
Computers and Arti�cial Intelligence� Vol� ��� ����� ���	

USING DDBG TO SUPPORT TESTING AND HIGH�

LEVEL DEBUGGING INTERFACES

Jos�e C� Cunha

Jo�ao Lourenc�o

V��tor Duarte

Departamento de Inform�atica

Faculdade de Ci�encias e Tecnologia da Universidade Nova de Lisboa

���� Monte de Caparica� Portugal

fjcc�jml�vadg�di�fct�unl�pt

Abstract� This paper describes our experience with the design and implementation of
a distributed debugger for C
PVM programs within the scope of the SEPP and HPCTI
Copernicus projects� These projects aimed at the development of an integrated parallel
software engineering environment based on a high�level graphical parallel programming
model �GRAPNEL
 and a set of associated tools supporting graphical edition� compilation�
simulated and real parallel execution� testing� debugging� performance monitoring� mapping�
and load balancing� We discuss how the development of the debugging tool was strongly
in�uenced by the requirements posed by other tools in the environment� namely support for
high�level graphical debugging of GRAPNEL programs� and support for the integration of
static and dynamic analysis tools� We describe the functionalities of the DDBG debugger
and its internal architecture� and discuss its integration with two separate tools in the
SEPP
HPCTI environment� the GRED graphical editor for GRAPNEL programs� and the
STEPS testing tool for C
PVM programs�

Keywords� Tool integration� parallel and distributed debugging

� INTRODUCTION

The development of adequate parallel software engineering environments became a
very important issue in recent years� In the SEPP and HPCTI Copernicus projects �����
although each partner was responsible for the development of individual tools� a

� This work was partially supported by the EC within COPERNICUS Programme� Research
Projects SEPP �Contract CIPA�C����	���
 and HPCTI �Contract CP��������
�



� J�C� Cunha� J� Louren�co� V� Duarte

major concern was their coherent integration into a graphical development envi�
ronment� The whole development cycle is supported� including graphical editing�
compilation� simulation and real parallel execution on top of PVM ���� Associated
tools for testing� debugging� performance monitoring� mapping� and load balancing
are also supported�

In this paper we discuss the main issues involved in the design and implemen�
tation of the DDBG distributed debugger� and its integration into the GRADE en�
vironment� GRADE ���� �	� consists of a set of development tools built around the
GRAPNEL model for graphical parallel programming� GRAPNEL ��	� is a graph�
based visual programming model supporting the structured design of parallel ap�
plications� In order to provide an adequate view to the user� all development tools
should refer to the abstractions provided by GRAPNEL� For example� as far as de�
bugging is concerned� the inspection and control of the computation state should
refer to the GRAPNEL program components and structures� and should be inte�
grated with the graphical user interface supported by GRADE� However� at the
same time� debugging at a lower level should also be supported� allowing the user to
inspect and control the C
PVM�based components that are part of the GRAPNEL
program� This requires the debugging tool to provide an interface to the GRED ����
graphical editor� while it should also give direct access to the C
PVM programming
level�

Another important aspect of a parallel software engineering environment is to
achieve a close integration between static analysis and dynamic analysis tools� In
fact� due to the great complexity of parallel computations� a tool is required to help
the user in the generation of testing scenarios that depend on the parallel program
structure and the dynamic process interactions� One can obtain further information
on program behavior and inspect speci�c computation paths in greater detail if a
debugger can be coupled to a testing tool�

The above interfacing requirements were satis�ed by the distributed process�
level DDBG debugger� The prototype of the DDBG system allows the inspection
and control of distributed C
PVM processes�

In section 	 we describe the DDBG debugger� In section � we discuss its integra�
tion with the GRED ���� graphical editor and the STEPS ���� testing tool� Then�
we discuss related work and identify ongoing research�

� THE DDBG DEBUGGER

��� Design Issues

The basic functionalities of a distributed debugger concern state inspection and con�
trol of individual processes or threads� and coordination�level abstractions such as
deterministic re�execution� global distributed breakpoints� and evaluation of global



Using DDBG to Support Testing and High�level Debugging Interfaces �

predicates� Such functionalities strongly depend upon each programming and com�
putational model� so it is desirable to identify a set of basic debugging mechanisms

e�g� �	��� and use them in order to implement higher level functionalities�

The DDBG debugger ��� allows an user or another tool to control and inspect
multiple distributed processes� There are the following classes of debugging primi�
tives that are supported by an interface library�

�� Control of the debugging session� This includes commands to start or �nish a
debugging session� to put
remove a process under
from debugger control�

	� Control of the process execution� This includes commands that directly control
the execution path followed by a process� once it is under debugger control�

�� Process state inspection and modi�cation� This includes commands to inspect
the state of a process in well�de�ned points that are reached due to the occur�
rence of breakpoints or other types of events 
process stopped or terminated��
The information that can be accessed includes process status� variable and stack
frame records� and source code information�

In order to support easy experimentation with debugging services for distinct
computational models� a �exible software architecture is required� This architecture
should be able to integrate and manage distinct types of process�level or thread�level
debuggers� which depend on each hardware and operating system platform� and on
each programming model� In the following� we describe the DDBG architecture�

��� The DDBG Architecture

The DDBG 
Distributed DeBuGger� ��� tool provides a set of debugging function�
alities for distributed programs written in C on the PVM system ����

�� Simultaneous access from multiple �high�level	 client tools
 Multiple tools can

independently� issue debugging commands over the same target application�

	� To dynamically attach and detach client tools to the debugging engine
 Client
tools can �enter� and �leave� the debugging activity dynamically� having their
own life cycle independent of the DDBG debugger life cycle�

�� Global view of the system being debugged
 All the client tools share the same
information concerning the program state and have the same abilities to issue
inspection and control commands�

�� Support for heterogeneity
 Heterogeneity is supported at hardware� operating
system and programming language levels�

�� Easy integration with client tools
 Tool integration functionalities are included
in the debugger speci�cation�



� J�C� Cunha� J� Louren�co� V� Duarte

Three di�erent types of processes can take part in a debugging session with
DDBG 
Figure ���

Machine B

Machine A

Target

Process �

Target

Process �

Target

Process �Graphical

Interface

Client Processes

Text Interface
�console�

Debugging
Library

Process
Level

Debugger

Process
Level

Debugger

Process
Level

Debugger

Service call �and reply�

Main

Daemon

Local
Daemon

Local
Daemon

DDBG

Fig� �� The DDBG distributed debugger

�� Client Processes �CP	
 These processes use a Debugging Library �DL	 that pro�
vides access to DDBG�

	� DDBG processes
 DDBG includes the following components�


a� Main Daemon �MD	
 It acts as a coordinator� and is responsible for receiving
the CP requests� convert them into a set of commands and sending them
to the relevant Process�level Debuggers �PLDs	 
see below�� The MD also
receives and processes the PLD replies� and sends them back to the CP
through return parameters of the DL�


b� Local Daemons �LD	
 There is a LD in each machine� doing some local inter�
pretation of the debugging commands and working as a multiplexer� forward�
ing these commands and controlling all the PLDs running on that machine�


c� Process�level Debugger �PLD	
A system�dependent sequential debugger� that
supports the programming language and the underlying hardware� There is
a PLD attached to each target process of the Target Application�


d� Debugging Library �DL	
 This is included into any client process in order to
provide a set of functions that give access to the DDBG primitives�


e� Graphical� and Text�oriented debugging user interfaces �UI	
 These are two
examples of CP that were developed and integrated into DDBG� providing
two di�erent debugging user interfaces�

�� Target Application Processes
 The application being debugged can have multiple
processes spread on multiple machines�

There are alternative designs to DDBG� depending on how the responsibilities
are distributed among its processes� In a pure hierarchical design the MD is respon�
sible for the interpretation of debugging commands received from the CP� i�e� it



Using DDBG to Support Testing and High�level Debugging Interfaces �

performs all the necessary conversions� it forwards the actual PLD�level commands
to the corresponding LD and sends the replies back to the CP� In this solution� the
LD processes are just responsible for contacting the right PLD and send its answer
back to the MD� There are several disadvantages in such kind of design�

�� High MD complexity
 The MD process must also support multiple concurrent
client connections and so it needs to manage a lot of information concerning
pending requests�

	� Hard to support heterogeneity
 In heterogeneous distributed computing an ap�
plication can be decomposed into multiple parts� each running on distinct se�
quential or parallel machines� with distinct PLD processes� This design requires
the MD process to process all command and data interpretations�

�� Reduced �exibility
 As the MD becomes very complex� it is more di�cult to
integrate new services into the architecture�

A more �exible design would distribute the responsibility for actual command
and data interpretation to each LD� and let the MD do only the interfacing to the
client tools� Each LD can then independently perform its tasks� according to the
speci�c characteristics of each local PD� This is a better solution to support het�
erogeneous debugging� as well as to support extended services� because the required
modi�cations are associated with speci�c LD processes� The functions left to the
MD are the interfacing with client tools� the management of multiple connections
to the debugger� and the presentation of global views to the user concerning the
global state of the distributed computation� As a result of our experience� a new
architecture that re�ects the above design options is under development where the
MD is a multi�threaded process with associated services ����

��� Support for Tool Integration

DDBG provides a well�de�ned interface that can be accessed by high�level tools of a
parallel development environment� The debugging library that is linked to each client
tool uses a well�de�ned protocol to communicate with the DDBG main daemon�
This was built using TCP
IP sockets� and supports two�way interaction between
the DDBG and the client tools� It also provides an asynchronous operation mode to
support event�driven interactions with the client tools�

� USING DDBG IN SEPP�HPCTI

��� Experiences With Tool Integration

It is very di�cult to provide full integration among a large set of development tools
such as the ones found in the SEPP
HPCTI projects� This is due to the need to



	 J�C� Cunha� J� Louren�co� V� Duarte

o�er consistent views at several levels� multiple user interfaces� tool behavior� tool
interaction� and tool composition� Even in our project� where many of the tools
were jointly developed from the beginning� a full integration was a di�cult goal to
achieve because it required a tight collaborative e�ort between the involved partners�
concerning their design options� and the associated working environments 
e�g� with
distinct graphical user interfaces� and operating system platforms�� However� we have
obtained a reasonable degree of integration between several tools� and have opened
the way to possible further integrations ��� �� �� ���� One of the distinctive goals of
our approach when designing and implementing DDBG was to provide a platform
supporting easy experimentation with tool integration� Two main experiments were
performed concerning the interfacing of DDBG with two tools with very distinct
functionalities�

����� Integrating DDBG into the GRADE Environment

GRADE 
GRApnel Development Environment� is an integrated environment for
the development of parallel programs in the GRAPNEL programming language� The
GRAPNEL language is a graph�based visual parallel programming language� that
supports a structured style for designing parallel applications� and is supported by
the GRED graphical editor ��	�� In this section we focus on the close integration of
DDBG and GRED 
GRapnel EDitor� in order to support debugging of GRAPNEL
programs�

In such integrated environment the user should work mainly with the same

abstractions that were used during program development��This requires highlighting
the entities in the graphical representation and their corresponding lines of source
code in the textual program representation�

For such high�level debugging of GRAPNEL programs� each debugging action
of the GRED graphical editor is mapped into a set of DDBG debugging actions�
Such commands are then sent to DDBG which in turn replies with DDBG�level
answers that must be converted into the corresponding action in the GRED visual
editor� In order to support possibly long�execution commands� such as �proceed until
next breakpoint is reached�� an asynchronous 
event� noti�cation feature has been
integrated into DDBG and is used by GRED to detect the completion of such kind
of commands� The integration of DDBG into GRADE is detailed in �����

����� Integrating DDBG with STEPS

The STEPS testing tool ���� ��� allows to identify potential critical paths in a
C
PVM program� The DDBG debugger can inspect and control the program be�
havior� helping in the localization of programs bugs and their causes�

� This is a general concept� as it makes no sense to develop a program using the C programming
language and then debug this same program only at assembler level�



Using DDBG to Support Testing and High�level Debugging Interfaces 


When integrating these tools� one must ensure that the program will run and
behave as expected� and so the composition of the testing and the debugging tools
starts by re�executing the target applications and forcing each process to follow
some speci�c path until a pre�determined point� It is necessary to ensure that the
application will reach the critical points previously identi�ed by the testing tool and
will stop in a consistent state 
also called a �Global Breakpoint��� At this potential
critical point� the user can enter an interactive debugging session� using both the
graphical and the command�line debugging interfaces� and issuing inspection and
control commands directed at any of the target processes�

The DEIPA 
Deterministic 
re��Execution and Interactive Program Analysis�
tool supports the integration of STEPS and DDBG� DEIPA recognizes and processes
the output of the STEPS tool that is kept in the TeSS �le� This �le includes all the
information that is required by the controlled execution of the parallel computation
paths that were generated by STEPS� Namely� it de�nes a sequence of global break�
points� A global breakpoint is a set of breakpoints� one for each individual application
process� This information is analyzed and converted into 
a set of� commands for
the DDBG tool� The DEIPA tool is mainly composed of � modules� the Console�
the Vid Database Manager� and the Replayer� The architecture of the DEIPA tool
and its relations with the STEPS and DDBG tools are illustrated in Figure 	�

Vid DBM

Console

DEIPA

Replayer

STEPS
Tool

TeSS �le

DDBG
Console

DDBG
Deamon

� � � � � Process �Process �Process �

Fig� �� The integration of STEPS and DDBG

The Console module
 It supports the user interface to the DEIPA tool� This
interface is based on a command�line console allowing to load a TeSS �le and
control the 
re��execution of the target application� Some commands allow to
control the DEIPA tool� e�g� load 
to load a new TeSS �le�� while others are
converted into sets of DDBG commands and applied to the target application�
e�g� step 
to proceed into the next Global Breakpoint��

The Vid Database Management module
 During static analysis� STEPS uses
symbolic names for processes� This module implements the mapping from sym�
bolic to the real 
PVM� process identi�ers that are used by DDBG during real
execution�



� J�C� Cunha� J� Louren�co� V� Duarte

The Replayer module
 This is responsible for the mapping of DEIPA commands
into DDBG commands� e�g� converting a DEIPA step command into a set of
DDBG set breakpoint and continue execution commands� It also supports the
required process control� e�g� setting variables in an if�then�else statement� so
that each process is forced to follow the path that is speci�ed by the TeSS �le�

In ���� there is a complete discussion of DDBG and STEPS integration� The
DDBG support for multiple simultaneous client tools has been used here� The
DEIPA tool is used to control the execution of all the application processes as ex�
plained� and the DDBG console and
or GUI can be used to provide a more detailed
inspection and modi�cation of each individual process�

� RELATED WORK

There are many current e�orts on the �eld of parallel and distributed debugging �	�
�� �� �� ��� ���� Concerning the debugging primitives� the High�Performance De�
bugging Forum 
HPDF� �	� is a collaborative e�ort aiming to de�ne a standard for
parallel debuggers� Concerning tool interfacing� the On�line Monitoring Interface
Speci�cation 
OMIS� ���� aims to de�ne an open interface to software development
tools� such as e�g� debuggers and performance evaluation tools� It precisely de�nes
the communication protocols and formats of the exchanged information� Concerning
the debugger architecture� the p	d	 system ��� is a distributed debugger that also
uses a client�server approach� with a well de�ned interface� promoting portability by
isolating the system dependent code into a debugger server�

Our work with DDBG will provide a �exible architecture allowing us to exper�
iment with the proposed HPDF speci�cations� It will also allow us to experiment
with improved forms of tool integration��

� CONCLUSIONS AND FUTURE WORK

We have discussed the DDBG debugger� and how it was used to o�er debugging
functionalities to other tools in a parallel software engineering environment� The
DDBG functionalities were found adequate to support the requirements posed by
other tools in the GRADE environment� This experience allowed us to identify sev�
eral directions to improve current DDBG functionalities� This includes the support of
process�level and thread�level debugging� as well as the support of coordination�level
services� such as distributed global breakpoints� and evaluation of global predicates�
Our approach can be used to support a testing and debugging methodology that
allow the user to systematically inspect speci�c computation paths� The DEIPA
tool uses DDBG to support such controlled execution of a parallel program� Addi�
tionally� recently we have implemented a deterministic re�execution mechanism in
DDBG that relies on a previously recorded execution trace� We are working on the
integration of both approaches 
controlled execution and trace�driven� so that we



Using DDBG to Support Testing and High�level Debugging Interfaces �

can better assist the user in the localization of the bugs occurring in a distributed
program�

Concerning tool interaction and integration� this includes more �exible sup�
port for interfacing the debugger with distinct concurrent tools and support their
coordination� Concerning heterogeneity� this includes supporting other parallel and
distributed platforms besides PVM� based on MPI and WindowsNT� There is a need
for systems that can work in several distributed platforms� can be used by several
tools� and can be extended and adapted to new environments and functionalities�
In ongoing work� the DDBG architecture is evolving toward a layered architecture
that tries to meet such requirements�

REFERENCES

��� Beguelin� A��Dongarra� J� J��Geist� G� A��Manchek� R��Sunderam�
V� S�� A User�s Guide to PVM Parallel Virtual Machine� Tech� Rep� ORNL
TM��������
Oak Ridge National Laboratory� USA� �����

��� Brown� J��Francioni� J��Pancake� C�� White Paper on Formation of the
High Performance Debugging Forum� Available in �http���www�ptools�org�hpdf�meetings��
mar���whitepaper�html�� �����

��� Cunha� J� C��Lourenc�o� J��Vieira� J��Mosc�ao� B��Pereira� D�� A Frame�
work to Support Parallel and Distributed Debugging� Proceedings of the International Confer�
ence on High�Performance Computing and Networking �HPCN���
� Amsterdam� The Nether�
lands� �����

��� Cunha� J� C��Lourenc�o� J��Ant�ao� T�� A Debugging Engine for a Parallel and
Distributed Environment� Proceedings of the �st Austrian�Hungarian Workshop on Distrib�
uted and Parallel Systems �DAPSYS���
� Miskolc� Hungary� �����

��� Delaitre� T� et al�� EDPEPPS� An Environment for the Design and Performance Eval�
uation of Portable Parallel Software� Proc� of the �rd SEIHPC Workshop� Madrid� Spain�
�����

��� Delaitre� T��Justo� G��Spies� F��Winter� S�� A Graphical Toolset for Simu�
lation Modeling of Parallel Systems� Parallel Computing Journal� ��� ����� pp� ����������

��� Hluch�y� L��Dobruck�y� M��Astalo�s� J�� Hybrid approach to task allocation in
distributed systems� Lecture Notes in Computer Science ����� Springer� ����� pp� ��	�����

��� Hood� R�� The p�d� Project� Building a Portable Distributed Debugger� Proceedings of
the �nd Symposium on Parallel and Distributed Tools �SPDT���
� Philadelphia PA� USA�
�����

��� Kacsuk� P�� Macrostep�by�macrostep Debugging of Message Passing Parallel Programs�
Accepted in IASTED PDCN���� Las Vegas� USA� �����

��	� Kacsuk� P�� Systematic Testing and Debugging of Parallel Programs by a Macrostep
Debugger� Submitted to DAPSYS���� Budapest� Hungary� �����

���� Kacsuk� P��Cunha� J� C��D�ozsa� G�� Lourenc�o� J��Fadgyas� T��
Ant�ao� T�� A Graphical Development and Debugging Environment for Parallel Programs�
Parallel Computing Journal� ��� ����� pp� ��������	�

���� Kacsuk� P��D�ozsa� G��Fadgyas� T�� Designing parallel programs by the graphical
language GRAPNEL� Microprocessing and Microprogramming� ��� ����� pp� ��������

���� Kacsuk� P��D�ozsa� G��Lovas� R��Fadgyas� T�� Enhancing GRADE Towards
a Professional Parallel Programming Environment� Proc� of the �rd SEIHPC Workshop�
Madrid� Spain� �����




� J�C� Cunha� J� Louren�co� V� Duarte

���� Krawczyk� H��Wiszniewski� B�� Interactive Testing Tool for Parallel Programs� Soft�
ware Enginneering for Parallel and Distributed Systems� I� Jelly� I� Gorton� and P� Croll� Eds�
Chapman � Hall� London� UK� ����� pp� ����	��

���� Krwaczyk� H��Wiszniewski� B�� Structural Testing of Parallel Software in STEPS�
Proceedings of the �st SEIHPC Workshop� Braga� Portugal� �����

���� Lourenc�o J��Cunha� J� C��Krawczyk� H��Kuzora� P��Neyman� M��
Wiszniewski� B�� An Integrated Testing and Debugging Environment for Parallel and
Distributed Programs� Proceedings of the ��rd Euromicro Conference� Budapest� Hungary�
�����

���� Ludwig� T��Wismuller� R�� Sunderam� V�� Bode� A�� OMIS � On�Line
Monitoring Interface Speci�cation �Version ��	
� Tech� rep�� LRR�TUM� Munich� Germany�
July �����

���� Luque� E��Ripoll� A��Cort�es� A��Margalef� T�� A Distributed Di�usion
Method for Dynamic Load Balancing on Parallel Computers� Proc� of the EUROMICRO
Workshop on Parallel and Distributed Processing� San Remo� Italy� �����

���� Winter� S��Kacsuk� P�� Software Engineering for Parallel Processing� Proc� of the �th
Symp� on Microcomputers and Microprocessor Applications� Budapest� Hungary� �����

Jos	e C� Cunha was born in Viseu� Portugal� He got the
Diploma in Electrical Engineering from Instituto Superior Tec�
nico in ����� the Diploma in Informatics Enginering in ����� and
a PhD in Computer Science from Universidade Nova de Lisboa

FCT
UNL� in ����� He is Associate Professor in the Computer
Science Department of FCT
UNL� He is the head of the Com�
putational Systems and Architecture Group and of the Parallel
and Distributed Processing Group� He coordinates research in
distributed languages� tools� and heterogeneous environments�
and has been publishing regularly in these topics�

Jo
ao Louren�co was born in Alcoba�ca� Portugal� in ����� He
graduated in Informatics Engineering in ����� and got the M�Sc�
degree in Informatics Engineering in ���� from FCT
UNL� He
is currently a Research Assistant at the Computer Science De�
partment of FCT
UNL and is preparing his Ph�D� on parallel
and distributed debugging�

V	�tor Duarte was born in ����� graduated in Informatics
Engineering in ���� and got the M�Sc� degree in Informatics
Engineering in ���� from FCT
UNL� He is a Research Assis�
tant at the Computer Science Department of FCT
UNL and is
preparing his Ph�D� on monitoring and visualization of distrib�
uted systems�


