processes, using specific DDBG commands. This
integration of DEIPA and DDBG is the result of the DDBG architecture allowing multiple concurrent
tools.

13.5 Conclusions
We have shown how the DDBG distributed debugger has been designed under the influence of spe-
cific interfacing requirements posed by high-level parallel software development tools. We described
the SEPP working prototype and its use to support the integration with the GRED and the STEPS
tools.

Several significant results were obtained:

(i) High level graphical debugging of GRAPNEL programs was achieved through the imple-
mentation of a GRED debugging interface (see Chapter 10) on top of the DDBG debugger.

(ii) Hierarchical debugging of GRAPNEL programs was achieved by allowing simultaneous
access to the GRED and the DDBG user interfaces, providing a facility to switch from structural,
graphic based, views of the application, to process level, textual based views of individual applica-
tion components.

(iii) Systematic state exploration of C/PVM programs is supported, based on a testing, ac-
tive control and debugging approach (see Chapter 5, Chapter 9 and Chapter 16) that was obtained
through the integration of STEPS and DDBG. Besides enabling the mentioned testing approach, this
integration also ensures deterministic re-execution of the enforced paths.

(iv) Observation of a distributed computation (C/PVM) at the level of global states, as the
STEPS-DDBG in fact implements global breakpoints, and followed by a state based observation of
individual processes, using specific DDBG commands. The latter aspect is the result of the DDBG
functionality of allowing multiple concurrent tools.

The DDBG experience showed the great importance of a flexible distributed debugging architec-
ture that support the requirements for tool integration.

Further work includes improvements on the architecture, its intensive evaluation by real end
users, and its integration into other parallel and distributed computing frameworks, namely to sup-
port the debugging of component based and metacomputing applications.

Acknowledgements
This work was partially supported by the Centre for Informatics and Information Technologies
(CITI) and the Department of Informatics (DI) of FCT/UNL, by the PRAXIS XXI SETNA-ParComp

280



(Contract 2/2.1/TIT/1557/95), and by the French Ambassy — INRIA/Portuguese ICTTI and the
Hungarian/Portuguese Governments cooperation protocols.

References
[1] J. C. Cunha, J. Lourenço, and T. Antão. A debugging engine for a parallel and distributed en-

vironment. In KFKI Hungarian Academy of Sciences, editor, Proceedings of the 1st Austrian-
Hungarian Workshop on Distributed and Parallel Systems (DAPSYS’96), pages 111–118, Mis-
ckolc, Hungary, October 1996.

[2] J. C. Cunha, J. Lourenço, and T. Antão. DDBG: A distributed debugger – user’s guide. Techni-
cal report, Departamento de Informática, FCT-Universidade Nova de Lisboa, Portugal, 1996.

[3] J. C. Cunha, J. Lourenço, and T. Antão. Integrating a debugging engine to the GRAPNEL envi-
ronment. Technical Report HPCTI Project, COPERNICUS Programme, 3rd Progress Report,
University of Westminster, London, UK, 1996.

[4] J. C. Cunha, J. Lourenço, and T. Antão. An experiment in tool integration: the DDBG parallel
and distributed debugger. Euromicro Journal of Systems Architecture, (11):897–907, 1999.
Elsevier Science Press.

[5] G. Dozsa, P. Kacsuk, and T Fadgyas. Development of graphical parallel programs in PVM
environments. In Proceedings of the 1st Austrian-Hungarian Workshop on Distributed and
Parallel Systems (DAPSYS’96), pages 33–40, Miskolc, Hungary, October 1996.

[6] G. Dózsa, T. Fadgyas, and P. Kacsuk. GRAPNEL: A graphical programming language for
parallel programs. In Eighth Symposium on Microcomputer and Micropocessor Applications,
pages 285–293. IEEE Press, October 1994.

[7] Etnus Inc., Framingham, MA. TotalView User’s Guide (v3.9.0), June 1999.
http://www.etnus.com/.

[8] R. Hood. The p2d2 project: Building a portable distributed debugger. In Proc. of SPDT’96:
SIGMETRICS Symposium on Parallel and Distributed Tools, pages 127–136, Pennsylvania,
USA, May 1996. ACM Press.

[9] P. Kacsuk, J. C. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas, and T. Antão. A graphical develop-
ment and debugging environment for parallel programs. Parallel Computing, 22(1997):1747–
1770, 1997. Elsevier Science Press.

[10] P. Kacsuk, G. Dózsa, and T. Fadgyas. Designing parallel programs by the graphical language
GRAPNEL. Microprocessing and Microprogramming, 41:625–643, 1996.

[11] H. Krawczyk and B. Wiszniewski. Object-oriented model of paralel programs. In Proc. 4th
EUROMICRO Workshop on Parallel and Distributed Processing, pages 80–86, Braga, Portu-
gal, 1996. IEEE Computer Society.

[12] J. Lourenço, J.C. Cunha, H. Krawczyk, P. Kuzora, M. Neyman, and B. Wiszniewski. An inte-
grated testing and debugging environment for parallel and distributed programs. In Proceed-
ings of the 23rd EUROMICRO Conference (EUROMICRO’97), pages 291–298, Budapeste,
Hungary, September 1997. IEEE Computer Society Press.

281


