QuerySheet: A Bidirectional Query Environment for
Model-Driven Spreadsheets

Orlando Belo*T, Jicome Cunha*!%, Jodo Paulo Fernandes*¥, Jorge Mendes*¥, Rui Pereira*¥, Jodo Saraiva*}
* Universidade do Minho, Portugal Algoritmi R&D Centre, Portugal * HASLab/INESC TEC, Portugal
§ CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal 9 RELEASE, Universidade da Beira Interior, Portugal
{obelo,jacome,jpaulo,jorgemendes, ruipereira,jas } @di.uminho.pt

Abstract—This paper presents a tool, named QUERYSHEET, to
query spreadsheets. We defined a language to write the queries,
which resembles SQL, the language to query databases. This
allows to write queries which are more related to the spreadsheet
content than with current approaches.

I. INTRODUCTION

Like most software artifacts, spreadsheets start as simple
software systems and rapidly evolve into large and complex
data-centric softwares. In such complex systems it is very
important to have good support to manipulate and reason about
data. Database systems use well-known techniques, namely the
relational model, and language support, namely SQL, to query,
extract and reason about their data. Unfortunately, spreadsheet
systems do not offer such support to query their data!

This paper presents QUERYSHEET: a tool that brings to
spreadsheets the query database realm. The tool offers a query
language, very similar to SQL, to query spreadsheets. This
query language is based on spreadsheet models, namely Class-
Sheets [1], rather than on the spreadsheet data. By focusing
on a simple, concise description of the spreadsheet data, rather
than on a possibly large and complex spreadsheet data, we
mimic the database approach: a database query writer usually
reasons about the relational model of the database to express
his/her queries, and not on understanding the large database.
Such an approach has also the advantage of expressing queries
using attribute names, and not by referring to spreadsheet
areas and column letters as provided by Google and Microsoft
approaches to query spreadsheets. Both systems also require
that the spreadsheet data is represented in a single matrix, that
is to say that the data has to be in (or transformed to!) a
non-normalized representation. In QUERYSHEET this is per-
formed automatically by using normalization/denormalization
and model inference techniques [2].

II. QUERYSHEET

In order to present our spreadsheet query language, let
us consider a spreadsheet storing information about products,
clients and orders. The ClassSheet model defining the busi-
ness logic of this spreadsheet is shown in Figure 1 (Model
worksheet). Suppose that we would like to know:

e How much have we profited from each client?

e How much have we profited from USA clients (with
its histogram)?

In a regular spreadsheet system it would be very difficult
to extract this information from the spreadsheet data. Both

File Edit View Insert Format Tools Data Window Help = New Query =]
il Tl % e | @ as | NewQuery iR [calbri] 1]
— — SELECT Client.™, sum(TotalPrice)
|ER A mE=] FROM Client JOIN Order ON Client.ID
A B I 3 I D [E GROUP BY Client *

[1 [Order ClientKey LABEL sum(TotalPrice) 'Profits|

2 id=Client.ID

3 |ProductKey

4l Quantity OrderDate shippedDate TotalFrice

5 [id=PreductD_[quantity=0 date="2013-01-01" date="2013-0101" totaPrice=0 |

6 i i i i

1

: ==
[9 |Client

iD Name Address it Country Lo F
[11 [id=0 name=""address="" ty="" country=""zipcode=0 telephone=""
[[15 |Product
iD Name UnitPrice Stock SuppliedD __ Eategory

[17_[id=0 name=""__unftPrice=0 stock=0 Supplierid=0 category=""

] H H H H H : -
B
10] [¥ [Pl model {Data {5 ‘ |
Sheet1/2 | Pagestyle_Model | | sm [E | | sum=0 o8+ @ [8%

Fig. 1. A model-driven spreadsheet representing orders, clients, and products.

Microsoft’s query system and Google’s QUERY function
provide a basic form of expressing queries. However, they
require users to denormalize the data (that is organized in
three different tables), and to use column letters in the queries
themselves, which makes their use complex and error-prone.

In QUERYSHEET we express the query based on the
ClassSheet model, and not on the spreadsheet data. The tool
provides a New Query button, that opens a text box, where
the query is defined. As we can see in Figure 1 the query
(expressing the first question) looks very much like SQL: it
uses the same keywords and syntactic structure. Moreover, the
queries use ClassSheet labels to identify the entities involved.

When executing the query, the QUERYSHEET generates
the result as a ClassSheet-driven spreadsheet. In fact, two
new worksheets are added to the original spreadsheet: one
containing the spreadsheet data that results from the query
(DATAQUERY1), and the other (MODELQUERY1) contains
the ClassSheet model, as shown in Figure 2.

=1
x a v New Query

Fle Edit View Insert Format Tools Data Window Help
iimme |l i) === [ae | Newouery Wi FH [calibri =] [ix =] 4
[A ME =]

[e [¢ [o[€ [F [& [H

SELECT name, profits
FROM Client
WHERE country = 'USA'
WITH HISTOGRAM

T
2 D Name Address it Country _ Zipcode Telephone _Prafits
3 [id—0 name=""_address=""_city=""_country=""_zipcode=0 telephane=""_Profits=0

Fig. 2.

The model-driven spreadsheet produced after executing the query.

Figure 2 also shows the query to answer our second
question. When executed, this query is applied to the results
of the first one, that is to say, we can combine queries. In
Figure 3 we show the (data) results of this second query.

Eile Edit View Insert Format Tools Data Window Help

x - - New Query

SELECT Client.*, sum(TotalPrice)

GROUP BY Client. *
LABEL sumn (TotalPrice) 'Profits|

Y
[[order

5 |ProductKey
D

Ordeate hippedD
GEc—"2013 0L OT

TotalPrice
OT™ TotalPrice—0

d—Product. b [quantr

FROM Client JOIN Order ON Client.ID

Client
iD Name Address cit
1d=0 Name=""address="" ="

Product
D Name

UnitPrice Stock.

SupplierD __Categor
= e o =i

17 [1d=0 name=""__unitPrice=0 ock=0

Spreadsheet Data

Country
Country="""Zipcode=0_telephone=""

normalization & model inference

[& T < [¢
Cllert Name _ Ciert Address Cler. City
7 Viorten Rua=tzdahosa Braga
5 403 Tnac 55 heriden Ave Elzabetn Usi
3 404 Vew Click 4 Rorth fve Monmouta USA
5 405 Cireut Center 95 Wacdorde Street Oftawa Canada K1A AL

[E | 3

Clert.Country _ Clie*t. Zocode:

Portugal 710392
7201

= (R —
[Client.D Cliert Teleohore Prcfi-s
402 253184183 L5
3085559492 6
78492 308555-23_8 2278115
51355529 1

—_—
denormalization

Fig. 4. The architecture of QUERYSHEET.

® & v

Products.ods - LibreOffice calc [g]
Eile Edit View Insert Farmat Tocls Data Windew Help X

(i T e [e Newouery BiFH B
s = X = ‘
A [s [¢ [o [& =
1 |Client
2 |Name Profits 30000

w

S

Tnac 7628.4 20000
New Click 2178115 10000 WProfits
1 .. 1l

|

Trac NewClick i
Hi4|r |>||ZIJataQuery1 EModeIDueryZ 4 DataQuery2 1| ¥

Sheet 6/ 6 | Default | | st [|| s

j.,

Fig. 3. The spreadsheet (data) result after executing the second query.

QUERYSHEET is implemented as part of MDSheet [3].
Because implementing a powerful and efficient query engine is
very complex, we express the semantics of our query language
using Google’s QUERY function. To make the language more
expressive we added extra functionality such as a JOIN clause.
Our query language allows more humanized queries to be
written with attribute names, not column letters, and supporting
ClassSheets. To do so, we implemented a translator from
our query language to the Visualization API Query Language
defined by Google for use in the QUERY function. We
have also implemented the denormalization process needed to
automatically transform the data in our environment to the
needed tabular denormalized format.

[lustrated in Figure 4, is QUERYSHEET’s architecture. The
top left part shows our spreadsheet model/instance of our
previous example. The QUERYSHEET language is based on the
SQL language, while allowing some of the QUERY function’s
clauses such as LIMIT and LABEL. The language supports the
JOIN clause, ClassSheet attribute selection, and multiple ways
of naming the attribute to avoid conflicts. More information
about the syntax can be found in [4].

As stated before, we need to denormalize the data into a
single table (bottom-center of the figure). After we obtain the
data from our model-driven environment, we begin placing the
data into its denormalized state carefully grouping the correct
row of information, while dealing with the problems caused by
denormalized data querying such as derived data and attribute
aggregation. In fact, these are well-known and well-studied
problems in the database realm [5]. Our query is then translated

L, M, N, O, P, Q

to its exact counterpart for the QUERY function, automatically
calculating the range input, and substituting the attribute names
to their counterpart column letters using a lookup function, as
shown in the bottom-right of the figure. Finally, we use the
QUERY function to obtain the results expected. Afterwards
we apply a technique introduced in previous work [2] to
automatically infer a ClassSheet from the resulting spreadsheet
data, as shown in the top-right of the figure.

The model-driven query language and the techniques pro-
posed in [4] were the building blocks used when developing
QUERYSHEET. Such techniques were then extended to support
a bidirectional query environment where end users can update
the original and target spreadsheet, and all software artifacts
are automatically synchronized. This is due to the result and
original data being a view over the now denormalized data,
much like what happens with views in database systems.

ACKNOWLEDGMENT

This work is funded by ERDF - European Regional
Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundag¢do para a Ciéncia e a
Tecnologia (Portuguese Foundation for Science and Tech-
nology) within projects FCOMP-01-0124-FEDER-010048and
FCOMP-01-0124-FEDER-020532. Some authors were funded
by FCT: SFRH/BPD/73358/2010, BI3-2012PTDC/EIA-CCO/
108613/2008, BI12-2012PTDC/EIA-CCO/1086613/2008.

REFERENCES

[1] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proc. of the
20th IEEE/ACM Int. Conf. on Aut. Sof. Eng. ACM, 2005, pp. 124-133.

[2] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in IEEE Symp. on Visual Languages and
Human-Centric Computing. 1EEE CS, 2010, pp. 93-100.

[3] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
framework for model-driven spreadsheet engineering,” in Proc. of the
34rd Int. Conf. on Software Engineering. ACM, 2012, pp. 1412-1415.

[4] J. Cunha, J. Mendes, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Querying model-driven spreadsheets,” in IEEE Symp. on Visual Lang.
and Human-Centric Comp. 1EEE CS, 2013, to appear.

[5] D. Maier, The Theory of Relational Databases. Computer Science Press,
1983.

