
Embedding and Evolution of Spreadsheet Models
in Spreadsheet Systems

Jácome Cunha, Jorge Mendes and João Saraiva
Universidade do Minho, Portugal

jacome@di.uminho.pt jorgecunhamendes@gmail.com
jas@di.uminho.pt

João Paulo Fernandes
Universidade do Minho & Universidade do Porto,

Portugal
jpaulo@{di.uminho.pt,fe.up.pt}

Abstract—This paper describes the embedding of ClassSheet
models in spreadsheet systems. ClassSheet models are well-
known and describe the business logic of spreadsheet data. We
embed this domain specific model representation on the (general
purpose) spreadsheet system. By defining such an embedding,
we provide end users a model-driven engineering spreadsheet
developing environment. End users can interact with both the
model and the spreadsheet data in the same environment.
Moreover, we use advanced techniques to evolve spreadsheets
and models and to have them synchronized. In this paper we
present our work on extending a widely used spreadsheet system
with such a model-driven spreadsheet engineering environment.

I. INTRODUCTION

In recent years the spreadsheet research community has
recognized the need to support end-user model-driven soft-
ware development, and to provide spreadsheet developers and
end users with methodologies, techniques and the necessary
tool support to improve their productivity. Along these lines,
several techniques have been proposed, namely the creation
of spreadsheet templates [1], ClassSheets [2] and the use of
class diagrams to specify spreadsheets [3]. These proposals
guarantee that end users safely edit their spreadsheets and
they introduce a form of model-driven software development:
a spreadsheet business model is defined from which a cus-
tomized spreadsheet application is generated guaranteeing the
consistency of the spreadsheet with the underlying model.

Despite of its huge benefits, model-driven software devel-
opment is sometimes difficult to realize in practice. In the
context of spreadsheets, for example, the use of model-driven
software development requires that the developer is familiar
both with the spreadsheet domain (business logic) and with
model-driven software development. In the particular case of
the use of templates, a new tool is necessary to be learned,
namely Gencel [4]. Using this tool, it is possible to generate
a new spreadsheet respecting the corresponding model. This
approach, however, has several drawbacks: first, in order to
define a model, spreadsheet model developers will have to be-
come familiar with a new programming environment. Second,
and most important, there is no connection between the stand
alone model development environment and the spreadsheet
system. As a result, it is not possible to (automatically)
synchronize the model and the spreadsheet data, that is, the
co-evolution of the model and its instance is not possible.

In this paper, we propose to embed ClassSheet spreadsheet
models in spreadsheets themselves. Our approach closes the
gap between creating and using a domain specific language
for spreadsheet models and a totally different framework for
actually editing spreadsheet data. Instead, we unify these
operations within spreadsheets: in one sheet we define the
underlying model while another sheet holds the actual data,
such that the model and the data are kept synchronized by
our framework. Model evolution is available as a set of pre-
defined operations, and changes in a model are automatically
propagated to its data. Our framework is such that editing
spreadsheet data is also safe and controlled. The goal of this
paper is two-fold:
• First, we present an embedding a visual DSL, the Class-

Sheet notation, in a spreadsheet system, providing a single
and coherent spreadsheet environment.

• Second, we define a framework for ClassSheet co-
evolution where models and instances are automatically
synchronized, supporting bidirectional transformations.

The paper is organized as follows: in Section II we present
an embedding of the ClassSheet language in a generic spread-
sheet environment. In Section III we present formal rules to
support the evolution of spreadsheets. section IV describes
the architecture of the method we propose for spreadsheet
evolution which we demonstrate in Section V using practical
examples. In Section VI we present related work and finally,
in Section VII we draw our conclusions.

II. THE ClassSheet MODEL AND ITS EMBEDDING

ClassSheets [2] are a high-level, object-oriented formalism
to specify the business logic of spreadsheets. ClassSheets
allow users to express business object structures within a
spreadsheet using concepts from the Unified Modeling Lan-
guage (UML). Using the ClassSheets model, it is possible to
define spreadsheet tables and to give them names, to define
labels for the table’s columns, to specify the types of the values
such columns may contain and also the way the table expands
(e.g., horizontally or vertically).

Besides a textual (and formal) definition, ClassSheets also
have a visual representation which very much resembles
spreadsheets themselves [4]. Thus, such visual model rep-
resentation makes developing the spreadsheet model very
similar to creating a concrete spreadsheet. In order to support

1

this visual representation, a specific interactive tool has been
developed [1]. This tool provides a powerful interactive envi-
ronment to create ClassSheets and to automatically generate
spreadsheets that follow the specified business model. The
generated spreadsheets guide users introduce data that follows
the underlying model, thus avoiding several errors.

In this section we present an embedding of ClassSheet
models in spreadsheet systems. In this embedding we mimic
the well-known embedding of a domain specific language in
a general purpose one. Like in such embeddings, we inherit
all the powerful features of the host language: in our case, the
powerful interactive interface offered by the (host) spreadsheet
system. This approach has two key advantages: first, we
do not have to build and maintain a complex interactive
tool. Second, we provide ClassSheet model developers the
programming environment they are used to: a spreadsheet
environment. Furthermore, because the ClassSheet model and
the spreadsheet data are defined in the same environment, we
now have the power to ensure that the they are synchronized.

Before we present the architecture of our model-driven
spreadsheet programming environment, and the techniques we
use to synchronize the ClassSheet model and the spreadsheet
data, let us present our embedding of ClassSheet models.

A. Vertically Expandable Tables

In order to illustrate our approach we shall consider an
example modeling an airline scheduling system which we
adapted from [5]. We assume that any airline company must
record the activity of its pilots in, typically, a software system.
A simple way of achieving this goal is to use a spreadsheet,
and a table1 as the one presented in Figure 1a. This table
has a title, Pilots, and a row with labels, one for each of
the table’s column: ID represents a unique pilot identifier,
Name represents the pilot name and Flight hours represents
the total number of hours a pilot has already flown. Each of
the subsequent rows represents a concrete pilot.

(a) Pilot table. (b) Pilot ClassSheet model.

Fig. 1: Pilot example.

Tables such as the one presented in Figure 1a are frequently
used within spreadsheets, and it is fairly simple to create a
model specifying such tables. For the example shown, we can
extract the model presented in Figure 1b.

To model the labels we use a textual representation and the
exact same names as in the data sheet (Pilots, ID, Name and
Flight hours). To model the actual data we abstract concrete

1A table is a block of cells separated from the others by empty col-
umns/rows. Usually its first row contains the column labels.

column cell values by using a single identifier: we use the one-
worded, lower-case equivalent of the corresponding column
label (so, id, name and flight hours). Next, a type is associated
with each column: columns A and B hold strings (denoted in
the model by the empty string “” following the = sign), and
column C holds integer values (denoted by 0 following =).
Notice that the fourth row of the model contains vertical
ellipses in all columns. This means that it is possible for
these columns to expand vertically: the tables that conform
to this model can have as many rows as needed. The scope
of the expansion is between the ellipsis and the black line
(between row 2 and 3). Note that, by definition, ClassSheets
do not allow for nested expansion blocks, and thus, there is
no possible ambiguity associated with this feature.

The instance shown in Figure 1a, for example, has three
pilots. All the model cells shown are colored with the same
color meaning that they are part of the same table2.

B. Horizontally Expandable Tables

In the lines of what we described in the previous sec-
tion, airline companies must also store information on their
airplanes. This would be the purpose of table Planes in
the spreadsheet illustrated in Figure 2a, which is organized
as follows: the first column holds labels that identify each
row, namely, N-Number, Model and Name; cells in row N-
Number (respectively Model and Name) contain the unique
n-number identifier of a plane, (respectively the model of the
plane and the name of the plane). Each of the subsequent
columns contains information about one particular aircraft.

(a) Plane table. (b) Plane ClassSheet model.

Fig. 2: Plane example.

The Planes table can be modelled by the illustration in
Figure 2b. This model may be constructed following the same
strategy as in the previous section, but now swapping columns
and rows: the first column contains the label information and
the second column the names abstracting concrete data values:
again, each cell has a name and the type of the elements in
that row (in this example, all the cells are to hold strings); the
third column has ellipses meaning that rows are horizontally
expandable. Notice that the instance table has information
about three planes.

C. Relationship Tables

In this section, we explore an example of more practical
interest than the two shown before (which are admittedly
simple). So far, we have modeled tables for pilots and planes.
Reusing what we built, we can now model, as shown in the

2We assume colors are visible in the digital version of this paper.

2

Fig. 3: Spreadsheet of an airline company and an abstract model representing it.

left-hand side of Figure 3, a table to register concrete flights
by the airline company.

We can see the same information we had before: between
rows 8 and 12, we have the pilot information shown in
Figure 1a and between rows 15 and 18 the plane information
shown in Figure 2a. The lines between rows 1 and 6 represent
the desired scheduling information. For simplicity, let us for
now focus on columns A to E. Column A holds the identifier
of the pilot for a concrete flight. Row 2, columns B and
F, hold the identifiers of the airplanes assigned to fly from
OPO to NAT, two times, and from LIS to AMS, respectively.
Origins and destinations of flights are registered in Depart
and Destination columns, as well as the date and hour of
departure Date and the number of hours the flight will take
Hours. Notice that we can have as many entries for pilots
(planes, respectively) as we need just by adding one row per
pilot (and 4 columns per plane). An example of the way we
read this table is as follows:

pilot pl1 flew plane N2342 from OPO to NAT on December
12th, 2010, 14:00 hours and the flight took 7 hours.

The ClassSheet model illustrated in the right-hand side of
Figure 3 abstracts, in a very straightforward way, the data
instance that we have just described. The two bottom blocks of
cells represent the same ClassSheet that we have shown before
for pilots and planes. The top block may expand both vertically
and horizontally as indicated by the ellipses. The vertical
expansion is necessary to add more pilots; the horizontal is
used to add more planes.

The colors in the model are used to distinguish the different
entities represented, namely, pilots, planes, references to pilots
in the scheduling table, reference to planes in the scheduling
table and the flight scheduling itself.

The ClassSheet presented in the right-hand side of Figure
3 looks very much like the visual representation introduced in
[2] (see, for example, Figure 7 of that paper). However, like

in any other embedding of a DSL in a host language, we also
suffer here from some syntactic limitations: for example, when
horizontally expanding a ClassSheet model the corresponding
column identifier separators are not shown (for example, the
vertical bar between columns B and C). Due to the before
mentioned host language restrictions, we have no way of doing
this in our embedding.

D. Generating Spreadsheets from ClassSheet Models

The previously described models can be translated into ini-
tial spreadsheets together with tailor-made versions of update
operations. These operations are defined to perform the tasks
of insertion or deletion in such a way that the spreadsheet
correctness is always preserved. The model presented in the
right-hand side of Figure 3 can be used to generate the
spreadsheet in left-hand side of Figure 3 (this spreadsheet has
already been edited after the initial generation). The initial
spreadsheet will contain the labels in bold on the model, the
initial formulas and buttons to add new vertical or horizontal
blocks of cells. For example, in the Pilots table, there is a
button on row 13 which will insert a new row. The values that
will appear in the new row are the default values defined in the
model and the user can only update them to a value of the same
type (string, integer, etc.). A more complex example is to add a
new flight which is a relationship between a pilot and a plane,
plus some more information. If the user clicks on the button
in row 6, the system will add a new row as explained before,
but in this case it will also update the necessary formulas: it
will update the formulas in cells E7, I7 and K7 to include the
new added row. This mechanism, also used in the Gencel [4]
framework, prevents the user from editing the spreadsheet
without correctly updating its formulas, and therefore from
corrupting it. The button in column J works in a similar way,
updating the formulas in cells K4 and K5.

3

III. EVOLUTION RULES

One key advantage of using a model-driven software de-
velopment process is the ability to interact both with the
model (a ClassSheet in our case) and its instance (i.e., the
spreadsheet data). This is usually a complex task because the
model and the instances need to be synchronized! In this
section we present a set of co-evolution rules common in
spreadsheets. Such rules define evolution steps for ClassSheet
models and their instances and they guarantee synchronization.
These rules are specified using data refinement theory which
provides an algebraic framework for calculating with data
types and corresponding values [6]–[8]. It consists of type-
level coupled with value-level transformations. The type-level
transformations deal with the evolution of the model and
the value-level transformations deal with the instances of the
model (e.g. values). The next diagram, where A and A′ are
the original and the transformed representations of a data type,
respectively, depicts the general scenario of a transformation
in this framework:

A

to

''
6 A′

from

gg

Each transformation is coupled with a witness injective func-
tion to, also called forward transformation, of type A → A′

and a witness surjective function from, also called backward
transformation, of type A′ → A. These functions are respon-
sible for converting values of type A into type A′ and back.
If a refinement works in both directions, that is, if A 6 A′

and A′ 6 A, then we have an isomorphism, and we say that
A ∼= A′.

A common example of a refinement [9] shows that finite
maps are the implementation for lists: finite maps from natural
numbers to some type A, N ⇀ A, are the implementation of
lists of that type, A?:

A?

seq2index

**
6 N ⇀ A

list

hh

Function seq2index creates a finite map where the keys are
the indexes of the elements of the list. Function list collects
the elements in the map. For example,

seq2index [’a’,’z’] = {1 7→ ’a’, 2 7→ ’z’}
list {1 7→ ’a’, 2 7→ ’z’} = [’a’,’z’]

The Two Level Transformation (2LT)3 framework is a
HASKELL implementation of this data refinement theory [9]–
[11]. It provides the basic combinators to define and compose
transformations for data types and witness functions. Since
2LT is statically typed, transformations are guaranteed to
be type-safe ensuring consistency of data types and data

3Available at http://code.google.com/p/2lt.

instances. Frameworks like 2LT are considered bidirectional
transformation systems [12], [13].

In previous works we have designed an appropriate rep-
resentation of spreadsheet models, including the fundamental
notions of formula and references [14], [15]. For these models
and their instances, we have designed coupled transformation
rules that cover specific spreadsheet evolution steps, such as
the insertion of columns in all occurrences of a repeated block
of cells. Each model-level transformation rule is coupled with
instance level migration rules from the source to the target
model and vice versa. These coupled rules can be composed to
create compound transformations at the model level inducing
compound transformations at the instance level. This approach
guarantees safe evolution of spreadsheets even when models
change.

The rules presented in [14], [15] guarantee that forward
transformations fully preserve data information. This is, how-
ever, not the case for backward transformations. For example,
the transformation to insert a column in a spreadsheet is a
forward step with the corresponding backward step being the
removal of that column. This backward step being applied
will permanently delete the respective column, with all its
information being lost. Information is lost due to the fact that
data refinements need not be isomorphisms. In this paper, we
consider data refinements that are, in fact, isomorphisms: we
guarantee that data is never lost, either in forward or backward
transformations. This ability will allow us to fully do and undo
any transformation, in either direction.

The rules are divided into three categories: combinators,
used as helper rules, semantic rules, intended to change
the model itself (e.g. add a new column), and layout rules,
designed to change the visual arrangement of the spreadsheet
(e.g. swap two columns).

A. Combinator Rules

The first set of rules, combinators, include rules such as
after , which means “apply the argument rule after the argu-
ment label”. These combinators receive a rule as an argument
and apply it in a specific place of the model, and thus, they
are refinements or isomorphisms if the argument rule is a
refinement or an isomorphism.

B. Semantic Rules

In previous versions of our evolution rules [14], [15], the
ones classified as semantic are refinements only, since their
backward transformation loses information. To avoid this, we
now redefine them as new rules that do not lose data, that is,
as isomorphisms.

a) Insert a column: A column is defined as three verti-
cally aligned cells: the first with the label, the next with the
definition of its rows and the last with the ellipsis indicating
that more rows can be added. Figure 4 represents such a model
in column A. Formally, a column is defined as (ϕˆa = f)↓,
where ϕ is the label,ˆmeans that it is a vertical composition
and a = f is the definition of the rows, that is, a field
named a and with definition f , which can be a plain value

4

or a spreadsheet formula. The diagram shown next formally
represents this rule:

∼=

(π1 ◦ π1 × π1 ◦ π2)�((pnt "removedCol")�(π2 ◦ π1 × π2 ◦ π2))

((π1 ◦ π1)�(pnt ϕ�))�((π2 ◦ π1)�(pnt (a� = f �)))

(ϕ ˆ

a = f)↓
|”removedCol” :(ϕ� ˆ

a� = f �)↓
�

(ϕ � ϕ� ˆ

a =f � a� = f �)↓

Note that the column definition, (ϕˆa = f)↓, is broken in two
lines so it looks more like it will be in the spreadsheet. The
right-hand side of the rule is defined by an existing column on
which right-hand side will be placed the newly added column,
defined as (ϕ′ ˆ a ′ = f ′)↓. The left-hand side of the rule is
defined by the existing column on which right-hand side will
be placed a new sheet containing the removed column. An
explanation of to and from can be found in [14].

To apply the rule from the left to the right (add the column)
it seems necessary to have already the column we want to add,
but, in fact, this is not true: only its type is needed. When the
function to migrate the data is applied, it never uses that part
of the data, and thus, it does not need to exist. This rule is
visually represented in Figure 4:

Sheet 1
Sheet 0

New Sheet 1

Fig. 4: Adding/removing a column visually.

Sheet 1 represents the original spreadsheet with an existing
column which is transformed in New Sheet 1 when applied
the forward transformation. Applying the backward function,
we get the original spreadsheet, Sheet 1, and a new sheet
containing the removed column, Sheet 0. When applying the
forward function Sheet 0 is not used, and thus, not necessary
to exist at that point in time. The instantiation of this rule in
our example is shown in Figure 5:

Sheet 1
New Sheet 1Sheet 0

Forward transformation

Backward transformation

Fig. 5: Bidirectional transformation: add/remove a column.

The forward transformation, that is, to add a new column is
available in the spreadsheet environment as the button Col+

(e.g., right-hand part of Figure 3) while the backward function,
that is, to remove a column, in the Col- button. If the button
to add a column is pressed, the environment will ask the user
for a label and for a field name and a default value, as well as
an existing column label after which it should place the new
column. This information is sent to the HASKELL back-end
which will return the new model so the front-end changes the
exiting one.

This rule prevents the removed column from being lost,
which, in principle, would allow us to recover it, but this is
not possible using this rule. Remember that it uses external
input to create the new column. We will now present a new
rule that allows this recovery.

b) Recover a deleted column: The rule to recover a
deleted column is similar to the previous one, but it does not
need external information, that is, the label and row definition.
The next diagram formalizes such rule:

∼=

(π1 ◦ π1 × π1 ◦ π2)�((pnt "removedCol")�(π2 ◦ π1 × π2 ◦ π2))

(ϕ ˆ

a = f)↓
|”removedCol” :(ϕ� ˆ

a� = f �)↓
�

(ϕ � ϕ� ˆ

a =f � a� = f �)↓

(π1 ◦ π1 × π1 ◦ π2)�(π2 ◦ π1 × π2 ◦ π2)

In fact, the only change from one to the other is the to
function: to recover an existing column, no external input
is needed; instead, the extra (deleted) column is used. The
backward transformation removes the column and stores it
again is an auxiliary place.

Although these rules are very similar, to the end user using
the advanced spreadsheet system, they are quite different.
When using the first, the user intends to add or remove a
column; when using the second, the user wants to recover a
previous existing and deleted row. In fact, the user can only
use the second rule after using the first; obversely one can
only recover something after deleting it.

c) Other rules: In [14], [15] we have introduced a
full catalog of spreadsheet evolution refinement rules. The
catalog includes rules such as make it expandable that makes
a block of cells expandable (horizontally or vertically), and
split that moves a column to a new place and replaces it
by references to the new locations. Their full definitions and
HASKELL implementations can be found in [15]. Because such
definitions are not needed to understand our techniques, we
omit them here.

C. Layout Rules

As the name suggests, layout rules are intended to change
the arrangement of spreadsheets only, and not to add or
remove any particular information. This set of rules includes
evolution steps for changing the orientation of a spreadsheet
from vertical to horizontal or to rearrange cells according to
some conventions, for example. These rules have already been
defined as isomorphisms in our previous work, and thus, they
can be used directly in our embedding.

5

IV. MODEL-DRIVEN SPREADSHEET PROGRAMMING

Having defined an embedding of the ClassSheet model in
a spreadsheet system, we present now the global architec-
ture of our model driven spreadsheet environment. In this
environment, end users can interact both with the ClassSheet
model and the spreadsheet data. Our techniques guarantee the
synchronization of the two representations. In this setting, the
spreadsheets consists of two sheets: Sheet 0, containing the
embedded ClassSheet model and Sheet 1, containing the
spreadsheet data that conform to the model. We have defined
an add-on to a widely used spreadsheet system, the OpenOf-
fice.org system, so that end users can evolve their models by
using predefined buttons in the spreadsheet environment (see
Figure 4). For each button, we defined a OpenOffice.org BASIC
script that interprets the desired functionality, and send the
contents of the spreadsheet (both the model and the data) to
the HaExcel framework [15]. The HaExcel framework was
developed in HASKELL, and implements the co-evolution of
the spreadsheet models and data. The global architecture of
the tool we developed is presented in Figure 6.

Sync

OOBasic sends sheet
0 (model) to the

HaExcel back-end

Button pressed

Haskell CS
data type

Application of
evolution rule chosen

by the end user

New Haskell
CS data type

Forward and
backward

transformations

New Haskell
spreadsheet

representation

OOBasic sends sheet
1 (data) to HaExcel

the back-end

Haskell
spreadsheet

representation

Sync

Application of the
forward/backward

tansformation

Sheet 0Sheet 1

Sheet 0Sheet 1

Sync

Sync

From the model we can
generate a template

Fig. 6: Spreadsheet model-driven environment.

In this environment end users can build the ClassSheet from
scratch using the provided buttons. However, we consider also
the inference of the model from the spreadsheet data [16].
This is particularly important when we are considering legacy
spreadsheets. Moreover, the generated refactored spreadsheet
includes some business logic rules (expressed as spreadsheet
formulas) that assist end users in the safe and correct intro-
duction/edition of data. For example, in the column with label
Flight Hours in Figure 3, the user can only introduce integers.

The interdependencies between spreadsheet data can be
captured by a powerful mechanism called functional depen-
dencies, a concept from relational databases theory describing
the relationship between attributes of a table [17]. From the
set of functional dependencies inferred before, we can devise
a ClassSheet model, as we explain in detail in [16].

V. EVOLUTION

In this section we illustrate with examples the evolution op-
erations available in our tool. Starting with a pair (spreadsheet,
model) like the one in Figure 3, the user can perform several
actions to modify both the spreadsheet and the model.

For example, clicking the button that occupies spreadsheet’s
line 6 in its entirety causes an evolution on the spreadsheet
itself: a new row is inserted. The new row is available where
the button used to be, the button is shifted one line down
and the formulas defined in cells E7 and I7 (Figure 3a) are
updated: their new value is calculated also with the values
in cells E6 and I6, which the use may insert (together with
any other cell value in line 6). We can see the result of this
operation in Figure 7, with a new row for pilot pl3 (flying plane
N341); the model remains the original one since the change
operated leads to no structural change on the spreadsheet.

It is also possible to evolve the model, so that changes to
the structure of the spreadsheet instance can be performed. A
simple change that can be made is the addition of the date
a plane was mechanically inspected by the last time. To do
that, the user has to select the Planes class in the model and
add a new row by clicking the Row+ button given by our
tool. Given the new row the name Inspected, we obtain the
model presented in Figure 8. We can see a new expandable row
(17), with a label and a data cell inspected with default value
2000-01-01. The spreadsheet instance is then synchronized
automatically in order to comply with the model: a new row
is added to the planes table and the data cells have their value
set to the default one as defined in the model.

The evolution operations describe so far are quite simple
but more complex ones can be performed. For example, in
Figure 9, we can see the result of inserting a new column
N-Passengers in the table Flights from the model in Figure 8.
The new column has an expandable cell passengers with
default value 0. This modification is straightforward at the
model level, but its propagation to the spreadsheet requires the
addition of the a column to each group of column expansions,
and the formulas to be updated to reference the correct cells.
The spreadsheet instance in Figure 9 differs from the one in

6

Fig. 7: Evolution – addition of a row to the flights in the spreadsheet.

Fig. 8: Evolution – addition of a row in the planes table of the model.

Fig. 9: Evolution – addition of a column in the flights table of the model.

7

Figure 8 in that a column N-Passengers, with values set to 0,
was added after every Hours column.

VI. RELATED WORK

Ko et al. [18] summarize and classify the research chal-
lenges of the end-user software engineering area. This include
requirements gathering, design, specification, reuse, testing
and debugging. However, besides the importance of Lehman’s
laws of software evolution [19], very little is stated with
respect to spreadsheet evolution. Spreadsheet evolution poses
challenges not only in the evolution of the underlying model,
but also in the migration of the spreadsheet values and the used
formulæ. Nevertheless, many of the transformations applied
within spreadsheets originate in works aiming at spreadsheet
generation.

Engels et al. [20] propose a first attempt to solve the
problem of spreadsheet evolution. ClassSheets are used to
specify the spreadsheet model and transformation rules are
defined to enable model evolution. These model transforma-
tions are propagated to the model instances (spreadsheets)
through a second set of rules which update the spreadsheet
values. The authors present a set of rules and a prototype tool
to support these changes. In this paper we present a more
advanced way to evolve spreadsheet models and instances
in a different way: first, we use strategic programming [21]
with two-level coupled transformation. This enables type-safe
transformations, offering guarantee that in any step semantics
is preserved. Also, the use of 2LT not only gives us the data
migration for free but it also allows back portability, that is, it
allows the migration of data from the new model back to the
old one. Moreover, we reuse the spreadsheet environment so
the user does not need to learn a new tool/environment.

Vermolen and Visser [22] proposed a different approach
for coupled evolution of data model and data. From a data
model definition, they generate a domain specific language
(DSL) which supports the basic transformations and allows
data model and data evolution. The interpreter for the DSL
is automatically generated making this approach operational.
In principle, this method could also be used for spreadsheet
evolution. However, while their approach is tailored for for-
ward evolution, our own supports reverse engineering, that
is, it supports automatic transformation and migration from a
newer model to an older one.

VII. CONCLUSIONS

In this paper, we have presented techniques and a tool
for providing a model-driven engineering software develop-
ment for spreadsheet programming. We have presented the
embedding of a domain specific model representation in a
widely used spreadsheet system. We have also presented
techniques to perform co-evolution of the ClassSheet model
and spreadsheet data. We have developed an extension for a
widely used spreadsheet system where such embeddings and
co-evolution rules are available. As future work, we plan to
assess the impact of this approach on end user productivity by
performing an usability study.

Acknowledgements

This work is part-funded by National Funds through the
FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project PEst-
OE/EEI/UI0752/2011 and by ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124- FEDER-010048. This work was
also supported by Fundação para a Ciência e a Tecnologia with
grants SFRH/BD/30231/2006 and SFRH/BPD/46987/2008.

REFERENCES

[1] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual spec-
ifications of correct spreadsheets,” in VLHCC ’05: Procs. of the 2005
IEEE Symposium on Visual Languages and Human-Centric Computing.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 189–196.

[2] G. Engels and M. Erwig, “ClassSheets: Automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE ’05: 20th
IEEE/ACM Int. Conf. on Automated Software Engineering. NY, USA:
ACM, 2005, pp. 124–133.

[3] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically extracting
class diagrams from spreadsheets,” in ECOOP ’10: Proceedings of the
24th European Conference on Object-Oriented Programming. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 52–75.

[4] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger, “Au-
tomatic generation and maintenance of correct spreadsheets,” in ICSE
’05: Proceedings of the 27th International Conference on Software
Engineering. New York, NY, USA: ACM, 2005, pp. 136–145.

[5] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[6] C. Morgan and P. H. B. Gardiner, “Data refinement by calculation,”
Acta Informatica, vol. 27, pp. 481–503, January 1990.

[7] J. N. Oliveira, “A reification calculus for model-oriented software
specification,” Formal Aspects of Computing, vol. 2, no. 1, pp. 1–23,
1990.

[8] J. N. Oliveira, “Transforming data by calculation,” in GTTSE 2007, ser.
Lecture Notes in Computer Science, R. Lämmel, J. Visser, and J. Saraiva,
Eds., vol. 5235. Springer, 2008, pp. 134–195.

[9] A. Cunha, J. N. Oliveira, and J. Visser, “Type-safe two-level data
transformation,” in Proceedings of the 14th International Symposium
on Formal Methods Europe, ser. LNCS, J. Misra et al., Eds., vol. 4085.
Springer, 2006, pp. 284–299.

[10] T. L. Alves, P. F. Silva, and J. Visser, “Constraint-aware Schema
Transformation,” in The Ninth International Workshop on Rule-Based
Programming, 2008.

[11] A. Cunha and J. Visser, “Strongly typed rewriting for coupled software
transformation,” Electronic Notes on Theoretical Computer Science,
vol. 174, pp. 17–34, April 2007.

[12] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger, “Bidirectional transformations: A cross-discipline perspective,”
in ICMT ’09: Proc. of the 2nd Int. Conf. on Theory and Practice of
Model Transformations. Berlin: Springer, 2009, pp. 260–283.

[13] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt,
“Boomerang: resourceful lenses for string data,” in POPL ’08: 35th
annual ACM Symposium on Principles of Programming Languages.
New York, NY, USA: ACM, 2008, pp. 407–419.

[14] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution of
spreadsheets,” in FASE’11: Procs. of the 13th Int. Conf. on Fundamental
Approaches to Software Engineering. Springer, 2011, pp. 186–201.

[15] J. Cunha, “Model-based spreadsheet engineering,” Ph.D. dissertation,
University of Minho, March 2011.

[16] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring ClassSheet
models from spreadsheets,” in VLHCC ’10: Proceedings of the 2010
IEEE Symposium on Visual Languages and Human-Centric Computing.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 93–100.

8

[17] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in PEPM ’09: Proceedings of the 2009 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
New York, NY, USA: ACM, 2009, pp. 179–188.

[18] A. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Er-
wig, C. Scaffidi, J. Lawrence, H. Lieberman, B. Myers, M. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of the art in
end-user software engineering,” Journal ACM Computing Surveys, 2009.

[19] M. M. Lehman, “Laws of software evolution revisited,” in EWSPT
’96: Proceedings of the 5th European Workshop on Software Process
Technology. London, UK: Springer-Verlag, 1996, pp. 108–124.

[20] M. Luckey, M. Erwig, and G. Engels, “Systematic evolution of typed
(model-based) spreadsheet applications,” submitted for publication.

[21] E. Visser, “A survey of strategies in rule-based program transformation
systems,” J. of Symbolic Computation, vol. 40, pp. 831–873, 2005.

[22] S. D. Vermolen and E. Visser, “Heterogeneous coupled evolution of
software languages,” in 11th Int. Conf. on Model Driven Engineering
Languages and Systems, ser. LNCS, K. Czarnecki, I. Ober, J.-M. Bruel,
A. Uhl, and M. Völter, Eds., vol. 5301. Springer, 2008, pp. 630–644.

9

