Computers and Artificial Intelligence, Vol. 13, 1995, 1-10

USING DDBG TO SUPPORT TESTING AND HIGH-
LEVEL DEBUGGING INTERFACES

José C. CUNHA
Joao LOURENCO
Vitor DUARTE

Departamento de Informadtica

Faculdade de Ciéncias e Tecnologia da Universidade Nova de Lisboa
2825 Monte de Caparica, Portugal

{jcc,jml,vad}@di.fct.unl.pt

Abstract. This paper describes our experience with the design and implementation of
a distributed debugger for C/PVM programs within the scope of the SEPP and HPCTI
Copernicus projects. These projects aimed at the development of an integrated parallel
software engineering environment, based on a high-level graphical parallel programming
model (GRAPNEL) and a set of associated tools supporting graphical edition, compilation,
simulated and real parallel execution, testing, debugging, performance monitoring, mapping,
and load balancing. We discuss how the development of the debugging tool was strongly
influenced by the requirements posed by other tools in the environment, namely support for
high-level graphical debugging of GRAPNEL programs, and support for the integration of
static and dynamic analysis tools. We describe the functionalities of the DDBG debugger
and its internal architecture, and discuss its integration with two separate tools in the
SEPP/HPCTI environment: the GRED graphical editor for GRAPNEL programs, and the
STEPS testing tool for C/PVM programs.

Keywords. Tool integration, parallel and distributed debugging

1 INTRODUCTION

The development of adequate parallel software engineering environments became a
very important issue in recent years. In the SEPP and HPCTI Copernicus projects [19],
although each partner was responsible for the development of individual tools, a

L This work was partially supported by the EC within COPERNICUS Programme, Research
Projects SEPP (Contract CIPA-C193-0251) and HPCTI (Contract CP-93-5383).

2 J.C. Cunha, J. Lourencgo, V. Duarte

major concern was their coherent integration into a graphical development envi-
ronment. The whole development cycle is supported, including graphical editing,
compilation, simulation and real parallel execution on top of PVM [1]. Associated
tools for testing, debugging, performance monitoring, mapping, and load balancing
are also supported.

In this paper we discuss the main issues involved in the design and implemen-
tation of the DDBG distributed debugger, and its integration into the GRADE en-
vironment. GRADE [13, 12] consists of a set of development tools built around the
GRAPNEL model for graphical parallel programming. GRAPNEL [12] is a graph-
based visual programming model supporting the structured design of parallel ap-
plications. In order to provide an adequate view to the user, all development tools
should refer to the abstractions provided by GRAPNEL. For example, as far as de-
bugging is concerned, the inspection and control of the computation state should
refer to the GRAPNEL program components and structures, and should be inte-
grated with the graphical user interface supported by GRADE. However, at the
same time, debugging at a lower level should also be supported, allowing the user to
inspect and control the C/PVM-based components that are part of the GRAPNEL
program. This requires the debugging tool to provide an interface to the GRED [13]
graphical editor, while it should also give direct access to the C/PVM programming
level.

Another important aspect of a parallel software engineering environment is to
achieve a close integration between static analysis and dynamic analysis tools. In
fact, due to the great complexity of parallel computations, a tool is required to help
the user in the generation of testing scenarios that depend on the parallel program
structure and the dynamic process interactions. One can obtain further information
on program behavior and inspect specific computation paths in greater detail if a
debugger can be coupled to a testing tool.

The above interfacing requirements were satisfied by the distributed process-
level DDBG debugger. The prototype of the DDBG system allows the inspection
and control of distributed C/PVM processes.

In section 2 we describe the DDBG debugger. In section 3 we discuss its integra-
tion with the GRED [13] graphical editor and the STEPS [15] testing tool. Then,
we discuss related work and identify ongoing research.

2 THE DDBG DEBUGGER

2.1 Design Issues

The basic functionalities of a distributed debugger concern state inspection and con-
trol of individual processes or threads, and coordination-level abstractions such as
deterministic re-execution, global distributed breakpoints, and evaluation of global

Using DDBG to Support Testing and High-level Debugging Interfaces 3

predicates. Such functionalities strongly depend upon each programming and com-
putational model, so it is desirable to identify a set of basic debugging mechanisms
(e.g. [2]), and use them in order to implement higher level functionalities.

The DDBG debugger [4] allows an user or another tool to control and inspect
multiple distributed processes. There are the following classes of debugging primi-
tives that are supported by an interface library:

1. Control of the debugging session. This includes commands to start or finish a
debugging session, to put/remove a process under/from debugger control.

2. Control of the process execution. This includes commands that directly control
the execution path followed by a process, once it is under debugger control.

3. Process state inspection and modification. This includes commands to inspect
the state of a process in well-defined points that are reached due to the occur-
rence of breakpoints or other types of events (process stopped or terminated).
The information that can be accessed includes process status, variable and stack
frame records, and source code information.

In order to support easy experimentation with debugging services for distinct
computational models, a flexible software architecture is required. This architecture
should be able to integrate and manage distinct types of process-level or thread-level
debuggers, which depend on each hardware and operating system platform, and on
each programming model. In the following, we describe the DDBG architecture.

2.2 The DDBG Architecture

The DDBG (Distributed DeBuGger) [4] tool provides a set of debugging function-
alities for distributed programs written in C on the PVM system [1]:

1. Simultaneous access from multiple (high-level) client tools. Multiple tools can
(independently) issue debugging commands over the same target application.

2. To dynamically attach and detach client tools to the debugging engine. Client
tools can “enter” and “leave” the debugging activity dynamically, having their
own life cycle independent of the DDBG debugger life cycle.

3. Global view of the system being debugged. All the client tools share the same
information concerning the program state and have the same abilities to issue
inspection and control commands.

4. Support for heterogeneity. Heterogeneity is supported at hardware, operating
system and programming language levels.

5. Fasy integration with client tools. Tool integration functionalities are included
in the debugger specification.

J.C. Cunha, J. Lourencgo, V. Duarte

Three different types of processes can take part in a debugging session with
DDBG (Figure 1):

——— Service call (and reply)

Client Processes

Text Interface

l Level l
| Debugger |
| |
| Local |
| "| Daemon |

|
|
|
/
|
|
|
|

Debugging
.~ Library Machine A

DDBG Process

Main \ Pl

Daemon Debugger

Machine B

N o P
Daemon Debugger

(console)

Fig. 1. The DDBG distributed debugger

1. Client Processes (CP). These processes use a Debugging Library (DL) that pro-
vides access to DDBG.

2. DDBG processes. DDBG includes the following components:

()

Main Daemon (MD). It acts as a coordinator, and is responsible for receiving
the CP requests, convert them into a set of commands and sending them
to the relevant Process-level Debuggers (PLDs) (see below). The MD also
receives and processes the PLD replies, and sends them back to the CP
through return parameters of the DL.

Local Daemons (LD). There is a LD in each machine, doing some local inter-
pretation of the debugging commands and working as a multiplexer, forward-
ing these commands and controlling all the PLDs running on that machine.
Process-level Debugger (PLD). A system-dependent sequential debugger, that
supports the programming language and the underlying hardware. There is
a PLD attached to each target process of the Target Application.
Debugging Library (DL). This is included into any client process in order to
provide a set of functions that give access to the DDBG primitives.
Graphical- and Text-oriented debugging user interfaces (UI). These are two
examples of CP that were developed and integrated into DDBG, providing
two different debugging user interfaces.

3. Target Application Processes. The application being debugged can have multiple
processes spread on multiple machines.

There are alternative designs to DDBG, depending on how the responsibilities
are distributed among its processes. In a pure hierarchical design the MD is respon-
sible for the interpretation of debugging commands received from the CP, i.e. it

Using DDBG to Support Testing and High-level Debugging Interfaces 5)

performs all the necessary conversions, it forwards the actual PLD-level commands
to the corresponding LD and sends the replies back to the CP. In this solution, the
LD processes are just responsible for contacting the right PLD and send its answer
back to the MD. There are several disadvantages in such kind of design:

1. High MD complezity. The MD process must also support multiple concurrent
client connections and so it needs to manage a lot of information concerning
pending requests.

2. Hard to support heterogeneity. In heterogeneous distributed computing an ap-
plication can be decomposed into multiple parts, each running on distinct se-
quential or parallel machines, with distinct PLD processes. This design requires
the MD process to process all command and data interpretations.

3. Reduced flexibility. As the MD becomes very complex, it is more difficult to
integrate new services into the architecture.

A more flexible design would distribute the responsibility for actual command
and data interpretation to each LD, and let the MD do only the interfacing to the
client tools. Each LD can then independently perform its tasks, according to the
specific characteristics of each local PD. This is a better solution to support het-
erogeneous debugging, as well as to support extended services, because the required
modifications are associated with specific LD processes. The functions left to the
MD are the interfacing with client tools, the management of multiple connections
to the debugger, and the presentation of global views to the user concerning the
global state of the distributed computation. As a result of our experience, a new
architecture that reflects the above design options is under development where the
MD is a multi-threaded process with associated services [3].

2.3 Support for Tool Integration

DDBG provides a well-defined interface that can be accessed by high-level tools of a
parallel development environment. The debugging library that is linked to each client
tool uses a well-defined protocol to communicate with the DDBG main daemon.
This was built using TCP/IP sockets, and supports two-way interaction between
the DDBG and the client tools. It also provides an asynchronous operation mode to
support event-driven interactions with the client tools.

3 USING DDBG IN SEPP/HPCTI
3.1 Experiences With Tool Integration

It is very difficult to provide full integration among a large set of development tools
such as the ones found in the SEPP/HPCTI projects. This is due to the need to

6 J.C. Cunha, J. Lourencgo, V. Duarte

offer consistent views at several levels: multiple user interfaces, tool behavior, tool
interaction, and tool composition. Even in our project, where many of the tools
were jointly developed from the beginning, a full integration was a difficult goal to
achieve because it required a tight collaborative effort between the involved partners,
concerning their design options, and the associated working environments (e.g. with
distinct graphical user interfaces, and operating system platforms). However, we have
obtained a reasonable degree of integration between several tools, and have opened
the way to possible further integrations [5, 6, 7, 18]. One of the distinctive goals of
our approach when designing and implementing DDBG was to provide a platform
supporting easy experimentation with tool integration. Two main experiments were
performed concerning the interfacing of DDBG with two tools with very distinct
functionalities.

3.1.1 Integrating DDBG into the GRADE Environment

GRADE (GRApnel Development Environment) is an integrated environment for
the development of parallel programs in the GRAPNEL programming language. The
GRAPNEL language is a graph-based visual parallel programming language, that
supports a structured style for designing parallel applications, and is supported by
the GRED graphical editor [12]. In this section we focus on the close integration of
DDBG and GRED (GRapnel EDitor) in order to support debugging of GRAPNEL
programs.

In such integrated environment the user should work mainly with the same
abstractions that were used during program development1 .This requires highlighting
the entities in the graphical representation and their corresponding lines of source
code in the textual program representation.

For such high-level debugging of GRAPNEL programs, each debugging action
of the GRED graphical editor is mapped into a set of DDBG debugging actions.
Such commands are then sent to DDBG which in turn replies with DDBG-level
answers that must be converted into the corresponding action in the GRED visual
editor. In order to support possibly long-execution commands, such as “proceed until
next breakpoint is reached”, an asynchronous (event) notification feature has been
integrated into DDBG and is used by GRED to detect the completion of such kind
of commands. The integration of DDBG into GRADE is detailed in [11].

3.1.2 Integrating DDBG with STEPS

The STEPS testing tool [14, 15] allows to identify potential critical paths in a
C/PVM program. The DDBG debugger can inspect and control the program be-
havior, helping in the localization of programs bugs and their causes.

! Thisisa general concept, as it makes no sense to develop a program using the C programming
language and then debug this same program only at assembler level.

Using DDBG to Support Testing and High-level Debugging Interfaces 7

When integrating these tools, one must ensure that the program will run and
behave as expected, and so the composition of the testing and the debugging tools
starts by re-executing the target applications and forcing each process to follow
some specific path until a pre-determined point. It is necessary to ensure that the
application will reach the critical points previously identified by the testing tool and
will stop in a consistent state (also called a “Global Breakpoint”). At this potential
critical point, the user can enter an interactive debugging session, using both the
graphical and the command-line debugging interfaces, and issuing inspection and
control commands directed at any of the target processes.

The DEIPA (Deterministic (re-)Execution and Interactive Program Analysis)
tool supports the integration of STEPS and DDBG. DEIPA recognizes and processes
the output of the STEPS tool that is kept in the TeSS file. This file includes all the
information that is required by the controlled execution of the parallel computation
paths that were generated by STEPS. Namely, it defines a sequence of global break-
points. A global breakpoint is a set of breakpoints, one for each individual application
process. This information is analyzed and converted into (a set of) commands for
the DDBG tool. The DEIPA tool is mainly composed of 3 modules: the Console,
the Vid Database Manager, and the Replayer. The architecture of the DEIPA tool
and its relations with the STEPS and DDBG tools are illustrated in Figure 2.

STEPS DEIPA
Tool

Vid DBM
TeSS file
S3

Replayer

DDBG
Console
DDBG
Deamon

Process 1 Process 2

Fig. 2. The integration of STEPS and DDBG

The Console module. It supports the user interface to the DEIPA tool. This
interface is based on a command-line console allowing to load a TeSS file and
control the (re-)execution of the target application. Some commands allow to
control the DEIPA tool, e.g. load (to load a new TeSS file), while others are
converted into sets of DDBG commands and applied to the target application,
e.g. step (to proceed into the next Global Breakpoint).

The Vid Database Management module. During static analysis, STEPS uses
symbolic names for processes. This module implements the mapping from sym-
bolic to the real (PVM) process identifiers that are used by DDBG during real
execution.

8 J.C. Cunha, J. Lourencgo, V. Duarte

The Replayer module. This is responsible for the mapping of DEIPA commands
into DDBG commands, e.g. converting a DEIPA step command into a set of
DDBG set_breakpoint and continue_execution commands. It also supports the
required process control, e.g. setting variables in an if-then-else statement, so
that each process is forced to follow the path that is specified by the TeSS file.

In [16] there is a complete discussion of DDBG and STEPS integration. The
DDBG support for multiple simultaneous client tools has been used here. The
DEIPA tool is used to control the execution of all the application processes as ex-
plained, and the DDBG console and/or GUI can be used to provide a more detailed
inspection and modification of each individual process.

4 RELATED WORK

There are many current efforts on the field of parallel and distributed debugging [2,
3, 8,9, 10, 17]. Concerning the debugging primitives, the High-Performance De-
bugging Forum (HPDF) [2] is a collaborative effort aiming to define a standard for
parallel debuggers. Concerning tool interfacing, the On-line Monitoring Interface
Specification (OMIS) [17] aims to define an open interface to software development
tools, such as e.g. debuggers and performance evaluation tools. It precisely defines
the communication protocols and formats of the exchanged information. Concerning
the debugger architecture, the p2d2 system [8] is a distributed debugger that also
uses a client-server approach, with a well defined interface, promoting portability by
isolating the system dependent code into a debugger server.

Our work with DDBG will provide a flexible architecture allowing us to exper-
iment with the proposed HPDF specifications. It will also allow us to experiment
with improved forms of tool integration’.

5 CONCLUSIONS AND FUTURE WORK

We have discussed the DDBG debugger, and how it was used to offer debugging
functionalities to other tools in a parallel software engineering environment. The
DDBG functionalities were found adequate to support the requirements posed by
other tools in the GRADE environment. This experience allowed us to identify sev-
eral directions to improve current DDBG functionalities. This includes the support of
process-level and thread-level debugging, as well as the support of coordination-level
services, such as distributed global breakpoints, and evaluation of global predicates.
Our approach can be used to support a testing and debugging methodology that
allow the user to systematically inspect specific computation paths. The DEIPA
tool uses DDBG to support such controlled execution of a parallel program. Addi-
tionally, recently we have implemented a deterministic re-execution mechanism in
DDBG that relies on a previously recorded execution trace. We are working on the
integration of both approaches (controlled execution and trace—driven) so that we

Using DDBG to Support Testing and High-level Debugging Interfaces 9

can better assist the user in the localization of the bugs occurring in a distributed
program.

Concerning tool interaction and integration, this includes more flexible sup-
port for interfacing the debugger with distinct concurrent tools and support their
coordination. Concerning heterogeneity, this includes supporting other parallel and
distributed platforms besides PVM, based on MPI and WindowsNT. There is a need
for systems that can work in several distributed platforms, can be used by several
tools, and can be extended and adapted to new environments and functionalities.
In ongoing work, the DDBG architecture is evolving toward a layered architecture
that tries to meet such requirements.

REFERENCES

[1] BEGUELIN, A.—DONGARRA, J. J.—GEIST, G. A.—MANCHEK, R.—SUNDERAM,
V. S.: A User’s Guide to PVM Parallel Virtual Machine. Tech. Rep. ORNL/TM-118266,
Oak Ridge National Laboratory, USA, 1991.

[2] BROWN, J.—FRANCIONI, J.—PANCAKE, C.: White Paper on Formation of the
High Performance Debugging Forum. Available in “http://www.ptools.org/hpdf/meetings/-
mar97 /whitepaper.html”, 1997.

[3] CUNHA, J. C.—LOURENCO, J.—VIEIRA, J.—MOSCAO, B.—PEREIRA, D.: A Frame-
work to Support Parallel and Distributed Debugging. Proceedings of the International Confer-
ence on High-Performance Computing and Networking (HPCN’98). Amsterdam, The Nether-
lands, 1998.

[4] CuNHA, J. C.—LOURENQO, J.-—ANTAO, T.: A Debugging Engine for a Parallel and
Distributed Environment. Proceedings of the 15! Austrian-Hungarian Workshop on Distrib-
uted and Parallel Systems (DAPSYS’96). Miskolc, Hungary, 1996.

[5] DELAITRE, T. et al.: EDPEPPS: An Environment for the Design and Performance Eval-
uation of Portable Parallel Software. Proc. of the 3rd SEIHPC Workshop. Madrid, Spain,
1998.

[6] DELAITRE, T.—JusTO, G.—SPIES, F.—WINTER, S.: A Graphical Toolset for Simu-
lation Modeling of Parallel Systems. Parallel Computing Journal, 22, 1997, pp. 1823-1836.

[7] HLUuCHY, L.—DOBRUCKY, M.—ASTALOS, J.: Hybrid approach to task allocation in
distributed systems. Lecture Notes in Computer Science 1277. Springer. 1997, pp. 210-216.

[8] HooD, R.: The p2d2 Project: Building a Portable Distributed Debugger. Proceedings of
the 2"¢ Symposium on Parallel and Distributed Tools (SPDT’96). Philadelphia PA, USA,
1996.

[9] KACSUK, P.: Macrostep-by-macrostep Debugging of Message Passing Parallel Programs.
Accepted in TASTED PDCN’98, Las Vegas, USA, 1998.

[10] KACSUK, P.: Systematic Testing and Debugging of Parallel Programs by a Macrostep
Debugger. Submitted to DAPSYS’98. Budapest, Hungary, 1998.

[11] KAcsuK, P.—CuNHA, J. C.—Do6zsA, G.— LOURENGO, J.—FADGYAS, T.—
ANTAO, T.: A Graphical Development, and Debugging Environment for Parallel Programs.
Parallel Computing Journal, 22, 1997, pp. 1747-1770.

[12] KACSUK, P.—D6zsA, G.—FADGYAS, T.: Designing parallel programs by the graphical
language GRAPNEL. Microprocessing and Microprogramming, 41, 1996, pp. 625-643.

[13] KACSUK, P.—D0zsA, G.—Lovas, R.—FADGYAS, T.: Enhancing GRADE Towards
a Professional Parallel Programming Environment. Proc. of the 3rd SEIHPC Workshop.
Madrid, Spain, 1998.

10

[14]

[15]

[16]

[17]

[18]

[19]

J.C. Cunha, J. Lourencgo, V. Duarte

KrAawczYK, H.—WISZNIEWSKI, B.: Interactive Testing Tool for Parallel Programs. Soft-
ware Enginneering for Parallel and Distributed Systems. I. Jelly, I. Gorton, and P. Croll, Eds.
Chapman & Hall, London, UK, 1996, pp. 98-109.

KRrwACzYK, H.—WISZNIEWSKI, B.: Structural Testing of Parallel Software in STEPS.
Proceedings of the 1st SEIHPC Workshop. Braga, Portugal, 1996.

LoURENGO J.—CuNHA, J. C.—KRAWCZYK, H.—KUZORA, P.—NEYMAN, M.—
WISzZNIEWSKI, B.: An Integrated Testing and Debugging Environment for Parallel and
Distributed Programs. Proceedings of the 23"¢ Euromicro Conference. Budapest, Hungary,
1997.

Lupwig, T.—WISMULLER, R.— SUNDERAM, V.— BODE, A.: OMIS — On-Line
Monitoring Interface Specification (Version 2.0). Tech. rep., LRR-TUM, Munich, Germany,
July 1997.

LUQUE, E.—RIpoLL, A.—CORTES, A.—MARGALEF, T.: A Distributed Diffusion
Method for Dynamic Load Balancing on Parallel Computers. Proc. of the EUROMICRO
Workshop on Parallel and Distributed Processing. San Remo, Italy, 1995.

WINTER, S.—KACSUK, P.: Software Engineering for Parallel Processing. Proc. of the 8th
Symp. on Microcomputers and Microprocessor Applications, Budapest, Hungary, 1994.

José C. Cunha was born in Viseu, Portugal. He got the
Diploma in Electrical Engineering from Instituto Superior Tec-
nico in 1975, the Diploma in Informatics Enginering in 1979, and
a PhD in Computer Science from Universidade Nova de Lisboa
(FCT/UNL) in 1989. He is Associate Professor in the Computer
Science Department of FCT/UNL. He is the head of the Com-
putational Systems and Architecture Group and of the Parallel
and Distributed Processing Group. He coordinates research in
distributed languages, tools, and heterogeneous environments,
and has been publishing regularly in these topics.

Joao Lourengo was born in Alcobaca, Portugal, in 1966. He
graduated in Informatics Engineering in 1991, and got the M.Sc.
degree in Informatics Engineering in 1995 from FCT/UNL. He
is currently a Research Assistant at the Computer Science De-
partment of FCT/UNL and is preparing his Ph.D. on parallel
and distributed debugging.

Vitor Duarte was born in 1966, graduated in Informatics
Engineering in 1990 and got the M.Sc. degree in Informatics
Engineering in 1995 from FCT/UNL. He is a Research Assis-
tant at the Computer Science Department of FCT/UNL and is
preparing his Ph.D. on monitoring and visualization of distrib-
uted systems.

