
Discovery-based Edit Assistance for Spreadsheets

Jácome Cunha, João Saraiva
Departamento de Informática

Universidade do Minho
Portugal

{jacome,jas}@di.uminho.pt

Joost Visser
Software Improvement Group

The Netherlands
j.visser@sig.nl

Abstract

Spreadsheets can be viewed as a highly flexible end-
users programming environment which enjoys wide-spread
adoption. But spreadsheets lack many of the structured pro-
gramming concepts of regular programming paradigms. In
particular, the lack of data structures in spreadsheets may
lead spreadsheet users to cause redundancy, loss, or cor-
ruption of data during edit actions.

In this paper, we demonstrate how implicit structural
properties of spreadsheet data can be exploited to offer edit
assistance to spreadsheet users. Our approach is based
on the discovery of functional dependencies among data
items which allow automatic reconstruction of a relational
database schema. From this schema, new formulas and vi-
sual objects are embedded into the spreadsheet to offer fea-
tures for auto-completion, guarded deletion, and controlled
insertion. Schema discovery and spreadsheet enhancement
are carried out automatically in the background and do not
disturb normal user experience.

1. Introduction

Recent advances in programing languages extend naive
editors, to powerful language-based environments [12, 13,
15, 17]. Language-based environments use knowledge of
the programming language to provide the users with more
powerful mechanisms to develop their programs. This
knowledge is based on the structure and the meaning of the
language. To be more precise, it is based on the syntactic
and (static) semantic characteristics of the language. Hav-
ing this knowledge about a language, the language-based
environment is not only able to highlight keywords and
beautify programs, but it can also detect features of the pro-
grams being edited that, for example, violate the proper-
ties of the underlying language. Furthermore, a language-
based environment may also give information to the user
about properties of the program under consideration. Con-

sequently, language-based environments guide the user in
writing correct programs.

Spreadsheet systems can be viewed as programming en-
vironments for non-professional programmers. In this pa-
per, we propose a technique to enhance a spreadsheet sys-
tem with mechanisms to guide end-users to introduce cor-
rect data. An overview of the approach is shown in Figure 1.
A background process adds formulas and visual objects

User

Relational
Database
Schema

Dependency mining
and schema synthesis

Embed schema as
formulas and visual objects

Figure 1. Edit assistance is added to an
existing spreadsheet based on a relational
database schema obtained by data mining.

to an existing spreadsheet, based on a relational database
schema. To obtain this schema, we follow the approach
used in language-based environments: we use the knowl-
edge about the data already existing in the spreadsheet to
guide end-users to introduce correct data. The knowledge
about the spreadsheet under consideration is based on the
meaning of its data that we infer by using data mining and
database normalization techniques.

Data mining techniques are used to infer functional de-
pendencies from the spreadsheet data. These functional
dependencies define how some spreadsheet columns deter-
mine the values of other columns. Database normalization
techniques, namely the use of normal forms [5], are used to
eliminate redundant functional dependencies induced by the
data mining techniques, and to define a relational database
model. This model may include several tables, which may
contain primary keys: a column, or a set of columns, that
determine the value of other columns. Knowing the rela-
tional database model induced by the spreadsheet, we con-

Figure 2. A spreadsheet representing a property renting system.

struct a new spreadsheet environment that not only contains
the data of the original one, but that also includes advanced
features which provide information to the end-user about
correct data that can be introduced.

We consider three types of advanced features: auto-
completion of column values, where by writing or select-
ing from a combo box the value of an existing primary key,
the values of the columns that depend on that primary key
are automatically filled in with the correspondent values.
The non-editable columns feature prevents the end-user of
editing columns that depend on a primary key value. Note
that, such columns are automatically filled in by selecting
a primary key. By using the auto-completion feature the
spreadsheet system guarantees that the end-user does not
introduce data that violates the relational model inferred.
The safe deletion of rows feature warns if by deleting a se-
lected row some critical information is lost. Like in modern
programming language environment, the refactored spread-
sheet system also offers the possibility of using traditional
editing, that is, the introduction of data by editing each
of the columns. When using traditional editing the end-
user is able to introduce data that may violate the relational
database model inferred from the previous spreadsheet data.
The spreadsheet environment includes a mechanism to re-
calculate the relational database model after traditional edit-
ing. This new relational model is used to guide the end-user
in future non-standard editing of the spreadsheet.

This paper is organized as follows: Section 2 presents
a motivating example used throughout the paper. Sec-
tion 3 discusses how to embed modern programming envi-
ronments in spreadsheet. Section 4 discusses related work
and Section 5 concludes the paper.

2. Motivating Example

In order to present our approach we shall consider the
following well-known example taken from [6] and modeled
in a spreadsheet as shown in Figure 2.

This sheet stores information about a housing renting
system, gathering information about clients, owners and
properties. It also stores prices and dates of renting. The
name of each column gives a clear idea of the information
it represents. We extend this example with two additional
columns, named days (that computes the number of days of

renting by subtracting the column rentFinish to rentStart)
and total (that multiplies the number of days of renting by
the rent per day value, rent). As usually in spreadsheets,
these columns are expressed by formulas.

This spreadsheet defines a valid model to represent the
information of the renting system, however, it contains re-
dundant information. For example, the displayed data spec-
ifies the house renting of two clients (and owners) only, but
their names are included 5 times. This kind of redundancy
makes the maintenance and update of the spreadsheet com-
plex and error-prone. A mistake is easily made, for example
by mistyping a name and thus corrupting the data.

Two common problems exist in redundant data: Update
Anomalies and Deletion Anomalies [16]. The former prob-
lem occurs when we change information in one place but
leave the same information unchanged in the other places.
The problem also occurs if the update in not performed ex-
actly in the same way. In our example, this may happen if
we change the rent per day of property number pg4 from
50 to 60. The latter problem happens when we delete some
tuple and we lose other information as a side effect. For ex-
ample, if we delete row 5 in the original spreadsheet all the
information concerning property pg36 is eliminated.

The database community has developed techniques, such
as data normalization, to eliminate such redundancy and
improve data integrity [8, 16]. Database normalization is
based on the detection and exploitation of functional de-
pendencies inherent in the data [4]. Can we leverage these
database techniques for spreadsheets systems so that the
system eliminates the update and deletion anomalies by
guiding the end-user introducing correct data? Based on the
data in our example spreadsheet, we would like to discover
the following functional dependencies which represent the
four entities involved in our house renting system: clients,
owners, properties and the renting action itself.

A functional dependency A ⇀ B means that if we have
two equal inhabitants of A, then the corresponding inhab-
itants of B are also equal. For instance, the client number
functionally determines his/her name, since no two clients
have the same number. Spreadsheet formulas can induce
functional dependencies too [7].

Using these functional dependencies it is possible to con-
struct a relational database schema. Each functional de-
pendency is translated into a table where the attributes are

Figure 3. A spreadsheet with auto completion based on relational tables.

the ones participating in the functional dependency and the
primary key is the left hand side of the functional depen-
dency. In some cases, foreign keys can be inferred from
the schema. The relational database schema can be normal-
ized in order to eliminate redundancy. A possible normal-
ized relational database schema created to the house renting
spreadsheet is presented below.

clientNo, cName
ownerNo, oName
propNo, pAddress, rent , ownerNo
clientNo, propNo, rentStart , rentFinish, total , days

Having defined a relational database schema we would like
to construct a spreadsheet environment that respects that
schema. For example, this spreadsheet would not allow
the user to introduce two different properties with the same
code number propNo. Instead, we would like that the
spreadsheet offers to the user a list of possible properties,
such that he can choose the value to fill in the cell. Figure 4
shows a possible spreadsheet environment where possible
properties can be chosen from a combo box.

Figure 4. Selecting possible values of
columns using a combo box.

Using the relational data base schema we would like that
our house renting spreadsheet offers the following features:
auto-completion of column values; no editable columns;
safe deletion of rows; traditional editing and re-calculation
of the relational database model.

In this section we have described an instance of our tech-
niques. In fact, the spreadsheet programming environment
shown in the Figures 3 and 4 was automatically produced
from the original spreadsheet displayed in Figure 2. In the

following sections we will present in detail the technique to
perform such an automatic spreadsheet refactoring.

3. Spreadsheet Programming Environment

This section presents techniques to refactor spreadsheets
into powerful spreadsheet programming environments as
described in Section 2.

The functional dependencies and the relational database
model induced by the spreadsheet data are the build-
ing block techniques for such refactoring. The (bidi-
rectional) mapping between spreadsheets and a relational
database model is presented in [7] and it was used to refac-
tor/normalize several spreadsheets included in the EUSES
spreadsheet corpus [11]. In this paper, we describe how to
embed the derived relational database model in the spread-
sheet in order to define a powerful spreadsheet system. The
embedding is modeled in the spreadsheet itself by stan-
dard formulas and visual objects: additional formulas are
included in the spreadsheet to guide the user introducing
correct data.

Before we present how this embedding is defined for
each of the advanced features we consider, let us first de-
fine a spreadsheet. A spreadsheet can be seen as a partial
function S : A → V mapping addresses to spreadsheet val-
ues. Elements of S are called cells and are represented as
(a, v). A cell address is taken from the set A = N × N.
A value v ∈ V can be an input plain value c ∈ C like a
string or a number, references to other cells using addresses
a ∈ A, or formulas f ∈ F that can be applied to one or
more values: v ∈ V ::= c | a | f(v, . . . , v).

Auto Completion: This feature is implemented by embed-
ding each of the relational tables in the spreadsheet. This
embedding is implemented by a spreadsheet formula and a
combo box visual object. The combo box displays the pos-
sible values of one column, associated to the primary key of
the table, while the formula is used to automatically fill in
the values of the columns determined by the primary key.

Let us consider the table schema ownerNo, oName
from our running example. In the spreadsheet, ownerNo
is in column J while oName is in column K. This table is
embedded in the spreadsheet introducing a combo box con-
taining the existing values in the column J (as displayed in

Figure 4). Knowing the value in the column J we can au-
tomatically define the value in column K. To achieve this,
we introduce in row 7 of column K the following formula
S (K , 7) = if (isna (vlookup (J7 , J2 : K6 , 2, 0)),

"", vlookup (J7 , J2 : K6 , 2, 0))
This formula uses a (library) function isna to test if there is
a value introduced in column J . In case that a value exists,
it searches (using the function vlookup) the corresponding
value in the column K and references it. If there is no se-
lected value, it outputs the empty string. The combination
of the combo box and this formula guides the user to intro-
duce correct data as illustrated in Figure 3.

Note that this formula considers tables with primary keys
consisting of multiple attributes (columns). Note also that
the formula is defined in each column associated to non-key
attribute values.

Foreign keys1 pointing to primary keys become very
helpful in this setting. Consider, for example, two relational
table schemas A,B and B ,C where B is a foreign key from
the second table to the first one. When we perform auto
completion in column A, then both B and C are automati-
cally filled in. This was the case presented in Figure 3.
No Editing: To prevent the introduction of incorrect
data and, thus, producing update anomalies, we protect
some columns from edition. Thus, the relational table
s, ..., t , u, ..., v induces the non-edition of columns u, ..., v .

That is to say that columns that form a table but are not
part of its primary key are not editable.

In case the end-user needs to change the value of such
protected columns, then we provide traditional editing as
described in one of the next features.
Safe Deletion: Another usual problem with non-
normalized data is the deletion problem. Suppose in our
running example that row 5 is deleted. All the information
concerning property pg36 will be lost (although probably
the end-user only wanted to delete the transaction itself).

To correctly delete rows in the spreadsheet, a button is
added to each row in the spreadsheet, as follows: For each
relational table s, ..., t , u, ..., v each button checks, on its
corresponding row, the columns that are part of the primary
key, s, ..., t . For each key column, it verifies if the value
that is being removed is the last one proceeding, as follows:
Let c ∈ {s, ..., t}, r be the button row, r1 be the first row of
column c with data and rn be the last row of column c with
data. The test is defined using the following formula:
if (isLast ((c, r), (c, r1) : (c, rn)),

showMessage, deleteRow (r))
If the value is the last one, the spreadsheet warns the user,
showMessage. In the case the value is not the last one, the
row will be removed, deleteRow (r).

1A Foreign Key is a set of attributes within one relation that matches
the primary key of some relation.

For example, in column propNo of our running exam-
ple, the row 5 contains the only data about the house with
code pg36. If the user tries to delete such row, the warning
message will be triggered.

Traditional Editing: Programming language environments
provide both advanced editing mechanisms and traditional
ones (i.e., text editing). In a similar way, a spreadsheet
environment should allow the user to perform traditional
spreadsheet editing too. Thus, the environment should pro-
vide a mechanism to enable/disable the advanced features
described in this section. When advanced features are dis-
abled, then the end-user would be able to introduce data that
violates the (previously) inferred relational model. How-
ever, when the end user returns to advance editing, then the
spreadsheet should infer a new relational model that will be
used in future (advanced) interactions.

HaExcel Add-in: We have implemented the FUN and the
synthesize algorithms, and the embedding of the re-
lational model in the HASKELL [14] programming lan-
guage. We have also defined the bi-directional mapping
from spreadsheet to relational databases in the same frame-
work named HaExcel. Finally, we have extended this
framework to produce the visual objects and formulas to
model the relational tables in the spreadsheet. An Excel
add-in has been also constructed so that the end-user can
use spreadsheets in this popular system and at the same time
our advanced features.

4. Related Work

Our work is strongly related to a series of techniques by
Abraham et al.. Firstly, they designed and implemented an
algorithm that uses the labels within a spreadsheet for unit
checking [1, 10]. By typing the cells in a spreadsheet with
unit information and tracking them through references and
formulas, various types of users errors can be caught. We
have adopted the view of Abraham et al. of a spreadsheet
as a collection of tables and we have reused their algorithm
for identifying the spatial boundaries of these tables. Rather
than exploiting the labels in the spreadsheet to reconstruct
implicit user intentions, we exploit redundancies in data el-
ements. Consequently, the errors caught by our approach
are of a different kind.

Secondly, Abraham et al. developed a type system and
corresponding inference algorithm that assigns types to val-
ues, cells, formulas, and entire spreadsheets [3]. The type
system can be used to catch errors in existing spreadsheets
or to infer models for spreadsheets that can help to prevent
future errors. These models are condensed representations
of areas of repeating types. These models are not relational
database models, as in our approach, but similar to collec-
tion types (e.g. lists) in regular programming.

Thirdly, Abraham et al. developed a tool for generating
spreadsheets from spreadsheet specifications (models) [9].
Generated spreadsheets are guaranteed to be free of ref-
erence, range, or type errors. This implies a significant
departure of normal spreadsheet usage, where domain ex-
perts create spreadsheet specifications and others use these
to generate spreadsheets. A system has also been developed
to extract specifications from existing spreadsheets [2]. Our
approach does not require such a paradigm shift. The in-
ferred model is present in the background only, of a familiar
spreadsheet environment enhanced with features for com-
pletion, protection, and insertion of data.

5. Conclusions

We have demonstrated how implicit structural properties
of spreadsheet data can be exploited to offer edit assistance
to spreadsheet users. To discover these properties, we have
made use of our previously developed approach for mining
functional dependencies from spreadsheets and subsequent
synthesis of a relational database schema [7]. On this basis,
we have made the following contributions:

• Derivation of formulas and visual elements that cap-
ture the knowledge encoded in the reconstructed rela-
tional database schema.

• Embedding of these formulas and visual elements into
the original spreadsheet in the form of features for
auto-completion, guarded deletion, and controlled in-
sertion.

• Integration of the algorithms for reconstruction of a
schema, for derivation of corresponding formulas and
visual elements, and for their embedding into a add-in
for spreadsheet environments.

A spreadsheet environment enhanced with our add-in
compensates to a significant extent for the lack of the struc-
tured programming concepts in spreadsheets. In particu-
lar, it assists users to prevent common update and deletion
anomalies during edit actions .

There are several extensions of our work that we would
like to explore. The algorithms running in the background
need to re-calculate the relational schema and the ensuing
formulas and visual elements every time new data is in-
serted. For larger spreadsheets, this recalculation may incur
waiting time for the user. Several optimizations of our al-
gorithms can be attempted to eliminate such waiting times.

Our approach could be integrated with complementary
approaches to cover a wider range of possible user errors. In
particular, the work of Abraham et al. [2, 3] for preventing
range, reference, and type errors could be combined with
our work for preventing data loss and inconsistency.

Acknowledgments The authors would like to thank Mar-
tin Erwig and his team for providing us the code from the
UCheck project.

References

[1] R. Abraham and M. Erwig. Header and unit inference for
spreadsheets through spatial analyses. Visual Languages
and Human Centric Computing, 2004 IEEE Symposium on,
pages 165–172, Sept. 2004.

[2] R. Abraham and M. Erwig. Inferring templates from spread-
sheets. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, pages 182–191, New
York, NY, USA, 2006. ACM.

[3] R. Abraham and M. Erwig. Type inference for spreadsheets.
In A. Bossi and M. J. Maher, editors, Proc. of the 8th Int.
ACM SIGPLAN Conf. on Principles and Practice of Declar-
ative Programming, Venice, Italy, pages 73–84. ACM, 2006.

[4] C. Beeri, R. Fagin, and J. Howard. A complete axiomatiza-
tion for functional and multivalued dependencies in database
relations. In Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 47–61, 1977.

[5] E. F. Codd. A relational model of data for large shared data
banks. Commun. ACM, 13(6):377–387, 1970.

[6] T. Connolly and C. Begg. Database Systems, A Practi-
cal Approach to Design, Implementation, and Management.
Addison-Wesley, 3 edition, 2002.

[7] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to re-
lational databases and back. In Proc. of the 2009 ACM SIG-
PLAN workshop on partial evaluation and program manip-
ulation, pages 179–188, New York, NY, USA, 2008. ACM.

[8] C. J. Date. An Introduction to Database Systems. Addison-
Wesley, 1995.

[9] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooper-
stein. Gencel: a program generator for correct spreadsheets.
J. Funct. Program, 16(3):293–325, 2006.

[10] M. Erwig and M. M. Burnett. Adding apples and oranges.
4th Int. Symp. on Practical Aspects of Declarative Lan-
guages, pages 173–191, 2002.

[11] M. Fisher II and G. Rothermel. The EUSES Spreadsheet
Corpus:A shared resource for supporting experimentation
with spreadsheet dependability mechanism. In 1st Work-
shop on End-User Software Engineering, pages 47–51, May
2005.

[12] S. Holzner. Eclipse. O’Reilly, May 2004.
[13] M. Kuiper and J. Saraiva. Lrc - A Generator for Incremental

Language-Oriented Tools. In K. Koskimies, editor, 7th In-
ternational Conference on Compiler Construction, volume
1383 of LNCS, pages 298–301. Springer-Verlag, April 1998.

[14] S. Peyton Jones. Haskell 98: Language and libraries. J.
Funct. Program., 13(1):1–255, 2003.

[15] T. Reps and T. Teitelbaum. The synthesizer generator. SIG-
SOFT Softw. Eng. Notes, 9(3):42–48, 1984.

[16] J. D. Ullman and J. Widom. A First Course in Database
Systems. Prentice Hall, 1997.

[17] M. van den Brand, P. Klint, and P. Olivier. Compilation and
Memory Management for ASF+SDF. In Stefan Jähnichen,
editor, 8th International Conference on Compiler Construc-
tion, volume 1575 of LNCS, pages 198–213, Mar. 1999.

