
Towards an Evaluation of Bidirectional Model-Driven Spreadsheets

Jácome Cunha∗, João Paulo Fernandes∗†, Jorge Mendes∗, João Saraiva∗
∗HASLab, INESC TEC & Universidade do Minho, Portugal

†Departamento de Engenharia Informática, Universidade do Porto, Portugal
{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt

Abstract—Spreadsheets are widely recognized as popular
programming systems with a huge number of spreadsheets
being created every day. Also, spreadsheets are often used in
the decision processes of profit-oriented companies. While this
illustrates their practical importance, studies have shown that
up to 90% of real-world spreadsheets contain errors.

In order to improve the productivity of spreadsheet end-
users, the software engineering community has proposed to
employ model-driven approaches to spreadsheet development.

In this paper we describe the evaluation of a bidirectional
model-driven spreadsheet environment. In this environment,
models and data instances are kept in conformity, even after
an update on any of these artifacts. We describe the issues of
an empirical study we plan to conduct, based on our previous
experience with end-user studies. Our goal is to assess if this
model-driven spreadsheet development framework does in fact
contribute to improve the productivity of spreadsheet users.

Keywords-Spreadsheets, Model-Driven Engineering, Soft-
ware Evolution, Embedded DSLs, Model Inference, Bidirec-
tional Transformations

I. INTRODUCTION

Spreadsheets are widely recognized as extremely popular
programming systems. Indeed, it is estimated that spread-
sheets are used by hundreds of millions of people who create
hundreds of millions of spreadsheets every year [1]. Also,
most of these spreadsheets will be used in the future in the
decision processes of profit-oriented companies [2]. While
strategies for spreadsheet correctness may effectively save
time and money, studies have shown that up to 90% of real-
world spreadsheets contain errors [3].

In an effort to increase the productivity of using spread-
sheets, the software-engineering community has acknowl-
edged the need for model-driven spreadsheet development
(MDSD). This approach highly resembles the way a civil
engineer thinks of a house: first, a model is defined and
thoroughly evolved, and only then a house is actually built.

For spreadsheets, the motivation of thinking at a higher
abstraction degree lead to the development of spreadsheet
modeling languages, one of the most widely accepted be-
ing the CLASSSHEET language [4]. Using CLASSSHEETS,

This work is funded by the ERDF through the Programme COM-
PETE and by the Portuguese Government through FCT - Founda-
tion for Science and Technology, project refs. PTDC/EIA-CCO/108613/
2008 and PTDC/EIA-CCO/120838/2010. The three first authors were
funded by FCT grants SFRH/BPD/73358/2010, SFRH/BPD/46987/2008
and BI4-2011PTDC/EIA-CCO/108613/2008, respectively.

MDSD starts with the definition of a CLASSSHEET model,
from which a concrete spreadsheet instance is derived. With
respect to civil engineering, however, we want model and
instance evolution to be more dynamic. Indeed, we will
often want to change either the model or the corresponding
instance, while desirably both are kept synchronized.

In order to achieve a practical model-driven spreadsheet
environment, we have in the past proposed to embed CLASS-
SHEET models in spreadsheets themselves [5]. This feature
was further fully integrated in a widely used spreadsheet sys-
tem [6]. Our approach provided the first coherent and single
environment for creating and evolving spreadsheet models
while automatically obtaining conforming instances. Finally,
we have recently studied in a rigorous way spreadsheet
engineering in the reverse direction: we also allow for the
data instances to evolve manually, while the corresponding
models are automatically derived [7]. This is a feature that
is currently being integrated in the tool presented in [6].

Adding the pieces of our work together, we have imple-
mented in a spreadsheet system a bidirectional framework
for MDSD. Although we believe that this model-driven
approach can be beneficial in our context, this is a claim
that needs to be verified in practice. Indeed, even having
this approach proved successfully in other disciplines and
in other software engineering fields, we want to provide
empirical measurements of whether using models can in-
crease the efficiency and effectiveness associated with using
spreadsheets. This is precisely what we want to achieve by
running a detailed study with real spreadsheet users.

We plan to capitalize the insights that we have taken from
running previous usability studies with human users. Indeed,
we have in the past assessed the productivity differences that
arise from using different spreadsheet representations [8]:
we have considered refactoring traditional spreadsheets and
augmenting them with editing assistance features. Although
we had then the same goals that we now chase, the fact is
that all the different spreadsheet versions that we then tested
were at the data instance level, whereas now it is the use of
higher-level models that we believe can make a difference.

II. MDSHEET: A FRAMEWORK FOR MODEL-DRIVEN
SPREADSHEET ENGINEERING

In [5]–[7] we have introduced a framework for bidi-
rectional evolution of spreadsheets. We have developed an



(a) Budget spreadsheet model. (b) Budget spreadsheet instance.

Figure 1. Budget spreadsheet.

environment within a spreadsheet system allowing spread-
sheet modelling and editing to be performed in the same
framework. We have also implemented evolution steps on
the model level that automatically co-evolve the data. The
evolution of data and consequent co-evolution of the cor-
responding model was also developed. This guarantees that
models and instances are always synchronized. In the next
sections we explain this environment in more detail.

A. Spreadsheet Models

Erwig et al. [4] introduced the language of CLASSSHEETS
to model spreadsheets at a high abstraction degree, thus
allowing for spreadsheet reasoning to be performed at the
conceptual level. CLASSSHEETS have a visual representa-
tion very similar to spreadsheets themselves: in Figure 1a,
we present a possible model for a Budget spreadsheet, which
we adapted from [4].1

This model holds three classes where data is to be
inserted by end users: i) Year, with a default value of 2010,
for the budget to accommodate multi-year information, ii)
Category, for assigning a label to each expense and iii), a
relationship class where quantity and costs are registered.
The actual spreadsheet may hold several repetitions of any
of these elements, as indicated by the ellipsis. For each
expense we record its quantity and its cost (with 0 as default
value), and we calculate the total amount associated with it.
Finally, (simple) summation formulas are used to calculate
the global amount spent per year (cell D5), the amount spent
per expense type in all years (cell F3) and the total amount
spent in all years (cell F5) are also calculated.

Erwig et al. not only introduced CLASSSHEETS, but they
also developed a tool - the Gencel tool [9] - that given a
CLASSSHEET model generates an instance (i.e. a concrete
spreadsheet) that conforms to the model. Figure 1b presents
a possible spreadsheet as generated by Gencel given the
CLASSSHEET shown in Figure 1a (and after an end user
having manually introduced some data). In this particular
case, the spreadsheet is used to record the annual budget for
travel and accommodation expenses of an institution.

Since the spreadsheet is generated using all the informa-
tion in the model, it is able of providing some correctness
guarantees: formulas are kept consistent while new years are
added, for example. Note also that, throughout the years, cost
and quantity are registered for two types of expenses: travel

1We assume colors are visible in the digital version of this paper.

and accommodation, and that formulas are used to calculate
the total expense amounts.

B. Spreadsheet Evolution

At the end of 2011, the spreadsheet of Figure 1b needs to
be modified to accommodate 2012 data. Most spreadsheet
users would typically take four steps to perform this task:
i) insert three new columns; ii) copy all the labels (“Year”,
“Qnty”, “Cost” and “Total”); iii) copy all the formulas (to
compute the total amount spent per expense type in 2012,
and the total expense for that same year) and iv) update
all the necessary formulas in the last column to account
for the new year information. More experienced spreadsheet
users would possibly shortcut these steps by copy-inserting,
for example, the 3-column block of 2011 and changing
the label “2011” to “2012” in the copied block. Still, the
range of the multi-year totals must be manually extended to
include the new year information. In any of these situations,
or in any combination of them, a conceptually unitary
modification, add year, needs to be executed via an error-
prone combination of steps.

This is precisely the main advantage of MDSD: it is
possible to provide unitary transformations such as the
addition of class instances (e.g., a year or a category) as
one-step procedures, while all the structural impacts of such
transformations are handled automatically (e.g., the involved
formulas being automatically updated). This advantage is ex-
ploited to its maximum when the model and the instance are
part of the same spreadsheet development environment, as it
was proposed for OpenOffice in [5].2 Besides automation, it
is also guaranteed that this type of instance level operations
does not affect the model-instance conformity binding.

There are, however, several situations in which the user
prefers to change a spreadsheet instance (or a particular
model) in such a way that, after the edit, it will no longer
conforms to the previously defined model (or the respective
instance). For example, if the user wants to add a column
containing a possible expense discount for a particular year
only, this is a trivial operation to perform at the data
level which is actually not simple to perform at the model
level. In [7] we have proposed a technique to automatically
construct a new model based on the data evolution. In this
case, the new model would keep the class for years with 3

2Actually, Figure 1 presents a CLASSSHEET model and a spreadsheet
instance as defined in the embedding of CLASSSHEETS in spreadsheets [5].



(a) Model environment. (b) Data environment.

Figure 2. A bidirectional model-driven environment for the budget spreadsheet.

columns, while a new class for years with an extra discount
column is introduced.

C. A Bidirectional Model-Driven Spreadsheet Environment

In this section we present a bidirectional framework that
maintains the consistency between a model and its instance.
By being bidirectional, it supports either manually evolving
the spreadsheet instances, as we have described in the
previous section, or editing the model instead. In any case,
the correlated artefact is automatically co-evolved, so that
their conformity relationship is always preserved.

In Figure 2, we present an overview of the bidirectional
spreadsheet environment we propose. In Figure 2a, the em-
bedded CLASSSHEET is presented in the Model worksheet
while the data instance that conforms to it is given in
Figure 2b, in the Data worksheet. Both worksheets contain
buttons that perform the evolution steps at the model and
instance levels.

Every time a (model or instance) spreadsheet evolution
button is pressed, the system responds automatically. Indeed,
it was built to propagate one update at a time and to be
highly interactive by immediately giving feedback to users.

Also, our bidirectional spreadsheet engine makes some
natural assumptions on the models it is able to manipulate
and restricts the number of operations that are allowed on
the instance side [7].

III. TOWARDS AN EVALUATION OF MDSHEET

A. Previous User Evaluation

Our research goal has long been to raise the productivity
associated with the use of spreadsheets. Along these lines,
we have proposed several techniques, of which two were
selected to be assessed through user evaluation. Indeed,
we have conducted an empirical study, described in [8],
where we have compared the productivity, in terms of both
efficiency and effectiveness, in accomplishing a series of
tasks in three different spreadsheet representations.

The representations that were assessed included: i) origi-
nal spreadsheets, i.e., spreadsheets in the traditional rectan-
gular m lines ∗ n columns format; ii) refactored spread-
sheets, where the original data is stored in tables obtained us-
ing the database normalization techniques that we proposed
in [10]; iii) visual spreadsheets, that add edit assistance fea-
tures to spreadsheets in order to guide users in introducing
correct data [11].

We used a within-subjects design, where each participant
received a task list for each of the three different spreadsheet
representations. The tasks included entering data, modifying
existing data and calculating new data based on the already
existing spreadsheet information. Participants were encour-
aged to work as accurately and quickly as possible.

38 study participants started out by filling a background
questionnaire so we could collect their area of study and
previous experience with spreadsheets and other program-
ming languages, and English comfort (Portuguese was their
mother language). An introduction to the study was given
orally in English, but this was explicitly not a tutorial for
the different environments. Furthermore, the order of the
spreadsheets received by each user was randomized, and
the time limit for the study was set to two hours. A post-
session questionnaire was handed which contained questions
that could only be correctly answered by participants having
understood the running representations.

From preparing and running our study, and from the
analysis we produced out of it, we have drawn several
insights, the most important one being that embedding data-
base normalization techniques and visual editing assistance
features in spreadsheets can bring benefits for spreadsheet
users. Nevertheless, we could not find statistical evidence to
support this claim.

Several study aspects, that we want to prevent in the
study to conduct and that we would like to discuss at the
workshop, may have contributed to the lack of statistical
support: a) the fact that the study was performed in English;
b) the fact that participants were college students studying



on majors other than engineering or computer science, with
low spreadsheet knowledge, c) the fact that a tutorial was
not given to participants.

B. Evaluating MDSHEET

With the user study that we propose ourselves to conduct,
we now want to assess the potential productivity benefits
of working under the MDSHEET environment. The main
research question for which we seek an answer is: are
users more effective and/or more efficient if they engage
the bidirectional model-driven spreadsheet development of
MDSHEET, or the approach still needs to be improved? If
not, in which direction should we take it?

We plan to recruit a significant number of participants
within our universities students, with the possibility for them
to receive some gratification. Industry participants are also
being considered. While we believe that the motivation for
the study is clearly defined, several questions remain open
and can benefit from detailed discussion:

• Should we introduce the CLASSSHEET language by
running a pre-study tutorial?

We believe that not having conducted one such tutorial
in our previous study had a significant negative impact on
the conclusions we have drawn from it. Does this intuition
propagate to our new context?

• Should we introduce the problem domain (a concrete
pair model/instance) explicitly before the study?

Even resembling spreadsheets themselves, CLASSSHEETS
are not straightforward to understand, especially for users
outside the software engineering domain. Can this be alle-
viated by an explicit introduction?

• What should the participant profile be? Should we
prefer software engineering/computer science students?
Or instead choose students with other backgrounds?

A criterial selection of study participants is of crucial
nature for our study, so it is very important for us to establish
clearly the adequate profile.

• Is it reasonable to impose a time limit on the study?
Even more interesting, should the same task list be
given to different user groups, each of which with a
different time limit?

We believe that given the sufficient amount of time, most
users would eventually end up by succeeding in all the
requested tasks. We also know, however, that real world pro-
fessional life imposes limited time for a concrete assignment.
Should we try to establish a threshold for users effectiveness,
given different time amounts?

• How many spreadsheets should we use? Should we run
a within-subject study?

We believe that these are all important questions that
can greatly benefit from the type of discussions that are
scheduled for the workshop.

IV. CONCLUSION

We propose to conduct an empirical study with real users
to evaluate the potential productivity benefits of using the
MDSHEET framework. While most of the technical contri-
butions of the framework have already been validated, we
believe that it still lacks an evaluation phase with spreadsheet
end-users. Regarding the study to conduct, several issues
remain open and may benefit from being discussed as widely
as possible.

REFERENCES

[1] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers
of end users and end user programmers,” VLHCC’05: Pro-
ceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 207–214, 2005.

[2] W. L. Winston, “Executive education opportunities,” OR/MS
Today, vol. 28(4), pp. 8–10, 2001.

[3] K. Rajalingham, D. Chadwick, and B. Knight, “Classification
of spreadsheet errors,” European Spreadsheet Risks Interest
Group (EuSpRIG), 2001.

[4] G. Engels and M. Erwig, “ClassSheets: automatic generation
of spreadsheet applications from object-oriented specifica-
tions,” in 20th IEEE/ACM Int. Conf. on Automated Sof. Eng.,
Long Beach, USA. ACM, 2005, pp. 124–133.

[5] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Em-
bedding and evolution of spreadsheet models in spreadsheet
systems,” in VL/HCC’11: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. IEEE CS, 2011,
pp. 179–186.

[6] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MD-
Sheet: A framework for model-driven spreadsheet engineer-
ing,” in ICSE’12: Proceedings of the 34rd International
Conference on Software Engineering. ACM, 2012, pp. 1412–
1415.

[7] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and
J. Saraiva, “Bidirectional transformation of model-driven
spreadsheets,” in ICMT ’12: 5th International Conference on
Model Transformation. Springer LNCS, 2012, (to appear).

[8] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva, “End-
users productivity in model-based spreadsheets: An empirical
study,” in IS-EUD’11: Proceedings of the Third International
Symposium on End-User Development. LNCS, 2011, pp.
282–288.

[9] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooper-
stein, “Gencel: a program generator for correct spreadsheets,”
J. Funct. Program, vol. 16, no. 3, pp. 293–325, 2006.

[10] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to
relational databases and back,” in PEPM’09: Proceedings of
the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation. ACM, 2009, pp. 179–188.

[11] ——, “Discovery-based edit assistance for spreadsheets,” in
VL/HCC’09: Proceedings of the 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE
CS, 2009, pp. 233–237.


