
Querying Model-Driven Spreadsheets

Jácome Cunha∗†, João Paulo Fernandes∗‡, Jorge Mendes∗, Rui Pereira∗, and João Saraiva∗
∗ HASLab/INESC TEC & Universidade do Minho, Portugal
† CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal
‡ RELEASE, Universidade da Beira Interior, Portugal

{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt

Abstract—Spreadsheets are being used with many different
purposes that range from toy applications to complete infor-
mation systems. In any of these cases, they are often used as
data repositories that can grow significantly. As the amount of
data grows, it also becomes more difficult to extract concrete
information out of them.

This paper focuses on the problem of spreadsheet querying. In
particular, we propose an expressive and composable technique
where intuitive queries can be defined. Our approach builds on a
model-driven spreadsheet development environment, and queries
are expressed referencing entities in the model of a spreadsheet
instead of in its actual data. Finally, the system that we have
implemented relies on Google’s query function for spreadsheets.

I. INTRODUCTION

Spreadsheet systems have proven to be a true success story,
both in the context of the development of simple applications
for personal use as well as to support business decisions within
large industrial organizations.

A significant contribution to the success of spreadsheets
is acknowledged to their multipurposeness which can be
observed, for example, by the fact that many spreadsheets are
actually used as data repositories or databases [1], in the sense
that no formulas are defined in them1.

From a computer scientist’s point-of-view, however, it is
clear that spreadsheets do not support the state-of-the-art tech-
niques that are incorporated in modern database management
systems and so their use as databases raises a number of
issues. One such issue is that data in spreadsheets often does
not conform to normalization principles. Indeed, and just as a
simple evidence of this, the same data in a spreadsheet (e.g.,
an address) is often repeated in many cells of a spreadsheet,
and an update in one of those cells that is not propagated to all
the others results in data inconsistency (the same address will
then have multiple definitions). The problem of normalization
of spreadsheets has already been addressed in [2], and this is
actually a technique that we exploit in the context of this work.

In this paper, we address another significant issue that
arises from the use of spreadsheets as databases: the problem of
data querying. In fact, having all the data stored in a single and
potentially large matrix makes it difficult to extract information
from such data in an efficient and effective way. Again, the
problem of data querying is one that has received decades
of attention within the database community but only recently
has been considered in the context of spreadsheets. This first

1While, of course, this suggests that many spreadsheets should be converted
to databases, in practice we do not observe this migration often.

approach to spreadsheet querying was proposed by Google [3]
and has already been integrated within Google Drive. While
in our context we also exploit Google’s approach to querying,
it can still be improved.

For once, Google’s method limits the way the data must
be represented, reducing the freedom of how one would want
to represent data: it requires data to be in a tabular format,
with headers present in the first row, and does not support
relationships between data entities, requiring the data to be
denormalized if one would like to take advantage of all the
different query possibilities.

Along with the difficulty of managing and structuring the
data in such a way, the proposed method has another flaw -
the actual SQL-like query. Instead of writing the query using
column labels, one must use the column letters to write the
query, leading to counter-intuitive query writing, and hard to
understand queries, for both the user who wrote the query
and for anyone trying to read and understand it. And since
spreadsheets tend to include large amounts of data (columns
and rows), it becomes extremely difficult to understand the
business logic of the data, and know the exact columns we
need to refer to in the query.

In this paper, we propose to lift spreadsheet querying
to the model level. Our approach envisions a spreadsheet
development setting where a spreadsheet holding concrete data
coexists with an abstract model of its structure. This is a setting
that has already been realized and implemented before [4], pro-
viding a bidirectional model-driven spreadsheet development
environment within a spreadsheet system itself [5], [6], where
both models and data instances are automatically kept always
synchronized, even when one of these artefacts evolves.

In such a domain, we impose no limits on the structure that
data needs to conform to, overcoming the previous approach’s
first limitation. Also, we allow queries to be expressed by
names which reference structure entities in the model, therefore
improving the readability and maintainability of queries, and
overcoming the second limitation described before. We argue
that our approach provides a powerful and expressive informa-
tion extraction querying setting where queries are furthermore
simple to write, read, understand and maintain.

II. QUERYING SPREADSHEETS

Before we discuss techniques to query spreadsheets, let us
introduce a spreadsheet that will be used as a running example
throughout this document. Figure 1 presents a spreadsheet for
storing information about flights, containing the information



Fig. 1. A spreadsheet representing flight information.

about the pilot, the plane, the departure and destination cities,
date and duration of the flight.

Having the flight information available, a flight manager
may want to know, for example, which flights have their
destination as Lisbon (LIS), or how many hours a given pilot
has flown. In standard database systems such information can
be easily computed by defining simple SQL queries. However,
using traditional spreadsheet systems it is not easy/possible to
compute such information.

A. Examples of Query Systems

Having realized the need to provide queries for spread-
sheets, both Microsoft and Google made an attempt to allow
queries to be used on spreadsheets, with their MS-Query Tool
and Google query function (GQF) respectively. In this section
we briefly present the drawbacks with these two attempts.

One issue both share, is the necessary representation of the
data to be able to run the queries. Both require spreadsheet data
to be represented in a tabular format, with headers present
in the first row. They do not support relationships between
data entities, or in other words, they require the data to be
denormalized [7], [8].

For instance, the data displayed on Figure 1 cannot be com-
pletely queried. The planes information would need to appear
in front of each flight. The denormalized data is shown in
Figure 2. This format is hard to understand, making even more
complex to write spreadsheet queries. This denormalization
process is the opposite of recommendations from the database
realm because it creates update and delete anomalies [7]. This
subject will be further discussed in sub-section III-B.

Fig. 2. Part of the flight spreadsheet data in a denormalized state.

Along with the aforementioned drawback, the Google
query function has another problem. A quick glance over
Listing 1 shows us that the query consists of a range input, to
state the range of cells where the data to be queried is present,
and the actual query string, which is a subset of SQL where
column letters are used instead of attribute names.

=query(A1:G53;
"SELECT B, SUM(F)
WHERE D = ‘LIS’
GROUP BY B
LABEL SUM(F) ‘Total Hours’")

Listing 1. A Google query that counts the number of hours each pilot flew
with their destination as Lisbon.

Since Google queries use column letters to define the spread-
sheet data area/matrix and the columns/attributes needed in
expressing the query, they lead to counter-intuitive and hard
to understand queries, specially in large and complex spread-
sheets. In fact, the user needs to know the column letters
where the information referred in the query is stored in the
spreadsheet. Moreover, Google queries do not adapt/evolve
when the spreadsheet data evolves. That is to say, by adding
a column to the spreadsheet we may turn a query invalid,
because data changed places.

Yet even with these drawbacks, Google queries can be
written in the spreadsheet itself, as regular content of cells,
allowing on-the-spot results without any configurations, and
providing a powerful query engine for spreadsheets. For these
reasons and because it is a free service, we chose to incorporate
the Google query function in our work and take advantage of
this query engine.

B. Model-Driven Spreadsheets

Because spreadsheets may evolve into complex software
systems, Engels and Erwig [9] introduced ClassSheets as a
model formalism to express the business logic spreadsheet
data. The ClassSheet formalism provides a model-driven soft-
ware development approach to spreadsheets. Thus, the business
logic of the spreadsheet is defined in an abstract and concise
formalism. As a result, users can understand, maintain and
evolve complex spreadsheets by just analysing their (Class-
Sheet) models, and not by looking at large and complex data.
Figure 3 defines a ClassSheet for our flight spreadsheet.

Fig. 3. ClassSheet model for the flights’ spreadsheet presented in Figure 1.

ClassSheet is a high-level and object-oriented formalism.
It uses the notion of class and attribute. In our example, Flight
is a class that is composed of both a Pilot and a Plane class,
expanding vertically and horizontally, respectively, and each
with its own identification code, or ID. The joining of the Pilot
and Plane classes gives us four distinct attributes: Depart,
Destination, Date, and Hours, each with its own default value.

This ClassSheet specifies the business logic of our flight
spreadsheet. In model-driven engineering we say that the
spreadsheet data (Figure 1) conforms to the model (Figure 3).

Having defined the model of our spreadsheet flight exam-
ple, we can now define the query based only on the model.
The query can reference attributes instead of column letters,



as in GQF. Compared with Google queries, this is probably
easier to manage. Moreover, it makes the query robust to
evolution: if new columns are added, there is no need to change
the queries. Indeed, no denormalization process is necessary
to query spreadsheets: only a model is necessary. For those
spreadsheets that do not have a model, the work presented
in [10] can be used to automatically infer one. The query
presented before can now be written as in Listing 2.

SELECT Pilots.*, Sum(Hours)
FROM Flights
WHERE Destination = ’LIS’
GROUP BY Pilots.*
LABEL Sum(Hours) ’Total Hours’

Listing 2. Proposed SQL-like query for the original query.

III. QUERYING MODEL-DRIVEN SPREADSHEETS

In this section we explain how the query system we
have created works. Figure 4 presents its architecture. This
system in implemented on top of MDSheet [4]. This means
that all the mechanisms to handle models and instances are
already created and ready to use. This is the starting point:
in the left part of the figure we show a spreadsheet instance
and its corresponding model. The second required part is
the query over the model/instance. This will be explained in
detail in the next sub-section. The spreadsheet instance is then
denormalized, as we will explain in sub-section III-B, and
the query over the model is translated into a Google query,
as explained in sub-section III-C. The Google query and the
denormalized data are sent to Google and the result received
is shown in the bottom-right part of the figure. Finally, a new
model is inferred so the result can be used as input to a
new query, as explained in sub-section III-D. This last step
is necessary since we want the queries to be composable.

A. Model-Driven Query Language

The Model-Driven Query Language is based much off of
the standard SQL language, while allowing some of the GQF’s
clauses such as LIMIT and LABEL. Its syntax is shown in
Listing 3. Instead of selecting table attributes in the SELECT
clause, the user selects the ClassSheet attributes he/she wishes
to query, while allowing him/her to specify, to avoid conflicts,
various ways of naming the attribute, such as simply stating
its name (Destination), with the class in which the attribute is
present (Pilots.ID), with both classes, in the case of a relational
class ((Pilots,Planes).Destination), or if one wants all the
attributes in a certain class, only state the class’s name (Pilots).

SELECT (* | attr1, attr2, ...)
FROM ClassSheet1, [JOIN ClassSheet2 ON attr], ...
[WHERE conditions]
[GROUP BY attr1, ...]
[ORDER BY attr1 [ASC|DESC], ...]
[LIMIT numRow]
[LABEL attr1 new_attr1, ...]

attr ::= attribute
| Class
| Class.attribute
| (Class1, Class2).attribute

Listing 3. The model-driven query language syntax.

The FROM clause allows the user to choose which Class-
Sheet model(s) to use for the query, reminiscent of the standard
SQL FROM clause where the user chooses what tables to
query. Notice that as in SQL we allow JOIN operations. Basing
this language off of traditional SQL allows users who already
know SQL to simply jump into query writing in this system,
avoiding the need to learn a new language, allowing us to adapt
the most used query language instead of creating one.

B. Denormalization of Spreadsheet Data

As we stated before, the GQF needs to receive all the data
in a single table. Unfortunately, this has some disadvantages
like data redundancy that can possibly lead to data inconsis-
tency. In fact, these are well-known and well-studied problems
in the database realm [7]. Thus, for our system to be able
to use the Google query system, we need to map all data
to such format. In previous work we created a technique to
migrate data from spreadsheets to a relational database and
back [2]. This technique receives a spreadsheet in the same
format required by the GQF and normalizes it. The technique
we presented is bidirectional, meaning that it is possible to
go from normalized data to a denormalized format, as we
need. Thus, this part of our framework is handled by the same
mechanism presented in [2].

C. Translation to Google Query

To correctly run the GQF, the query must abide by the
Visualization API Query Language [3], defined by Google.
For our model-driven queries to function properly, a translator
was made, with the sole purpose to transform the model-driven
query written by the user into its exact counterpart for the GQF.
It also automatically calculates the range of the ClassSheet
models selected in the FROM clause, and substitutes the
attribute names to their corresponding column letters, without
the user having to do so. The translator automatically writes the
range of the ClassSheet models selected in the FROM clause,
by using a quick lookup function to find what is the range of
the selected class. After verifying that each attribute chosen
by the user exists, and has no conflicts, such as ambiguous
attribute names due to the attribute repeating in more than
one ClassSheet (which may be solved by adding the class
name beforehand as shown in III-A), another lookup function
is used for each attribute which returns the exact column
letter corresponding to the attribute. Having both the translated
model-driven query and denormalized data, we can now use
the GQF, taking advantage of this powerful tool, and obtain
the desired results as shown in Figure 5.

Fig. 5. Data resulting from a Google query.

D. Normalization and ClassSheet Inference

After applying a Google query, its result is shown in the
form of a spreadsheet table. For instance, if we perform the



conforms to

denormalization

normalization & 
model inference

conforms to

translation

Fig. 4. Architecture of the model-driven query system.

query we have been using in this paper, we obtain the data
shown in Figure 5. One of the goals of our framework is to
make queries composable, that is, we want to use the output
of a query as input of another query (as indeed happens
with Google query). Without a model for the output of the
Google query this is not possible. In previous work we have
introduced a technique to automatically infer a ClassSheet
from spreadsheet data [10]. Thus, such a technique can directly
be applied to fulfill this gap in our framework. Applying the
inference technique to the spreadsheet presented in Figure 5
we obtain the ClassSheet shown in Figure 6.

Fig. 6. Model automatically inferred from the spreadsheet shown in Figure 5.

IV. RELATED WORK AND CONCLUSION

In this paper, we have proposed a framework for the
querying of spreadsheets that are developed within a model-
driven environment. The setting that we provide is highly
expressive, and its queries are intuitive, easy to write, read and
understand. Querying is an important aspect of database theory
and systems. Recently, query languages have been adopted in
other settings, like XML (with XQuery [11]), spreadsheets
and general-purpose programming languages [12]. Google
embedded SQL in Google Docs spreadsheets and Microsoft
defined a database query interface used by Microsoft Word
and Excel.

Several aspects of our work deserve further elaboration. In
particular, after performing a query we wish to derive models
that are as close as possible to the original ones. We also plan
to execute empirical studies with regards to the efficiency of
the query system and how expressive, readable, and intuitive
the queries are to users.

ACKNOWLEDGMENT

This work is funded by ERDF - European Regional
Development Fund through the COMPETE Programme (op-

erational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Tech-
nology) within projects FCOMP-01-0124-FEDER-010048
and FCOMP-01-0124-FEDER-020532. This work is fi-
nanced by the ERDF – European Regional Develop-
ment Fund through the COMPETE Programme (operational
programme for competitiveness) and by National Funds
through the FCT – Fundação para a Ciência e a Tecnolo-
gia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-022701. The four
first authors were funded by FCT: SFRH/BPD/73358/2010,
SFRH/BPD/46987/2008, BI3-2012PTDC/EIA-CCO/108613/
2008, BI2-2012PTDC/EIA-CCO/1086613/2008 respectively.

REFERENCES

[1] C. Chambers and C. Scaffidi, “Struggling to excel: A field study of
challenges faced by spreadsheet users,” in VL/HCC, C. D. Hundhausen,
E. Pietriga, P. Dı́az, and M. B. Rosson, Eds. IEEE, 2010, pp. 187–194.

[2] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in PEPM’09: Proc. of the 2009 ACM SIGPLAN
Workshop on Partial Evaluation and Program manipulation. ACM,
2009, pp. 179–188.

[3] Google, “Google query function,” http://goo.gl/p0FKW, [Accessed on
March 2013].

[4] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
framework for model-driven spreadsheet engineering,” in Proc. of the
34rd Int. Conf. on Software Engineering. ACM, 2012, pp. 1412–1415.

[5] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding and
evolution of spreadsheet models in spreadsheet systems,” in IEEE Symp.
on Visual Lang. and Human-Centric Comp. IEEE, 2011, pp. 186–201.

[6] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional transformation of model-driven spreadsheets,” in ICMT
’12, ser. LNCS, vol. 7307. Springer, 2012, pp. 105–120.

[7] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[8] S. K. Shin and G. L. Sanders, “Denormalization strategies for data
retrieval from data warehouses,” Decis. Support Syst., vol. 42, no. 1,
pp. 267–282, Oct. 2006.

[9] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proc. of the
20th IEEE/ACM Int. Conf. on Aut. Sof. Eng. ACM, 2005, pp. 124–133.

[10] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in VL/HCC’10: IEEE Symp. on Visual
Languages and Human-Centric Computing. IEEE Computer Society,
2010, pp. 93–100.



[11] D. Chamberlin, “Xquery: An xml query language,” IBM Syst. J., vol. 41,
no. 4, pp. 597–615, Oct. 2002.

[12] O. de Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ek-
man, N. Ongkingco, and J. Tibble, “.ql: Object-oriented queries made
easy,” in GTTSE, ser. Lecture Notes in Computer Science, R. Lämmel,
J. Visser, and J. Saraiva, Eds., vol. 5235. Springer, 2007, pp. 78–133.


