
Embedding, Evolution, and Validation of
Model-Driven Spreadsheets

Jácome Cunha, João Paulo Fernandes,
Jorge Mendes, João Saraiva

{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt

Techn. Report TR-HASLab:01:2014

Jun. 2014

SSaaPP – SpreadSheets as a Programming Paradigm
(Project FCOMP-01-0124- FEDER-010048)

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:01:2014
Embedding, Evolution, and Validation of Model-Driven Spreadsheets
by Jácome Cunha, João Paulo Fernandes,
Jorge Mendes, João Saraiva

Abstract

This paper proposes and validates a model-driven software engineering technique for
spreadsheets. The technique that we envision builds on the embedding of spreadsheet
models under a widely used spreadsheet system, so that models and their conforming
instances are developed under the same environment. In practice, this convenient envi-
ronment enhances evolution steps at the model level while the corresponding instance
is automatically co-evolved. Finally, we have designed and conducted an empirical
study with human users in order to assess our technique in production environments.
The results of this study are promising and suggest that productivity gains are realiz-
able under our model-driven spreadsheet development setting.

1 Introduction
The use of abstract models to reason about concrete artifacts has been successfully em-
ployed in science and in engineering. In fact, there are many fields for which model-
driven engineering is the default, uncontested approach to follow: it is a reasonable
assumption that, excluding financial or cultural limitations, no private house, let alone
a bridge or a skyscraper, should be built before its model has been created and thor-
oughly analyzed and evolved.

Being itself a considerably more recent scientific field, not many decades have passed
since software engineering has seriously considered the use of models. In our work, we
have focused our attention on model-driven approaches to spreadsheet software engi-
neering. Spreadsheets are a relevant research topic, as they play a pivotal role in modern
society. Indeed, they are inherently multi-purpose and widely used both by individuals
to cope with simple needs as well as large companies as integrators of complex sys-
tems and as support for informing business decisions [1]. Also, their popularity is still
growing, with an almost impossible to estimate but staggering number of spreadsheets
created every year. Spreadsheet popularity is due to characteristics such as their low
entry barrier, their availability on almost any computer, and their simple visual inter-
face. In fact, being a conventional language that is understood by both professional
programmers and end users [2], spreadsheets are often used as bridges between these
two communities which often face communication problems. Ultimately, spreadsheets
seem to hit the sweet spot between flexibility and expressiveness.

Spreadsheets have probably passed the point of no return in terms of importance: it
is estimated that 95% of all U.S. firms use them for financial reporting [3], 90% of all an-
alysts in industry perform calculations in spreadsheets [3], and 50% of all spreadsheets
are the basis for decisions [1]. This importance, however, has not been achieved together
with effective mechanisms for error prevention, as shown by several studies [4, 5]. This
claim is also supported by the long list of real problems that were blamed on spread-
sheets, which has been documented and made available at the European Spreadsheet Risk
Interest Group (EuSpRIG) web site1.

In an attempt to overcome the issue of spreadsheet errors using model-driven ap-
proaches, several techniques have been proposed, namely the creation of spreadsheet
templates [6], the definition of ClassSheet [7] models and the inference of class diagrams
from spreadsheets [8]. These proposals guarantee that users may safely perform partic-
ular editing steps on their spreadsheets and they introduce a form of model-driven soft-
ware development: a spreadsheet business model is defined from which a customized
spreadsheet application is generated guaranteeing the consistency of the spreadsheet
with respect to the underlying model.

Despite its huge benefits, model-driven software development is sometimes dif-
ficult to realize in practice. In the context of spreadsheets, for example, the use of
model-driven software development requires that the developer is familiar with both
the spreadsheet domain (business logic) and model-driven software development. In
the particular case of the use of templates, a new tool is necessary to be learned, namely
the ViTSL [9] template editor. In fact, templates are created with ViTSL, which is sim-
ilar to Excel, but offers additional template specific functionality. These templates can
then be loaded into the Gencel [10], system, which is implemented as an extension to
Excel, and allows the safe, error-free editing of spreadsheets. This approach, however,

1This list of horror stories is available at: http://www.eusprig.org/horror-stories.
htm

0

has several drawbacks: first, in order to define a model, spreadsheet model developers
will have to become familiar with a new programming environment. Second, and most
important, there is no connection between the stand alone model development envi-
ronment and the spreadsheet system. As a result, it is not possible to (automatically)
synchronize the model and the spreadsheet data, that is, the co-evolution of the model
and its instance is not possible.

The first contribution of our work is the embedding of ClassSheet spreadsheet mod-
els in spreadsheets themselves. Our approach closes the gap between creating and us-
ing a domain specific language for spreadsheet models and a totally different frame-
work for actually editing spreadsheet data. Instead, we unify these operations within
spreadsheets: in one worksheet we define the underlying model while another work-
sheet holds the actual data, such that the model and the data are kept synchronized by
our framework. A summarized description of this work has been presented in [11], a
description that we revise and extend in this paper, in Section 3.

The second contribution of our work builds on this coherent spreadsheet develop-
ment setting where it is possible to define both the model and the data of a concrete
spreadsheet. Indeed, having both artifacts under the same environment enhances the
possibility of synchronizing one artifact in response to concrete evolution steps on the
other. In the context of the work in this paper, we focus on describing and assessing
evolution mechanisms on the model side and on the co-evolution of the data instances
in response to that evolution, as originally proposed in [12]. This contribution is intro-
duced in Section 4.

The third contribution of this paper is the design, execution and analysis of an ex-
periment with real users we have conducted to assess the spreadsheet development
framework previously described. Although we have ran other empirical studies in the
past – [13, 14] – they do not evaluate the embedding and evolution setting we present
in this work. Thus, the study we include in this paper intends to confirm two aspects of
spreadsheet development: (1) that users spend less time to perform a series of actions
using or model-driven setting; and (2) that we end up with spreadsheets having fewer
errors than one would expect from the traditional spreadsheet development setting.
The details of our study are presented in Section 6, where we show statistical evidences
that confirm both of these hypotheses, under the conditions that we tested.

This paper is organized as follows: In Section 2, we revise the ClassSheet modeling
language, in both its textual and visual representations, and using examples of practical
interest. In Section 3, we go through the embedding of ClassSheets in spreadsheet sys-
tems. Section 4 presents evolution rules and how to evolve models and automatically
co-evolve the corresponding instances. In Section 5 we present the tool implemented
using the previously described techniques. The empirical validation of our approach to
spreadsheet development is presented in Section 6. Finally, Section 7 presents related
work and Section 8 concludes the paper.

2 Modeling Spreadsheets with ClassSheets
ClassSheets are a high-level, object-oriented formalism to specify the business logic of
spreadsheets [7]. This formalism allows users to express business object structures
within a spreadsheet using concepts from the UML [15].

ClassSheets define (work)sheets (s) containing classes (c) formed by blocks (b), which
can be expandable, either horizontally (c→) or vertically (b↓). Also, classes are identified
by labels (l), and a block may represent in its basic form a spreadsheet cell, or it can be

1

a composition of other blocks. When representing a cell, a block can contain a basic
value (ϕ, e.g., a string or an integer) or an attribute (a = f), which is composed by
an attribute name (a) and a value (f). Attributes can define three types of cells: (1),
an input value, where a default value gives that indication, (2), a named reference to
another attribute (n.a, where n is the name of the class and a the name of the attribute)
or (3), an expression built by applying functions to a varying number of arguments
given by a formula (ϕ(f, . . . , f)).

ClassSheets can be represented textually, according to the grammar presented in Fig-
ure 1 and taken directly from [7], or visually as described further below.

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b|b | bˆb (blocks)
l ∈ Lab ::= h | v | .n (class labels)
h ∈ Hor ::= n | |n (horizontal)
v ∈ V er ::= |n | |n (vertical)
c ∈ Class ::= l : b | l : b↓ | cˆc (classes)
s ∈ Sheet ::= c | c→ | s|s (sheets)

Figure 1: Syntax of the textual representation of ClassSheets.

2.1 Vertically Expandable Tables
In order to illustrate how ClassSheets can be used in practice we shall consider an ex-
ample modeling an airline scheduling system which we adapted from [16]. We assume
that any airline company must record the activity of its pilots in, typically, a software
system. A simple way of achieving this goal is to use a spreadsheet, and a table2 as the
one presented in Figure 2a. This table has a title, Pilots, and a row with labels, one for
each of the table’s column: ID represents a unique pilot identifier, Name represents the
pilot’s name and Age represents the pilot’s age. Each of the subsequent rows contains
data for an actual pilot.

Tables such as the one presented in Figure 2a are frequently used within spread-
sheets, and it is fairly simple to create a model specifying them. In fact, Figure 2b repre-
sents a visual ClassSheet model for this pilot’s table, whilst Figure 2c shows the textual
ClassSheet representation. In the following paragraphs we explain such a model.

To model the labels we use a textual representation and the exact same names as
in the data sheet (Pilots, ID, Name and Age). To model the actual data we abstract
concrete column cell values by using a single identifier: we use the one-worded, lower-
case equivalent of the corresponding column label (so, id, name and age). Next, a default
value is associated with each column: columns A and B hold strings (denoted in the
model by the empty string “” following the = sign), and column C holds integer values
(denoted by 0 following =). Note that the last row of the model is labeled on the left
hand-side with vertical ellipses. This means that it is possible for the previous block
of rows to expand vertically, that is, the tables that conform to this model can have
as many rows/pilots as needed. The scope of the expansion is defined by the region
between the ellipsis and the black line separating rows 2 and 3. Note that, by definition,

2A table is a block of cells separated from the others by empty columns/rows. The first columns
may contain the name of the table. Usually its first/second row contains the column labels.

2

(a) Pilots’ table.

(b) Pilots’ visual ClassSheet model.

Pilots : Pilots p t p t ˆ
Pilots : ID p Name p Age ˆ

Pilots : (id= "" p name= "" p age= 0)↓

(c) Pilots’ textual ClassSheet model.

Figure 2: Pilots’ example.

ClassSheets do not allow for nested expansion blocks, and thus, there is no possible
ambiguity associated with this feature. The instance shown in Figure 2a has three pilots.

2.2 Horizontally Expandable Tables
In the lines of what we described in the previous section, airline companies must also
store information of their airplanes. This is the purpose of table Planes in the spread-
sheet illustrated in Figure 3a, which is organized as follows: the first column holds la-
bels that identify each row, namely, Planes (labeling the table itself), N-Number, Model
and Name; cells in row N-Number (respectively Model and Name) contain the unique
n-number identifier of a plane, (respectively the model of the plane and the name of
the plane). Each of the subsequent columns contains information about one particular
aircraft.

The Planes table can be visually modeled by the illustration in Figure 3b and textu-
ally by the definition in Figure 3c. This model may be constructed following the same
strategy as in the previous section, but now swapping columns and rows: the first col-
umn contains the label information and the second one the names abstracting concrete
data values: again, each cell has a name and the default value of the elements in that
row (in this example, all the cells have as default values empty strings); in Figure 3b, the
third column is labeled not as C but with ellipses meaning the information in column
B is horizontally expandable. Note that the instance table of Figure 3a has information
about three planes.

2.3 Relationship Tables
The examples used so far (the tables for pilots and planes) are useful to store the data,
but another kind of table exists and can be used to relate information, being of more

3

(a) Planes’ table.

(b) Planes’ visual ClassSheet model.
|Planes: Planes ˆ


p

N-Number: N-Number ˆ
Model: Model ˆ
Name: Name

|Planes: t ˆ

→

N-Number: n-number= "" ˆ
Model: model= "" ˆ
Name: name= ""

(c) Planes’ textual ClassSheet model.

Figure 3: Planes’ example.

practical interest.
Having pilots and planes, we can set up a new table to store information from the

flights that the pilots make with the planes. This new table is called a relationship table
since it relates two entities, which are the pilots and the planes. A possible model for
this example is presented in Figure 4, which also depicts an instance of that model.

(a) Flights’ visual ClassSheet model.

(b) Flights’ table.

Figure 4: Flights’ table, relating Pilots and Planes.

4

The flights’ table contains information from distinct entities. In the model (Fig-
ure 4a), there is the class Flights that contains all the information, including:

• information about planes (class PlanesKey, columns B to E), namely a reference
to the planes table (cell B2);

• information about pilots (class PilotsKey, rows 3 and 4), namely a reference to
the pilots table (cell A4);

• information about the flights (in the range B3:E4), namely the depart location
(cell B4), the destination (cell C4), the time of departure (cell D4) and the duration
of the flight (cell E4);

• the total hours flown by each pilot (cell F4), and also a grand total (cell F5). We
assume that the same pilot does not appear in two different rows. In fact, we
could use ClassSheet extensions to ensure this [17, 18].

For the first flight stored in the data (Figure 4b), we know that the pilot has the
identifier pl1, the plane has the n-number N2342, it departed from OPO in direction to
NAT at 14:00 on December 12, 2010, with a duration of 7 hours.

Note that we do not show the textual representation of this part of the model be-
cause of its complexity and because it would not improve the understandability of the
paper.

3 Embedding Spreadsheet Models
The ClassSheet language is a Domain Specific Language (DSL) to represent the busi-
ness model of spreadsheet data. Furthermore, as we have seen in the previous section,
the visual representation of ClassSheets very much resembles spreadsheets themselves.
These two facts combined motivated the use of spreadsheet systems to define ClassSheet
models [11], that is, to natively embed ClassSheets in a spreadsheet host system.

Therefore, we have adopted the well-known technique to embed DSLs in a host
general purpose language [19], therefore exploiting the features of the host language as
native of the domain specific language.

In our case, this allows both the model and the spreadsheet to be stored in the same
file, and that model creation along with data editing can be handled in the same envi-
ronment that users are familiar with. Also, this is achieved while not imposing on us
the effort of reconstructing this environment from scratch.

The embedding of ClassSheets within spreadsheets is not direct, since ClassSheets
were not meant to be embedded inside spreadsheets. Their resemblance helps, but
some limitations arise due to syntactic restrictions imposed by spreadsheet host sys-
tems. Several options are available to overcome the syntactic restrictions, like writing
a new spreadsheet host system from start, modifying an existing one, or adapting the
ClassSheet visual language. The two first options are not viable to distribute Model-
Driven Spreadsheet Engineering (MDSE) widely, since both require users to switch
their system, which can be inconvenient. Also, to accomplish the first option would
be a tremendous effort and would change the focus of the work from the embedding to
building a tool.

The solution adopted slightly modifies the ClassSheet visual language so it can be
embedded in a worksheet without doing major changes on the spreadsheet host system
(see Figure 5a). In these modifications, we:

5

1. identify horizontal (vertical) expansions using regular columns (rows) (in the
ClassSheet language, this identification is made using specific columns/rows);
such rows/columns have grey background and ellipsis as labels;

2. draw an expansion limitation black line in the spreadsheet (originally this is done
between column/row letters/numbers);

3. fill classes with a background color (instead of using lines as in the original Class-
Sheets).

The last change (3) is not mandatory, but it is easier to identify the classes and, along
with the first change (2), eases the identification of classes’ parts. This way, users do not
need to think which role the line is playing (expansion limitation or class identification).

(a) Model on the first worksheet of the spreadsheet.

(b) Data on the second worksheet of the spreadsheet.

Figure 5: Flights’ spreadsheet, with an embedded model and a conforming
instance.

We can use the flights’ spreadsheet example to compare the differences between the
original ClassSheet and its embedded representation:
• In the original ClassSheet (Figure 4a), there are two expansions: one denoted by

the column between columns E and F for the horizontal expansion, and another
denoted by the row between rows 4 and 5 for the vertical one. Applying change 1
to the original model will add an extra column (F) and an extra row (5) to identify
the expansions in the embedding (Figure 5a).

• To define the expansion limits in the original ClassSheet, there are no lines be-
tween the column headers of columns B, C, D and E which makes the horizontal

6

expansion to use three columns and the vertical expansion to only use one row.
This translates to a line between columns A and B and another line between rows
3 and 4 in the embedded ClassSheet as per change 2.

• To identify the classes, background colors are used (change 3), so that the class
Flights is identified by the green3 background, the class PlanesKey by the cyan
background, the class PilotsKey by the yellow background, and the class that re-
lates the PlanesKey with the PilotsKey by the dark green background. Moreover,
the relation class (range B3:E5), called PilotsKey PlanesKey, is colored in dark
green.

In the original definition of ClassSheet, default values are used to represent types of
value-cells. In fact, the formal definition of ClassSheets does not consider a pre-defined
set of types. Our embedding supports the types/default values offered by the spread-
sheet host system, namely: number, percent, currency, date, time, scientific, fraction,
boolean value, and text. Indeed when defining the model, the user can define the de-
fault values using any value from these types. The use of this information in the in-
stances is explained in Section 3.2.

Next we present a set of rules that are used to map each element of the ClassSheet
language to our embedding.

3We assume colors are visible in the digital version of this paper.

7

b ∈ Block

ϕ

a = f

b | b

b ˆ b

c ∈ Class

l : b

l : b↓

c ˆ c

s ∈ Sheet

s | s

c→

8

The elements ϕ and a = f are simply placed in a colored cell.
A horizontal composition of blocks (b | b) is embedded placing the first block (here

represented by b1 labeled cells) in the corresponding cells, which are colored from the
previous step. For the second block (b2) the same happens, although with a different
color to distinguish them. As the blocks form a horizontal composition they are placed
side by side in the embedded model.

A very analogous situation occurs for the vertically aligned blocks (bˆ b), but instead
of begin placed side by side, they are on top of each other.

The next case is the labeled class (l : b). In this case, the label is not visible in the
embedding; only the block is created using the previously presented rules.

A similar situation occurs for the labeled horizontally expandable class l : b↓. The
block is created using the previous rule. After that, it is necessary to add another row
immediately after the block, with grey background, and labeled with ellipsis. Finally,
in the first row of the block it is added a black horizontal line which expresses the limit
of the expansion block.

The vertical composition of classes (c ˆ c) is analogous to the vertical composition
of blocks.

The horizontal composition of sheets (s | s) is analogous to the horizontal composi-
tion of blocks.

Finally, the horizontally expandable classes (c→) are embedded starting with the
normal embedding of the class. The next step is to add an extra column immediately
after the last column of the class, with grey background, and labeled with ellipsis. This
expresses the expandability. The last step is to add a black vertical line which delimits
the expansion.

Note the label constructors (Lab, Hor, and V er) are not part of the embedding pro-
cess, as they do not impact the visual model. Nevertheless, they are used by our algo-
rithm to decide when two blocks are part of a greater one. This is also used to decide
when blocks have the same color.

Given the embedding of the spreadsheet model in one worksheet, it is now possible
to have one of its instances in a second worksheet, as we will discuss in the next sections.
As we will also see, this setting has a couple of advantages: firstly, users may evolve
the model having the data automatically coevolved. Secondly, having the model near
the data helps to document the latter, since users can clearly identify the structure of
the logic behind the spreadsheet. Figure 5a illustrates the complete embedding for the
ClassSheet model of the running example, whilst Figure 5b shows one of its possible
instances.

3.1 Model Creation
To create a model, several operations are available such as addition and deletion of
columns and rows, cell editing, and addition and deletion of classes. To create, for
example, the flights’ part of the spreadsheet used so far, one can:

1. add a class for the flights, selecting the range A1:G6 and choosing the green color
for its background;

2. add a class for the planes, selecting the range B1:F6, choosing the cyan color for
its background, and setting the class to expand horizontally;

3. add a class for the pilots, selecting the range A3:G5, choosing the yellow color
for its background, and setting the class to expand vertically; and,

9

4. set the labels and formulas for the cells.

The addition of the relation class (range B3:E4) is not needed since it is automatically
added when the environment detects superposing classes at the same level (PlanesKey
and PilotsKey are within Flights, which leads to the automatic insertion of the relation
class).

3.2 Instance Generation
From the flights’ model described above, an empty spreadsheet instance can be gener-
ated. This is performed by copying the structure of the model to another worksheet. In
this process labels are simply copied, and attributes are replaced in one of two ways:

1. If the attribute is simple (i.e., it is like a = ϕ), it is replaced by its default value.
This default value is also used to set the instance cell type. After parsing and
determining the type of the default value, the corresponding instance cells are set
to the correct type. For this we use the spreadsheet system built-in type mech-
anism. Since this mechanism is quite flexible, it may happen that the instance
has values of different types than the ones defined in the model. Nevertheless,
our tool could be extended to guarantee such restrictions are enforced as we have
done with other restrictions [17, 18].

2. If the attribute is a formula, it is replaced by an instance of the formula. An
instance of a formula is similar to the original one defined in the model, but the
attribute references are replaced by references to cells where those attributes are
instantiated.

Columns and rows with ellipses have no content, having instead buttons to perform
operations of adding new instances of their respective classes. When pressed, new cells
are created with the corresponding default values, and all the formulas are updated to
accommodate the changes.

From the flights’ model, we would obtain an initial instance that has the exact same
structure as the spreadsheet shown in Figure 5b: the same labels and the same four
buttons that are available to add new instances of the expandable classes. Compared to
that spreadsheet, however, its initial version would hold no values except those from
the default values defined in the model. Considering, for example, the Pilots table, this
means that a single line would be present below the column headers, and that this line
would have its ID and Name values set to the empty string and its Phone number set
to 0.

3.3 Data Editing
The editing of the data is performed like with plain spreadsheets, i.e., the user just edits
the cell content. The insertion of new data is different since editing assistance must be
used through the buttons available.

For example, to insert a new flight for pilot pl1 in the Flights table, without models
one would need to:

1. insert four new columns;

2. copy all the labels;

3. update all the necessary formulas in the last column; and,

4. insert the values for the new flight.

10

With a large spreadsheet, the step to update the formulas can be very error prone, and
users may forget to update all of them. Using models, this process consists of only two
steps:

1. press the button with label “· · · ” (in column J, Figure 5b); and,

2. insert the values for the new flight.

The model-driven environment automatically inserts four new columns, the labels for
those columns, updates the formulas, and inserts default values in all the new input
cells.

Note that, to keep the consistency between instance and model, all the cells in the
instance that are not data entry cells are non-editable, that is, all the labels and formulas
cannot be edited in the instance, only in the model. In Section 4 we will detail how to
handle model evolutions.

4 Model-Driven Spreadsheet Evolution
The example we have been using manages pilots, planes and flights, but it misses a
critical piece of information about flights: the number of passengers. In this case, addi-
tional columns need to be inserted in the block of each flight. Figure 6 shows an evolved
spreadsheet with new columns (F and K) to store the number of passengers (Figure 6b),
as well as the new model that it instantiates (Figure 6a). Note that a modification of the
block that relates pilots and planes in the model (in this case, inserting a new column)
captures modifications to all repetitions of the block throughout the instance.

(a) Evolved flights’ model.

(b) Evolved flights’ instance.

Figure 6: Evolved spreadsheet and the model that it instantiates.

In this section, we will demonstrate that modifications to spreadsheet models can be
supported by an appropriate combinator language, and that these model modifications

11

can be propagated automatically to the spreadsheets that instantiate the models. In
the case of the flights example, the model modification is captured by the following
expression:

addPassengers =
once (inside "PilotsKey_PlanesKey"

(after "Hours" (insertCol "Passengers")))

The actual column insertion is done by the innermost insertCol step. The after
and inside combinators specify the location constraints of applying this step. The once
combinator traverses the spreadsheet model to search for a single location where these
constraints are satisfied and the insertion can be performed.

The application of addPassengers to the initial model (Figure 5a) will yield:

1. the modified model (Figure 6a),

2. a spreadsheet migration function that can be applied to instances of the initial
model (e.g. Figure 5b) to produce instances of the modified model (e.g. Fig-
ure 6b), and

3. an inverse spreadsheet migration function to backport instances of the modified
model to instances of the initial model.

In the remainder of this section we will explain the machinery required for this type
of coupled transformation of spreadsheet instances and models.

4.1 A Framework for Evolution of Spreadsheets in HASKELL

Data refinement theory provides an algebraic framework for calculating with data types
and corresponding values [20–22]. It consists of type-level coupled with value-level
transformations. The type-level transformations deal with the evolution of the model
and the value-level transformations deal with the instances of the model (e.g. values).
Figure 7 depicts the general scenario of a transformation in this framework.

A

to
&&

6 A′

from

ff

A, A′ data type and transformed data type
to witness function of type A→ A′ (injective)
from witness function of type A′ → A (surjective)

Figure 7: Coupled transformation of data type A into data type A′.

Each transformation is coupled with witness functions to and from, which are re-
sponsible for converting values of type A into type A′ and back.

2LT is a framework written in HASKELL implementing this theory [23–26]. It pro-
vides the basic combinators to define and compose transformations for data types and
witness functions. Since 2LT is statically typed, transformations are guaranteed to be

12

type-safe ensuring consistency of data types and data instances. To represent the wit-
ness functions from and to 2LT relies on the definition of a Generalized Algebraic Data
Type4 (GADT) [27, 28]. Each from and to function is represented by a value of the poly-
morphic type PF a , which can be defined using the following constructors:5

PF a ::=
| id : PF (a → a) -- identity function

| π1 : PF ((a, b)→ a) -- left projection of a pair

| π2 : PF ((a, b)→ b) -- right projection of a pair

| pnt : a → PF (One → a) -- constant

| ·4 · :PF (a → b)→ PF (a → c)→ PF (a → (b, c)) -- split of functions

-- product of functions
| · × · : PF (a → b)→ PF (c → d)→ PF ((a, c)→ (b, d))

-- composing of functions
| · ◦ · : Type b → PF (b → c)→ PF (a → b)→ PF (a → c)

| ·? : PF (a → b)→ PF ([a]→ [b]) -- map of func.

| head : PF ([a]→ a) -- head of a list

| tail : PF ([a]→ [a]) -- tail of a list

| fhead : PF (VFormula → RefCell) -- head of the arguments of a formula

| ftail : PF (VFormula → FormulaV) -- tail of the arguments of a formula

This GADT represents the types of the functions used in the transformations. Each
constructor has a name and its type. For instance, the pnt constructor receives a value of
type a and returns a value of type PF (One → a), meaning it returns a representation
of a function that has as argument a value of the singleton type and returns a value of
type a , that is, it transforms a constant into a function which will always return that
constant. Another example is π1, which represents the type of the function that projects
the first part of a pair. The comments should clarify which function each constructor
represents.

Given these representations of types and functions, we can turn to the encoding of
refinements. Each refinement is encoded as a two-level rewriting rule:

Rule = ∀ a . Type a → Maybe (View (Type a))

Although the refinement is from a type a to a type b, this cannot be directly encoded
since the type b is only known when the transformation completes, so the type b is
represented as a view of the type a . Since the the transformation may fail, it is wrapped
in the Maybe type. Maybe encapsulates an optional value: a value of type Maybe a
either contains a value of type a (Just a), or it is empty (Nothing).

View a ::=
View : Rep a b → Type b → View (Type a)

4“It allows to assign more precise types to data constructors by restricting the variables of the
datatype in the constructors’ result types.”

5Although we use a notation similar to HASKELL, we try to keep it more abstract so it can more
easily be used in other contexts.

13

A view expresses that a type a can be represented as a type b, denoted as Rep a b, if
there are function representations to :a → b and from :b → a that allow data conversion
between one and the other.

Rep a b ::=
Rep {to = PF (a → b), {from = PF (b → a)}

To better explain this system we will show a small example. The following code
implements a rule, listmap, to transform a list into a map (represented by ·⇀ ·):

listmap : Rule
listmap ([a]) =

Just (
View (Rep {to = seq2index , from = tolist })

(Int ⇀ a)
)

listmap = mzero

The witness functions have the following signature (for this example their code is
not important):

tolist : (Int ⇀ a)→ [a]
seq2index : [a]→ (Int ⇀ a)

This rule receives the type of a list of a , [a], and returns a (maybe) view over the type
map of integers to a , Int ⇀ a . The witness functions are returned in the representation
Rep. If some other argument than a list is received, then the rule fails returning mzero.
All the rules contemplate this last case and so we will not show it in the definition of
other rules.

Given this encoding of individual rewrite rules, a complete rewrite system can be
constructed via the following constructors:

nop : Rule -- identity
. :Rule → Rule → Rule -- sequential composition
� :Rule → Rule → Rule -- left-biased choice
many : Rule → Rule -- repetition
once : Rule → Rule -- arbitrary depth rule apply

Details on the implementation of these combinators can be found elsewhere [23].

4.1.1 ClassSheets and Spreadsheets in HASKELL

The 2LT was originally designed to work with algebraic data types. However, this
representation is not expressive enough to represent ClassSheet specifications or their
spreadsheet instances. To overcome this issue, we extended the 2LT representation so it
could support ClassSheet models, by introducing the following GADT:

14

Type a ::=
-- previous shown constructors

...

-- plain spreadsheet value
| V alue : V alue→ Type V alue

-- references
| Ref : Type b → PF (a → RefCell)
→ PF (a → b)→ Type a → Type a

-- reference cell
| RefCell : Type RefCell

-- formulas
| Formula :VFormula → Type VFormula

-- block label
| LabelB : String → Type LabelB

-- attributes
| · = · : Type a → Type b → Type (a, b)

-- block horizontal composition
| · p · : Type a → Type b → Type (a, b)

-- block vertical composition
| ·ˆ · :Type a → Type b → Type (a, b)

-- empty block
| EmptyB : Type EmptyB

-- horizontal class label
| · : String → Type HorH

-- vertical class label
|| · : String → Type V erV

-- square class label
|| · : String → Type Square

-- relation class
| LabRel : String → Type LabS

-- labeled class
| · : · : Type a → Type b → Type (a, b)

-- labeled expandable class
| · : (·)↓ : Type a → Type b → Type (a, [b])

-- class vertical composition
| ·ˆ · :Type a → Type b → Type (a, b)

-- sheet class
| SheetC : Type a → Type (SheetC a)

-- sheet expandable class
| ·→ : Type a → Type [a]

-- sheet horizontal composition
| · p · : Type a → Type b → Type (a, b)

-- empty sheet
| EmptyS : Type EmptyS

15

The constructors of this data type represent each of the elements of the textual syn-
tax of ClassSheets presented in Figure 1. Indeed we try to use the same notation to keep
our representation as similar to the original language as possible. The comments should
help match the ClassSheet language and the constructors. The values of type Type a are
representations of type a . For example, if t is of type Type V alue, then t represents the
type V alue. The following types are needed to construct values of type Type a :

EmptyBlock -- empty block

EmptySheet -- empty sheet

LabelB = String -- label

RefCell = RefCell1 -- referenced cell

LabS = String -- square label

HorH = String -- horizontal label

V erV = String -- vertical label

SheetC a ::= -- sheet class
SheetCC a

SheetCE a ::= -- expandable sheet class
SheetCEC a

V alue ::= -- value
V Int Int
| V String String
| V Bool Bool
| V Double Double

VFormula ::= -- formula
FValue V alue
| FRef
| FFormula String [VFormula]

Once more, the comments should clarify what each type represents. To explain
this representation we will use as an example a small table representing the costs of
maintenance of planes. We do not use the running example as it would be very complex
to explain and understand. For this reduced model only four columns were defined:
plane model, quantity, cost per unit and total cost (product of quantity by cost per unit). The
HASKELL representation of such a model is presented in the next code listing.

costs =
| Cost : Model p Quantity p Price p Totalˆ
| Cost : (model = "" p quantity = 0 p price = 0 p total = FFormula "×" [FRef ,FRef])↓

This ClassSheet specifies a class called Cost composed by two parts vertically com-
posed as indicated by the ˆ operator. The first part is specified in the first row and
defines the labels for four columns: Model , Quantity , Price and Total . The second row
models the rest of the class containing the definition of the four columns. The first col-
umn has default value the empty string (""), the two following columns have as default
value 0, and the last one is defined by a formula (explained latter on). Note that this

16

part is vertically expandable. Figure 8 represents a spreadsheet instance of this model.

Figure 8: Spreadsheet instance of the maintenance costs ClassSheet.

Note that in the definition of Type a the constructors combining parts of the spread-
sheet (e.g. sheets) return a pair. Thus, a spreadsheet instance is written as nested pairs
of values. The spreadsheet illustrated in Figure 8 is encoded in HASKELL as follows:

((Model , (Quantity , (Price,Total))),
[("B747", (2, (1500,FFormula "×" [FRef ,FRef]))),
("B777", (5, (2000,FFormula "×" [FRef ,FRef])))])

The HASKELL type checker statically ensures that the pairs are well formed and are
constructed in the correct order.

4.1.2 Specifying References

Having defined a GADT to represent ClassSheet models, we now need a mechanism to
define spreadsheet references. The safest way to accomplish this is making references
strongly typed. Figure 9 depicts the scenario of a transformation with references. A
reference from a cell s to a cell t is defined using a pair of projections, source and target.
These projections are statically-typed functions traversing the data type A to identify
the cell defining the reference (s), and the cell to which the reference is pointing to (t).
In this approach, not only the references are statically typed, but also always guaranteed
to exist, that is, it is not possible to create a reference from/to a cell that does not exist.

s

A

to
&&

target ..

source
00

T +3 A′

from

ff

source′
nn

target′ppt

source Projection over type A identifying the reference
target Projection over type A identifying the referenced cell

source′ = source ◦ from
target′ = target ◦ from

Figure 9: Coupled transformation of data type A into data type A′ with refer-
ences.

The projections defining the reference and the referenced type, in the transformed
typeA′, are obtained by post-composing the projections with the witness function from .

17

When source′ and target′ are normalized they work on A′ directly rather than via A.
The formula specification, as previously shown, is specified directly in the GADT. How-
ever, the references are defined separately by defining projections over the data type.
This is required to allow any reference to access any part of the GADT.

Using the spreadsheet illustrated in Figure 8, an instance of a reference from the
formula total to price is defined as follows (remember that the second argument of Ref
is the source (reference cell) and that the third is the target (referenced cell)):

costWithReferences =
Ref Int (fhead ◦ head ◦ (π2 ◦ π2 ◦ π2)

? ◦ π2) (head ◦ (π1 ◦ π2 ◦ π2)
? ◦ π2) cost

The source function refers to the first FRef in the HASKELL encoding shown after
Figure 8. The target projection defines the cell it is pointing to, that is, it defines a
reference to the the value 1500 in column Price .

To help understand this example, we explain how source is constructed. Since the
use of GADTs requires the definition of models combining elements in a pairwise fash-
ion, π2 is used to get the second element of the model (a pair), that is, the list of planes
and their cost maintenance. Then, we apply (π2 ◦ π2 ◦ π2)

? which will return a list with
all the formulas. Finally head will return the first formula (the one in cell D2) from
which fhead gets the first reference in a list of references, that is, the reference B2 that
appears in cell D2.

Note that our reference type has enough information about the cells and thus we do
not need value-level functions, that is, we do not need to specify the projection functions
themselves, just their types. In the cases we reference a list of values, for example,
constructed by the class expandable operator, we need to be specific about the element
within the list we are referencing. For these cases, we use the type-level constructors
head (first element of a list) and tail (all but first) to get the intended value in the list.

4.2 Evolution of Spreadsheets
In this section we define rules to perform spreadsheet evolution. These rules can be
divided in three main categories: Combinators, used as helper rules, Semantic rules, in-
tended to change the model itself (e.g. add a new column), and Layout rules, designed
to change the visual arrangement of the spreadsheet (e.g. swap two columns).

4.2.1 Combinators

The semantic and the layout rules are defined to work on a specific part of the model.
The combinators defined next are then used to apply those rules in the desired places.

Pull up all references: To avoid having references in different levels of the models,
all the rules pull all references to the topmost level of the model. This allows to create
simpler rules since the positions of all references are known and do not need to be
changed when the model is altered. To pull a reference in a particular place we use the
following rule (we just show its first case):

pullUpRef : Rule
pullUpRef ((Ref tb fRef tRef ta) p b2) = return

View idrep (Ref tb (fRef ◦ π1) (tRef ◦ π1) (ta p b2))

18

The representation idrep has the id function in both directions. If part of the model
(in this case the left part of a horizontal composition) of a given type has a reference, it is
pulled to the top level. This is achieved by composing the existing projections with the
necessary functions, in this case π1. This rule has two cases (left and right hand side)
for each binary constructor (e.g. horizontal/vertical composition).

To pull up all the references in all levels of a model we use the rule

pullUpAllRefs = many (once pullUpRef)

The once operator applies the pullUpRef rule somewhere in the type and the many en-
sures that this is applied everywhere in the whole model.

Apply after and similars: The combinator after finds the correct place to apply the
argument rule (second argument) by comparing the given string (first argument) with
the existing labels in the model. When it finds the intended place, it applies the rule to
it. This works because our rules always do their task on the right-hand side of a type.

after : String → Rule → Rule
after label rule (label ′ p b) =

if label ≡ label ′

View s l ′ ← rule label ′

return View (Rep {to = (to s)× id,
from = (from s)× id})

(l ′ p b))

After comparing the argument label (label) with the label from the model (label ′), if
they are equal, it applies the rule and then returns the updated model type. Note that
this code represents only part of the complete definition of the function. The remaining
cases, e.g. ·ˆ·, are not shown since they are quite similar to the one presented.

Other combinators were also developed, namely, before , below , above , inside and at .
Their implementations are not shown since they are similar to the after combinator.

4.2.2 Semantic Rules

Given the support to apply rules in any place of the model given by the previous defini-
tions, we now present rules that change the semantics of the model, that is, that change
the meaning and the model itself, e.g., adding columns.

Insert a block: The first rule we present is one of the most fundamental: the insertion
of a new block into a spreadsheet. It is formally defined as follows:

Block

id4(pnt a)

**
6 Block p Block

π1

ii

This diagram means that a horizontal composition of two blocks refines a block when
witnessed by two functions, to and from . The to function, id4(pnt a), is a split: it
injects the existing block in the first part of the result without modifications (id) and

19

injects the given block instance a into the second part of the result. The from function
is π1 since it is the one that allows the recovery of the existent block. The HASKELL
version of the rule is presented next.

insertBlock : Type a → a → Rule
insertBlock ta a t =

if (isBlock ta) ∧ (isBlock t)
rep ← Rep {to = id4(pnt a), from = π1}
View s t ′ ← pullUpAllRefs (t p ta)
return View (comprep rep s) t ′

The function comprep composes two representations. This rule receives the type of
the new block ta , its default instance a , and returns a Rule . The returned rule is itself
a function that receives the block to modify t , and returns a view of the new type. The
first step is to verify if the given types are blocks using the function isBlock . The second
step is to create the representation rep with the witness functions given in the above
diagram. Then the references are pulled up in result type t p ta . This returns a new
representation s and a new type t ′ (in fact, the type is the same t ′ = t p ta). The result
view has as representation the composition of the two previous representations, rep and
s , and the corresponding type t ′.

Rules to insert classes and sheets were also defined, but since these rules are similar
to the rule to insert blocks, we omit them.

Insert a column: To insert a column in a spreadsheet, that is, a cell with a label labl
and the cell below with a default value form and vertically expandable, we first need to
create a new class representing it:

| labl : lablˆ((labl = form)↓)

The label is used to create the default value (labl , []). Note that since we want to
create an expandable class, the second part of the pair must be a list. The final step is to
apply insertSheet :

insertCol : String → VFormula → Rule
insertCol labl form sh =

if isSheet sh
clas ← (| labl : lablˆ((labl = form)↓))
return ((insertSheet clas (labl , [])) B pullUpAllRefs) sh

Note the use of the rule pullUpAllRefs as explained before. The case shown in the
above definition is for a formula as default value and it is similar to the value case. The
case with a reference is more interesting and is shown next:

insertCol labl FRef sh = if isSheet sh
clas ← (| labl : Ref ⊥ ⊥ ⊥ (lablˆ((labl = RefCell)↓)))
return ((insertSheet clas (labl , [])) B pullUpAllRefs) sh

Recall that our references are always local, that is, they can only exist with the type
they are associated with. So, it is not possible to insert a column that references a part of

20

the existing spreadsheet. To overcome this, we first create the reference with undefined
functions and auxiliary type (⊥). We then set these values to the intended ones.

setFormula : Type b → PF (a → RefCell)→ PF (a → b)→ Rule
setFormula tb fRef tRef (Ref t) =

return View idrep (Ref tb fRef tRef t)

This rule receives the auxiliary type (Type b), the two functions representing the
reference projections and adds them to the type. A complete rule to insert a column
with a reference is defined as follows:

insertFormula =
(once (insertCol label FRef)) B (setFormula auxType fromRef toRef)

Following the original idea described previously in this section, we want to intro-
duce a new column with the number of passengers in a flight. In this case, we want to
insert a column in an existing block and thus our previous rule will not work. For these
cases we write a new rule:

insertColIn : String → VFormula → Rule
insertColIn labl (FValue v) b =

if isBlock b
block ← lablˆ(labl = v)
return ((insertBlock block (labl , v)) B pullUpAllRefs) b

This rule is similar to the previous one but it creates a block (not a class) and also
inserts it after a block. The reasoning is analogous to the one in insertCol .

To add the column "Passengers" we can use the rule insertColIn , but applying it
directly to our running example will fail since it expects a block and we have a spread-
sheet. We can use the combinator once to achieve the desired result. This combinator
tries to apply a given rule somewhere in a type, stopping after it succeeds once. Al-
though this combinator already existed in the 2LT framework, we extended it to work
for spreadsheet models/types.

Make it expandable: It is possible to turn a regular block within a class into an
expandable block. For this, we created the rule expandBlock :

expandBlock : String → Rule
expandBlock lb (label : clas) =

if lb ≡ label
rep ← Rep {to = id× tolist, from = id× head}
return View rep (label : (clas)↓)

It receives the label of the class to make expandable and updates the class to allow
repetition. The result type constructor is · : (·)↓; the to function wraps the existing block
into a list, tolist ; and the from function takes the head of it, head. We developed a simi-
lar rule to make a class expandable. This corresponds to a promotion of a class c to c→.
We do not show its implementation here since it is quite similar to the one just shown.

21

Split: It is quite common to move a column in a spreadsheet from on place to an-
other. The rule split copies a column to another place and substitutes the original col-
umn values by references to the new column (similar to creating a pointer). The rule to
move part of the spreadsheet is presented in Section 4.2.3. The first step of split is to get
the column that we want to copy:

getColumn : String → Rule
getColumn lb (labelˆb) =

if lb ≡ label
return View idrep (labelˆb)

If the corresponding label is found, the vertical composition is returned. Note that
as in other rules, this one is intended to be applied using the combinator once . As
we said, we aim to write local rules that can be used at any level using the developed
combinators.

In a second step the rule creates a new a class (nclass) containing the retrieved block:

View rep c′ ← getColumn lb c

nclass ← (| lb : (c′)↓)

The last step is to transform the original column that was copied into references to
the new column. The rule makeReferences : String → Rule receives the label of the
column that was copied (the same as the new column) and creates the references. We
do not show the rest of the implementation because it is quite complex and will not help
in the understanding of the paper.

4.2.3 Layout Rules

We will now describe rules focused on the layout of spreadsheets, that is, rules that do
not add/remove information to/from the model, but only rearrange it.

Change orientation The rule toVertical changes the orientation of a block from hor-
izontal to vertical.

toVertical : Rule
toVertical (a p b) = return View idrep (aˆb)

Note that since our value-level representation of these compositions are pairs, the
to and the from functions are simply the identity function. The needed information is
kept in the type-level with the different constructors. A rule to do the inverse was also
designed but since it is quite similar to this one, we do not show it here.

Normalize blocks When applying some transformations, the resulting types may
not have the correct shape. A common example is to have as result the following type:

A p BˆC p Dˆ
E p F

However, given the rules in [7] to ensure the correctness of ClassSheets, the correct
result is the following:

22

A p B p Dˆ
E p C p F

The rule normalize tries to match these cases and correct them. The types are the
ones presented above and the witness functions are combinations of π1 and π2.

normalize : Rule
normalize (a p bˆc p dˆe p f) =

to← id× π1 × id ◦ π14π1 ◦ π24π2 ◦ π1 ◦ π2 × π2

from← π1 ◦ π14π1 ◦ π2 × π1 ◦ π24π2 ◦ π2 ◦ π14id× π2 ◦ π2

return View (Rep {to = to, from = from}) (a p b p dˆe p c p f)

Although the migration functions seem complex, they just rearrange the order of
the pairs so they have the correct arrangement.

Shift: It is quite common to move parts of the spreadsheet across it. We designed a
rule to shift parts of the spreadsheet in the four possible directions. We show here part
of the shiftRight rule, which, as suggested by its name, shifts a piece of the spreadsheet
to the right. In this case, a block is moved and an empty block is left in its place.

shiftRight : Type a → Rule
shiftRight ta b =

if isBlock b
Eq ← teq ta b
rep ← Rep {to = pnt (⊥ :: EmptyBlock)4id,

from = π2}
return View rep (EmptyBlock p b)

The function teq verifies if two types are equal. This rule receives a type and a
block, but we can easily write a wrapper function to receive a label in the same style of
insertCol .

Another interesting case of this rule occurs when the user tries to move a block (or
a sheet) that has a reference.

shiftRight ta (Ref tb frRf toRf b) =
if isBlock b

Eq ← teq ta b1
r ← Rep {to = pnt (⊥ :: EmptyBlock)4id,

from = π2}
return View r (Ref tb (frRf ◦ π2) (toRf ◦ π2) (EmptyBlock p b)

As we can see in the above code, the existing reference projections must be com-
posed with the selector π2 to allow to retrieve the existing block b1 . Only after this it is
possible to apply the defined selection reference functions.

Move blocks: A more complex task is to move a part of the spreadsheet to another
place. We present next a rule to move a block.

moveBlock : String → Rule

23

moveBlock str c =
View s c′ ← getBlock str c
nsh ← (| str : c′)
View r sh ← once (removeRedundant str) (c p nsh)
return View (comprep s r) sh

After getting the intended block and creating a new class with it, we need to remove
the old block using removeRedundant .

removeRedundant : String → Rule
removeRedundant s (s ′)

if s ≡ s ′

rep ← Rep {to = pnt (⊥ :: EmptyBlock),
from = pnt s ′}

return View rep EmptyBlock

This rule will remove the block with the given label leaving an empty block in its
place.

5 The MDSheet Framework
The embedding and evolution techniques previously presented have been implemented
as an add-on to a widely used spreadsheet system, the OpenOffice/LibreOffice system.
The add-on provides a model-driven spreadsheet development environment, named
MDSheet, where a (model-driven) spreadsheet consists of two types of worksheets:
Sheet 0, containing the embedded ClassSheet model, and Sheet 1, containing the
spreadsheet data that conforms to the model. Users can interact with both the Class-
Sheet model and the spreadsheet data. Our techniques guarantee the synchronization
of the two representations.

In such a model-driven environment, users can evolve the model by using stan-
dard editing/updating techniques as provided by spreadsheets systems. Our add-
on/environment also provides predefined buttons that implement the usual ClassSheets
evolution steps. Each button implements an evolution rule, as described in Section 4.
For each button, we defined a BASIC script that interprets the desired functionality, and
sends the contents of the spreadsheet (both the model and the data) to our HASKELL-
based co-evolution framework. This HASKELL framework implements the co-evolution
of the spreadsheet models and data presented in Section 4.

MDSheet also allows the development of ClassSheet models from scratch by using
the provided buttons or by traditional editing. In this case, a first instance/spreadsheet
is generated from the model which includes some business logic rules that assist users
in the safe and correct introduction/editing of data. For example, in the spreadsheet
presented in Figure 5b, if the user presses the button in column J, four new columns
will automatically be inserted so the user can add more flights. This system will also
automatically update all formulas in the spreadsheet.

The global architecture of the model-driven spreadsheet development we constructed
is presented in Figure 10.

Tool and demonstration video availability: The MDSheet tool and a video with a
demonstration of its capabilities are available at

24

Sync

Sync

Button pressed

Sheet 0Sheet 1

Sheet 0Sheet 1

From the model MDSheet generates a template

Haskell ClassSheet data
type

Application of evolution rule
chosen by the user

New Haskell
ClassSheet data type

Forward and backward
transformations

New Haskell spreadsheet
representation

BASIC sends sheet 1 (data) to
MDSheet the back-end

Haskell spreadsheet
representation

Application of the forward/
backward tansformation

BASIC sends sheet 0 (model) to the
MDSheet back-end

Figure 10: Model-driven spreadsheet development environment.

http://ssaapp.di.uminho.pt.

In the next section we present in detail the empirical study we have organized and
conducted to assess model-driven spreadsheets running through MDSheet.

25

6 Empirical Evaluation
In the context of software engineering research, empirical validation is widely rec-
ognized as essential in order to assess the validity of newly proposed techniques or
methodologies [29]. While our previous work on the construction of a model-driven
spreadsheet development environment has received good feedback from the research
community, the fact is that its assessment in a realistic and practical context was still
lacking. In this line, we have designed an empirical study that we describe in this sec-
tion and whose results we also analyze in detail here.

The experiment that we envisioned is motivated by the need to understand the
differences in individual performance that users achieve under MDSheet (using what
we call model-driven spreadsheets) against traditional spreadsheet systems (from now
on termed plain). The perspective of the experiment is from the point of view of a
researcher who would like to know whether there is a systematic difference in the users
performance.

In this section we detail the different stages that we underwent in preparing and de-
signing our study (Section 6.1), in running it (Section 6.2), and in analyzing (Section 6.3)
and interpreting (Section 6.4) the results, which are discussed afterwards (Section 6.5).
Finally, we can summarize the scope of this study as suggested in [29] as follows:

Analyze the spreadsheet development process
for the purpose of evaluation
with respect to its effectiveness and efficiency
from the point of view of the researcher
in the context of the usage of two different spreadsheets by Master students.

6.1 Design
The goal of our study is to analyze several aspects of spreadsheet development, and
to evaluate the implications of using a model-driven approach against the more com-
monly used approach of designing and introducing spreadsheet data from scratch and
immediately within spreadsheets themselves.

The study that we conducted was designed for a controlled environment mostly
because our tool was never tested in production. In order to achieve this controlled
environment, we decided to perform the study in an off-line setting (in an academic
environment and not in industry), and with university students attending a Master’s
program. Furthermore, our study analyzes the specific use of ClassSheet-based models,
and does not consider generic model-driven spreadsheet development. Finally, in our
study, participants were asked to solve realistic problems, in situations that were closely
adapted from real-world situations.

6.1.1 Hypotheses

MDSheet uses ClassSheet-based models to specify spreadsheets, hence it benefits from
ClassSheet advantages such as: (i) users are freed from the risks associated with editing
formulas directly, and (ii) users do not have to manually identify parts of the spread-
sheet that are repeatable (class expansions). In theory, (i) reduces the number of errors
and (ii) improves spreadsheet development performance. However, this needs to be
tested. Thus, we can informally state two hypotheses:

26

1. In order to perform a given set of tasks, users spend less time when using model-
driven spreadsheets instead of plain ones.

2. Spreadsheets developed in the model-driven environment contain less errors than
plain ones.

Formally, two hypotheses are being tested: HT for the time that is needed to per-
form a given set of tasks, and HE for the error rate found in different types of spread-
sheets. They are respectively formulated as follows:

1. Null hypothesis, HT0 : The time to perform a given set of tasks using MDSheet is
not less than that taken with plain spreadsheets. HT0 : µd 6 0, where µd is the
expected mean of the time differences.
Alternative hypothesis, HT1 : µd > 0, i.e., the time to perform a given set of tasks
using MDSheet is less than with plain spreadsheets.
Measures needed: time taken to perform the tasks.

2. Null hypothesis, HE0 : The error rate in spreadsheets when using MDSheet is not
smaller than with plain spreadsheets. HE0 : µd 6 0, where µd is the expected
mean of the differences of the error rates.
Alternative hypothesis, HE1 : µd > 0, i.e., the error rate when using MDSheet is
smaller than with plain spreadsheets.
Measures needed: error rate for each spreadsheet.

6.1.2 Variables

The independent variables are: for HT the time to perform the tasks, and for HE the error
rate.

6.1.3 Subjects and Objects

The subjects for this study were first year Master students undergoing a course at Uni-
versidade do Minho. Out of a total number of thirty-five students that were invited,
twenty-five actually accepted the invitation and participated in our study. More details
about the subjects participating in the study are presented in Section 6.3.

The objects for the study consisted in three different kinds of spreadsheets that are
described later in this paper, in Section 6.1.5. One spreadsheet was used to support an
in-study tutorial that was given to participants before they were actually asked to per-
form a series of tasks on the model-driven versions of the remaining two spreadsheets.
This design choice attempts to minimize the threats to construct validity, namely the
mono-operation bias (please refer to Section 6.4.1 for more details on threats to valid-
ity).

6.1.4 Design

In our study, we followed a standard design with one factor and two treatments, as
presented in [29]. The factor is the development method, that is, spreadsheet development
without using MDSheet. The treatments are plain and model-driven. The dependent
variables are measurable in a ratio scale, and hence a parametric test is suitable.

Moreover, blocking is provided in the sense that each hypothesis is tested indepen-
dently for each object. This enables to reduce the impact of the differences between the
two spreadsheets.

27

6.1.5 Instrumentation

As we have been describing, our study was supported by three distinct kinds of spread-
sheets. For the spreadsheet that was used in the tutorial, we have only constructed its
model-driven version, but for the two remaining spreadsheets we have used both their
model-driven and plain versions.

The spreadsheet that was used in the tutorial was designed to record (simplified)
information on the flights of an airline company, namely its planes, their crew and the
meals available on-board. As for the two remaining kinds of spreadsheets, they were
selected based on their practical interest: one of them, from now on termed budget,
is an adapted version of the Personal budget worksheet that is available from Microsoft
Office’s webpage6 (this spreadsheet has been downloaded over 4 million times); the
other, payments is an adapted version of a spreadsheet that is being used to register
the entire information regarding the payments that occur in the municipal company
Agere7 that is responsible for the water supply in the city of Braga, Portugal. In order
to be usable, we have reduced the size of both spreadsheets, without changing their
complexity.

The given budget spreadsheet had 66 rows and 80 columns with 3306 filled cells.
It contained the information for 12 months of 6 consecutive years, organized in 11 dif-
ferent categories of income/expenses subdivided in income/expense items. Each year
and category had a subtotal, and there was a grand total for the years and another for
the categories, all of them being formulas.

The given payments spreadsheet had 33 rows and 55 columns with 1645 filled cells.
It contained the information for 3 years, subdivided in 9 payment forms with 6 kinds of
totals, and 1 month (January) with 31 days. At the end of each month/year there was
also a grand total.

Guidelines were also provided to participants: they consisted of the list of tasks
to be performed. For both spreadsheets, three tasks were given (non-essential data is
omitted, being replaced by “[...]”):

Budget

i) “Add to the budget two new categories of expenses, [...], with the following
expenses [...].”

ii) “Add a new year, [...], to the budget keeping the structure of the spread-
sheet, and insert the following data: [...].”

iii) “Delete the information from categories [...].”

Payments

i) “Add a new month, [...], maintaining the structure of the spreadsheet and
add the following data: [...].”

ii) “Add a new year, [...], keeping the structure of the spreadsheet and insert
the following data: [...].”

iii) “Change the spreadsheet in order to remove the information related to kind
of payment [...], removing the corresponding column.”

6http://office.microsoft.com/en-us/templates/personal-budget-worksheet-
TC006206279.aspx

7http://www.agere.pt/

28

Serveral versions of the lists of tasks were prepared, where each version had a spe-
cific task order, thus each participant performed the tasks sequencially in a random
order. The data to be inserted did not contain more than six values per task. The partic-
ipants had to update the formulas to include new references to cells when needed. The
full description of the six tasks, that include the data to be added to the spreadsheets, is
available at the tool webpage presented earlier.

To evaluate the participants’ work, each task was sub-divided in small parts equiv-
alent to each “atomic” operation that they should perform. For the budget spreadsheet,
we have the following sub-division, with a total of twenty-three items:

• ten items for i), corresponding to inserting the lines for the data, inserting the
values, and updating the formulas;

• nine items for ii), corresponding to inserting the new cells, inserting the data,
inserting the formulas, and updating the formulas for the totals;

• four items for iii), corresponding to removing the categories, and updating the
formulas.

For the payments spreadsheet, we have the following sub-division, with a total of ten
items:

• four items for i), corresponding to inserting new cells for the data, inserting the
data, and updating the formulas;

• four items for ii), corresponding to inserting new cells for the data, inserting the
data, and updating the formulas;

• two items for iii), corresponding to deleting the columns and updating the for-
mulas.

In order to understand the background of the subjects and the difficulties they ex-
perienced when participating in the study, two questionnaires were prepared: one an-
swered before the study itself (pre-questionnaire) and another after (post-questionnaire).

The data collected consists of the modified spreadsheets by the participants, and
some information about the performance of our model-driven environment. For that,
the MDSheet add-on was modified in order to provide a log of the user actions when
working with the model-driven spreadsheet. This log contains the action performed
(e.g., “add instance” and “remove class”), and how much time the system took for each
action.

6.1.6 Data Collection Procedure

Several steps were planned to run the study, with two distinct options in the order they
should be performed. One of them is:

1. Filling the pre-questionnaire.

2. Performing the sets of tasks on the two plain spreadsheets, with a time limit of
fifteen minutes.

3. Attending the tutorial on MDSheet.

4. Performing the sets of tasks on the two model-driven spreadsheets, with a time
limit of fifteen minutes.

5. Filling the post-questionnaire.

6. Collecting all spreadsheets, questionnaires and logs.

29

The other option is: (1), (3), (4), (2), (5), and (6). This option consists of first per-
forming the operations with the model-driven environment and then the operations
on plain spreadsheets, as opposed to the first option in which the operations on plain
spreadsheets is first. This design choice attempts to minimize the learning effects be-
tween treatments and so the validity threats.

In steps (3) and (6), our team was expected to have a direct participation, giving
the tutorial in step (3) and retrieving, in step (6), all the artifacts used or created by the
subjects.

All the subjects of our study were expected to perform the two sets of tasks on the
respective spreadsheets. The goal of the study is not to compare one spreadsheet against
another, but instead to compare two methods to develop spreadsheets. Furthermore,
using two spreadsheets permits to reduce the mono-operation bias (see Section 6.4.1).

6.1.7 Analysis Procedure and Evaluation of Validity

The analysis of the collected data is achieved performing paired tests where the per-
formance of each subject on the plain version of the spreadsheet is tested against the
model-driven version. For this, the following tests are available: paired t-test, Wilcoxon
sign rank test, and the dependent-samples sign-test.

To ensure the validity of the data collected, several kinds of support were planned:
constant availability to clarify any doubt, tutorial to teach the model-driven develop-
ment process, and slightly supervise the work done by the subjects in a way that do not
interfere with their work. This last point consists of navigating through the room and
see which subjects look like they are having problems and try to help them if it is about
something that does not influence the results of the study.

6.2 Execution
The study was performed in two classrooms with twenty-five university students, eleven
in one room and fourteen in the other one. The participants were randomly assigned
to each room. All performed the study at the same time, but with different execution
orders depending on the room that they were in.

The participants first started filling the pre-questionnaire, with generic information
about themselves (gender, age range, and undergraduate major). They also answered
some questions so we could assess their previous experience with spreadsheets.

While they filled the questionnaire, we checked if their environment was correctly
set. This environment consisted in a virtual machine with Lubuntu 11.10 as the installed
operating system, where we pre-installed LibreOffice Calc, and our add-on – MDSheet.

The list of tasks to be performed was then distributed amongst the participants, and
they had fifteen minutes to perform all the tasks on the spreadsheets, but without the
assistance of our framework.

Before telling the participants to perform the tasks on the spreadsheets with the
models, they attended the tutorial that we prepared on how to use the MDSheet frame-
work. During the tutorial, we answered all the questions that the participants had,
making sure that they could use the framework.

The subjects in one room first performed the tasks with plain spreadsheets, then
attended the tutorial and then performed the tasks on model-driven spreadsheets. The
subjects in the other room first attended the tutorial, then performed the tasks on model-
driven spreadsheets, and finally perfomed the tasks on plain spreadsheets.

30

At the end, we gave the post-questionnaire to the participants to evaluate the con-
fidence that they had on their performance during the study. Finally, we collected the
modified spreadsheet files, so that we could analyze them later on.

6.3 Analysis
6.3.1 Descriptive Statistics

Subjects: Basic information about the subjects was gathered, namely their gender, age,
studies’ background, and familiarity with spreadsheets. From the twenty-five subjects,
twenty-one are male and four are female. Most of them are aged between twenty and
twenty-eight, with two subject being over thirty-one. The subjects come from different
areas, most of them having a background in informatics engineering or computer science,
but others come from information technology and communication, IT for health, or IT man-
agement. Two of the subjects never worked with spreadsheets previously and the levels
of experience vary from having used at least once to an heavy usage.

Time spent: As expected, differences were found in the time that subjects used to
perform the tasks. The minimum times recorded on each spreadsheet were by partic-
ipants using the model-driven environment, with average times being lesser for the
model-driven approach.

Figure 11 shows the time each participant took to achieve the given tasks, both
with and without the model-driven environment, for the budget spreadsheet. Only the
results for the subjects that performed all the tasks are displayed to allow for an easier
comparison.

1 2 3 4 6 8 9 10 11 12 13 14 16 17
0

200

400

600

800

1000

Plain

Model-Driven

Subject

T
im

e
(s

)

Figure 11: Time used to perform the tasks on the budget spreadsheet.

Similar results were obtained for the payments spreadsheet, as shown in Figure 12.
Error rates: To evaluate the correctness of the spreadsheets produced during the

study, error rates are used. Each of the six tasks requires a set of spreadsheet operations
to be correctly performed. Such operations included: adding a new row, adding a new
column, changing the value of a cell, or changing the value of a formula. One error
occurs when the participant does not perform one of those operations (e.g., the formula
was not updated after inserting a new record), or the operation was performed incor-
rectly (e.g., the wrong value was introduced in the cell). The errors obtained correspond
to the percentage of (sub)tasks that were not performed correctly.

In order to compare the results from each subject with the ones from the other sub-
jects, only the subjects that performed all three tasks are show in the overall error rate
charts shown in Fig. 13 and in Fig. 14. The results from the other subjects were excluded

31

1 2 3 4 5 6 8 9 10 11 13 14 15 16 17
0

200

400

600

800

1000

Plain

Model-Driven

Subject

T
im

e
(s

)

Figure 12: Time used to perform the tasks on the payments spreadsheet.

from this analysis since a given task may be more error-prone than another one, which
could be misleading in the chart.

Error rates for the plain budget spreadsheet are around 50%, most of the errors
being related to wrong formulas. Some errors are also present in the model-driven
version of this spreadsheet, but they are in much lesser quantity since the environment
deals automatically with the formulas. The errors present in the model-driven version
(and also present in the plain one) result from the input of wrong values, or their input
in the wrong places. This information is graphically shown in Fig. 13.

1 2 3 4 6 8 9 10 11 12 13 14 16 17
0%

20%

40%

60%

80%

100%

Plain

Model-Driven

Subject

E
rr

or
 R

at
e

Figure 13: Error rate in the budget spreadsheet.

Similar results were obtained for the payments spreadsheet (see Fig. 14), with a
slightly higher error rate for the plain version of the spreadsheet (around 60%).

This analysis was also performed at the task level, yielding similar results. They are
not shown here since they do not bring any relevant information than what is already
presented.

Subjects made mistakes in both plain and model-driven spreadsheets. Typical errors
made in plain spreadsheets are the wrong or misplaced values, a wrong formula, and
the lost of the spreadsheet structure. In the model-driven version the only type of errors
are the wrong and misplaced values.

6.3.2 Hypothesis Testing

The significance level used throughout the evaluation of all the tests is 0.05. The evalu-
ation of the tests was performed using the R environment for statistical computing [30].

32

1 2 3 4 5 6 8 9 10 11 13 14 15 16 17
0%

20%

40%

60%

80%

100%

Plain

Model-Driven

Subject

E
rr

or
 R

at
e

Figure 14: Error rate in the payments spreadsheet.

Comparison of times: The difference of times between the execution of tasks in
plain spreadsheets and model-driven ones do not follow a normal distribution. Thus,
we used the Wilcoxon test, which is the best fit for these cases [29].

The results obtained from the tests show that for model-driven spreadsheet devel-
opment, in the particular case when our tool is used, the time taken to perform the tasks
is statistically less than when using a plain spreadsheet (with p-value of 0.007882 for the
budget spreadsheet and 0.0002441 for the payments one).

Comparison of error rates: The differences of error rates between plain spreadsheets
and model-driven ones do not follow a normal distribution. Thus, we used a Wilcoxon
test to test the null hypotheses for both spreadsheets, in order to be able to compare the
results.

The results obtained from the tests show that for model-driven spreadsheet devel-
opment, in the particular case when our tool is used, the number of errors are statisti-
cally less than when using a plain spreadsheet (with p-value of 0.0003579 for the budget
spreadsheet and 0.001911 for the payments one).

6.4 Interpretation
The results from the analysis suggest that a model-driven approach to spreadsheet de-
velopment can improve users’ performance, while reducing the error rate. Moreover,
from the questionnaires we can conclude that subjects felt more confident in the results
of the model-driven approach compared to the the plain one. This indicates that some
restrictions on the development process are welcome by the user since they understand
this will make them perform better on their tasks.

6.4.1 Threats to validity

The goal of the study is to demonstrate a causal relationship between the use of a model-
driven approach and improvements in the spreadsheet development process. More-
over, this study is defined to ensure that the actual setting used represents the theory
we developed.

Next, validity threats for this study are analyzed, divided in four categories as de-
fined in [31], namely: conclusion validity, internal validity, construct validity, and ex-
ternal validity.

Conclusion validity: The main concern is the low statistical power due to the low
number of participants. To overcome this issue more powerful statistical tests were

33

performed where possible, taking always into account the necessary assumptions.
Problems related to measures can also arise, e.g., the times that the subjects took

to perform the tasks. Nevertheless no significant differences to the real values are ex-
pected. Moreover, subjects performed the same tasks and in an environment that they
are used to. Also, subjects have a similar background, which minimizes the risk of the
variation being due to individual differences instead of the use of different treatments,
but introduces problems when generalizing (see further on).

Internal validity: In order to minimize the effects on the independent variables that
would reflect on the causality, several actions were taken. First, this study, with these
subjects, is executed only once, some starting with plain spreadsheets and subsequently
with the model-driven environment, while others starting with the model-driven envi-
ronment and then working with the plain spreadsheets, with the goal to reduce learning
effects. Second, the time to perform the study was reduced as much as possible so that
the subjects could remain focused during all the study. Third, the instruments used
(e.g., spreadsheets and questionnaires) were defined so that we could collect just what
was needed. Fourth, all the subjects performed the same tasks, so issues from having
different groups with distinct treatments do not arise. Specifying as much as possible
the study, we obtained more control and reduced possible internal validity threats.

Construct validity: For this validity, several hypotheses to cover the aspects to ana-
lyze were defined with much detail, and mono-operation bias was reduced using two
spreadsheets to collect data. Furthermore, the subjects were guaranteed to not be af-
fected by this study, since they were not under evaluation (this was said to them several
times during the study execution), and they were put at ease so that they would perform
as much like in a real-world setting.

External validity: This validity is related to the ability to generalize the results of
the experiment to industrial practice. For that, the spreadsheets used to collect the data
were based on real-world ones. However, since this study was performed with a small
homogeneous group, the results from this study cannot be generalized without analyz-
ing the domain where to apply.

6.4.2 Inferences

Since this study was performed in a very specific setting, we cannot generalize to ev-
ery case. Nevertheless, our setting was the most similar possible to a real one, where
spreadsheets were based on real ones and Master students studies can come close to
ones with professionals [32], so the results could be as if it was performed in a industry
setting with professionals. This can bring the possibility that model-driven spread-
sheet development can be useful, and studies in the industry can be used to assess the
methodology in specific cases.

6.5 Discussion
The empirical study we conducted reveals very promising results for model-driven
spreadsheets. Although participants had little time to learn model-driven spreadsheets,
they completed their tasks faster and with less errors using such spreadsheets compared
to the ones without models. This suggests that with little training users can greatly ben-
efit from the use of models guiding them. Moreover, as we theorized, it was apparently
easy to use the model-driven setting in an environment users are used to, that is, a
spreadsheet system.

34

Nevertheless, from the study results we can also see how to improve our frame-
work. The errors committed by participants in the model-driven environment were
similar to the ones found in the plain spreadsheets. Two kinds of errors were found:
values (correct or incorrect) inputted in the wrong cell and incorrect inputted values (in
the correct cell). To improve the input values in the wrong place we believe we are in
conditions of proposing some possible solutions:

• Labels’ context: as often happens, the spreadsheets we gave to participants had
blocks of cells repeated over columns/rows (e.g. payments over months, budgets
over years). Given this scenario, it is quite easy to scroll over the spreadsheet and
lose visual contact with labels, mainly in large spreadsheets. We believe that
keeping labels always visible would help users to input the values in the correct
cells. Thus, we plan to make labels as visible as possible. This can be achieve in
two ways: first, one could use the spreadsheet mechanism that allows to keep
some columns/rows visible always; second, given that our spreadsheets have a
corresponding model where labels are known, MDSheet could repeat label cells
every number of columns/rows it would see appropriate, or it could also suggest
the person creating the model to repeat such labels when again it would see fit.

• Complete row/column context: we believe the previous solution can still be im-
proved. Even with labels visible, inputing values “far” from labels can be error-
prone. A possible helper mechanism would be to highlight the column/row
corresponding to the cell the user is currently selecting. This would give extra
context to the users’ actions and would possibly minimize inputing values in the
wrong cells.

Both solutions proposed need, of course, to be empirically validated. We plan to
include them in MDSheet and pursue further validation both individually and in com-
binations.

To improve the second problem, the wrong values, we propose the integration of
known techniques such as testing [33–39] and smell finders [40–43]. It is quite difficult
to know if an inputted value is correct or not, but testing techniques could aid the user to
know better. Moreover, smells can help users to search for places that can be potentially
dangerous in the sense that errors can arise from those spreadsheet locations.

7 Related Work
In spite of its numerous benefits, model-driven engineering is sometimes difficult to
realize in practice. In the context of spreadsheets, the use of model-driven software
development requires that the developer is familiar both with the spreadsheet domain
and with model-driven engineering. ViTSL [9] and Gencel [10] represent the first ap-
proach to deliver model-driven engineering to spreadsheet users. Using these tools, it
is possible to create a model and to generate a new spreadsheet respecting it. This ap-
proach, however, has an important drawback: there is no connection between the stand
alone model development environment and the spreadsheet system. As a result, it is
not possible to (automatically) synchronize the model and the spreadsheet data, that is,
the automatic co-evolution of the model (instance) and its instance (model) is not pos-
sible. In our work we present a solution for these problems by embedding spreadsheet
models under a spreadsheet system.

Hermans et al. [8] describe a technique to automatically infer class diagrams for ex-
isting spreadsheets matching them to a set of pre-defined patterns. The class diagram

35

inferred can then be used to further understand, improved, or re-implement the under-
lying spreadsheet. However, the relationship between the original spreadsheet and the
inferred class diagram is then lost and no further connection exits between them. In our
setting both model and spreadsheet are kept synchronized which allows the evolution
of both artifacts.

Ko et al. [44] summarize and classify the research challenges of the end-user soft-
ware engineering area. These include requirements gathering, design, specification,
reuse, testing and debugging. However, besides the importance of Lehman’s laws
of software evolution [45], very little is stated with respect to spreadsheet evolution.
Spreadsheet evolution poses challenges not only in the evolution of the underlying
model, but also in the migration of the spreadsheet values and the used formulas. Nev-
ertheless, many of the transformations applied within spreadsheets originate in works
aiming at spreadsheet generation.

Engels et al. propose a first attempt to solve the problem of spreadsheet evolu-
tion [46]. ClassSheets are used to specify the spreadsheet model and transformation rules
are defined to enable model evolution. These model transformations are propagated
to the model instances (spreadsheets) through a second set of rules which update the
spreadsheet values. The authors present a set of rules and a prototype tool to support
these changes. In this paper we present a more advanced technique to evolve spread-
sheet models and instances in a different way: first, we use strategic programming [47]
with two-level coupled transformation. This enables type-safe transformations, offer-
ing guarantee that in any step semantics is preserved. Also, the use of 2LT not only
gives us the data migration for free but it also allows back portability, that is, it allows
the migration of data from the new model back to the old one. Moreover, we reuse the
spreadsheet environment so the user does not need to learn a new tool/environment.

Vermolen and Visser [48] proposed a different approach for coupled evolution of
data model and data. From a data model definition, they generate a domain specific lan-
guage (DSL) which supports the basic transformations and allows data model and data
evolution. The interpreter for the DSL is automatically generated making this approach
operational. In principle, this method could also be used for spreadsheet evolution.
However, while their approach is tailored for forward evolution, our own supports re-
verse engineering, that is, it supports automatic transformation and migration from a
newer model to an older one.

In this paper, we have studied the evolution of spreadsheet models and the co-
evolution of the corresponding instances. While the evolution of instances and co-
evolution of models has also already been realized at the theoretical level [49], the fact
is that the proposed bidirectional engine is still under integration. So, for now, we focus
on empirically evaluating the former setting, also for practical reasons: we believe that
constructing an empirical validation scenario for the latter, more general, context would
be unfeasible and potentially lead to undecipherable results.

The empirical study presented in this paper is partly based on the one from [50]. In
their study, Carver et al. evaluate a methodology for spreadsheet testing and debugging,
comparing it against the use of plain spreadsheets. Their study is mainly based on
opinion gathering from the subjects, but they also evaluate two metrics: correctness and
time. They conclude that the use of their methodology did not affect the correctness of
spreadsheets created by users, but it did reduce the effort required to create them.

In fact, another study featuring spreadsheets based on models have been ran by the
authors in the past [13, 14]. However such study considered a completely different set-
ting of the one we now present. The models studied in the previous study are based
on relational databases and not on ClassSheets. Thus, the spreadsheets created are not

36

comparable to the ones studied in this new work. Indeed the results from the previous
study show that relational models for spreadsheets have several limitations while the
new ClassSheet models have delivered much better results, as shown in Section 6. More-
over, the previous study does not consider the evolution of model-driven spreadsheets
as it happens in the new study. Finally, the tools evaluated in the two studies are indeed
different.

8 Conclusion
In this paper, we have presented techniques for providing a model-driven engineering
software development for spreadsheet programming. We have presented the embed-
ding of a domain specific model representation in a widely used spreadsheet system.
We have also presented techniques to perform co-evolution of the ClassSheet model and
spreadsheet data. We have developed an extension for a widely used spreadsheet sys-
tem where such embedding and co-evolution rules are available. Finally we assess
the impact of this approach on users’ productivity by performing an empirical study.
The results obtained clearly show that spreadsheets under the model-driven setting are
more reliable and faster to use than regular ones.

Given the promising results that we have observed, we plan to push model-driven
spreadsheets further. Indeed, we now already have a complete bidirectional model-
driven environment where users can evolve both the model and the data and having
the corresponding artifact co-evolved [49]. In the future, we plan to empirically val-
idate the usability and usefulness of evolving spreadsheet instances and having the
corresponding model co-evolved. As we stated before these techniques must also be
validated in an industrial environment. Thus, in collaboration with Agere, the munici-
pal company that is responsible for supplying water to the city of Braga (which already
supplied us one of the spreadsheets used in this study), we plan to run similar studies
but now in a production environment.

Acknowledgments
The authors of this paper would like to express their gratitude to Dr. Nuno Alpoim,
CEO of Agere, for providing us and our study with a spreadsheet under usage in indus-
try.

This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project FCOMP-01-0124-FEDER-010048.
This work was also supported by Fundação para a Ciência e a Tecnologia with grants
SFRH/BPD/73358/2010 and SFRH/BPD/46987/2008.

References
[1] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional spread-

sheet users by generating leveled dataflow diagrams,” in Proceedings of the 33rd In-
ternational Conference on Software Engineering, ser. ICSE ’11. New York, NY, USA:
ACM, 2011, pp. 451–460.

37

[2] B. A. Nardi, A Small Matter of Programming: Perspectives on End User Computing,
1st ed. Cambridge, MA, USA: MIT Press, 1993.

[3] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the spreadsheets?”
CoRR, vol. abs/0804.0797, 2008.

[4] R. Panko, “Spreadsheet errors: What we know. what we think we can do.” Eu-
SpRIG, 2000.

[5] ——, “Facing the problem of spreadsheet errors,” Decision Line, 37(5), 2006.

[6] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual specifications of
correct spreadsheets,” in VL/HCC. IEEE Computer Society, 2005, pp. 189–196.

[7] G. Engels and M. Erwig, “ClassSheets: automatic generation of spreadsheet appli-
cations from object-oriented specifications,” in ASE. ACM, 2005, pp. 124–133.

[8] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically extracting class dia-
grams from spreadsheets,” in ECOOP ’10: Proceedings of the 24th European Confer-
ence on Object-Oriented Programming. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 52–75.

[9] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger, “Automatic genera-
tion and maintenance of correct spreadsheets,” in ICSE. ACM, 2005, pp. 136–145.

[10] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein, “Gencel: a program
generator for correct spreadsheets,” J. Funct. Program, vol. 16, no. 3, pp. 293–325,
2006.

[11] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding and evolution
of spreadsheet models in spreadsheet systems,” in VL/HCC ’11. IEEE, 2011, pp.
179–186.

[12] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution of spreadsheets,”
in FASE. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 186–201.

[13] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva, “End-users productivity in
model-based spreadsheets: An empirical study,” in IS-EUD, 2011, pp. 282–288.

[14] ——, “An empirical study on end-users productivity using model-based spread-
sheets,” in Proceedings of the European Spreadsheet Risks Interest Group, ser. EuSpRIG
’11, S. Thorne and G. Croll, Eds., July 2011, pp. 87–100.

[15] P. Stevens, J. Whittle, and G. Booch, Eds., UML 2003 - The Unified Modeling Lan-
guage, Modeling Languages and Applications, 6th International Conference, San Fran-
cisco, CA, USA, October 20-24, 2003, Proceedings, ser. Lecture Notes in Computer
Science, vol. 2863. Springer, 2003.

[16] D. Maier, The Theory of Relational Databases. Computer Science Press, 1983.

[17] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “Extension and implemen-
tation of classsheet models,” in Proceedings of the 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing, ser. VLHCC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 19–22.

[18] J. Cunha, J. P. Fernandes, and J. Saraiva, “From Relational ClassSheets to
UML+OCL,” in the Software Engineering Track at the 27th Annual ACM Symposium
On Applied Computing (SAC 2012), Riva del Garda (Trento), Italy. ACM, March
2012, pp. 1151–1158.

38

[19] S. D. Swierstra, P. R. Henriques, and J. N. Oliveira, Eds., Advanced Functional Pro-
gramming, Third International School, Braga, Portugal, September 12-19, 1998, Revised
Lectures, ser. Lecture Notes in Computer Science, vol. 1608. Springer, 1999.

[20] C. Morgan and P. Gardiner, “Data refinement by calculation,” Acta Informatica,
vol. 27, pp. 481–503, 1990.

[21] J. Oliveira, “A reification calculus for model-oriented software specification,” For-
mal Asp. Comput., vol. 2, no. 1, pp. 1–23, 1990.

[22] J. N. Oliveira, “Transforming data by calculation,” in GTTSE, ser. Lecture Notes in
Computer Science, R. Lämmel, J. Visser, and J. Saraiva, Eds., vol. 5235. Springer,
2007, pp. 134–195.

[23] A. Cunha, J. Oliveira, and J. Visser, “Type-safe two-level data transformation,” in
Proc. Formal Methods, 14th Int. Symp. Formal Methods Europe, ser. LNCS, J. Misra
et al., Eds., vol. 4085. Springer, 2006, pp. 284–299.

[24] A. Cunha and J. Visser, “Strongly typed rewriting for coupled software transfor-
mation,” ENTCS, vol. 174, no. 1, pp. 17–34, 2007, 7th Workshop on Rule-Based
Programming.

[25] ——, “Transformation of structure-shy programs: applied to XPath queries and
strategic functions,” in Proceedings of the 2007 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, 2007, Nice, France, January 15-
16, 2007, G. Ramalingam and E. Visser, Eds. ACM, 2007, pp. 11–20.

[26] T. Alves, P. Silva, and J. Visser, “Constraint-aware Schema Transformation,” in The
Ninth International Workshop on Rule-Based Programming, 2008.

[27] S. Peyton Jones, G. Washburn, and S. Weirich, “Wobbly types: type inference for
generalised algebraic data types,” Univ. of Pennsylvania, Tech. Rep. MS-CIS-05-26,
Jul. 2004.

[28] R. Hinze, A. Löh, and B. Oliveira, “”Scrap your boilerplate” reloaded,” in Proc. 8th
Int. Symposium on Functional and Logic Programming, 2006, to appear.

[29] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in Software Engineering, ser. Computer Science. Springer, 2012.

[30] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2013. [Online]. Available:
http://www.R-project.org

[31] T. D. Cook and D. T. Campbell, Quasi-experimentation: design & analysis issues for
field settings. Houghton Mifflin, 1979.

[32] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects – a comparative
study of students and professionals in lead-time impact assessment,” Empirical
Software Engineering, vol. 5, no. 3, pp. 201–214, Nov. 2000.

[33] G. Rothermel, M. Burnett, L. Li, and A. Sheretov, “A methodology for testing
spreadsheets,” ACM Transactions on Software Engineering and Methodology, vol. 10,
pp. 110–147, 2001.

[34] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and M. Burnett, “Automated test
case generation for spreadsheets,” in Proceedings of the 24th International Conference
on Software Engineering (ICSE-02). New York: ACM Press, May 19–25 2002, pp.
141–154.

39

[35] R. Abraham and M. Erwig, “Autotest: A tool for automatic test case generation in
spreadsheets,” in VL/HCC. IEEE Computer Society, 2006, pp. 43–50.

[36] M. Fisher II, G. Rothermel, D. Brown, M. Cao, C. Cook, and M. Burnett, “Integrat-
ing automated test generation into the WYSIWYT spreadsheet testing methdol-
ogy,” ACM Transactions on Software Engineering and Methodology, vol. 15, no. 2, pp.
150–194, April 2006.

[37] R. Abraham and M. Erwig, “Goaldebug: A spreadsheet debugger for end users,”
in ICSE ’07: Proceedings of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 251–260.

[38] ——, “UCheck: A spreadsheet type checker for end users.” J. Vis. Lang. Comput.,
vol. 18, no. 1, pp. 71–95, 2007.

[39] ——, “Mutation operators for spreadsheets,” IEEE Trans. Software Eng, vol. 35,
no. 1, pp. 94–108, 2009.

[40] J. Cunha, J. P. Fernandes, J. Mendes, H. Ribeiro, and J. Saraiva, “Towards a Catalog
of Spreadsheet Smells,” in The 12th International Conference on Computational Science
and Its Applications, ser. ICCSA’12, vol. 7336. LNCS, 2012, pp. 202–216.

[41] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and visualizing inter-
worksheet smells in spreadsheets,” in Proceedings of the 2012 International Confer-
ence on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press,
2012, pp. 441–451.

[42] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code smells in spread-
sheet formulas,” in ICSM, 2012, to appear.

[43] A. Asavametha, “Detecting bad smells in spreadsheets,” Master’s thesis, Oregon
State University, 2012.

[44] A. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrence, H. Lieberman, B. Myers, M. Rosson, G. Rothermel, M. Shaw, and
S. Wiedenbeck, “The state of the art in end-user software engineering,” Journal
ACM Computing Surveys, 2009.

[45] M. M. Lehman, “Laws of software evolution revisited,” in EWSPT ’96: Proceedings
of the 5th European Workshop on Software Process Technology. London, UK: Springer-
Verlag, 1996, pp. 108–124.

[46] M. Luckey, M. Erwig, and G. Engels, “Systematic evolution of typed (model-based)
spreadsheet applications,” submitted for publication.

[47] R. Lämmel and J. Visser, “Typed Combinators for Generic Traversal,” in Proc. Prac-
tical Aspects of Declarative Programming PADL 2002, ser. LNCS, vol. 2257. Springer,
Jan. 2002, pp. 137–154.

[48] S. D. Vermolen and E. Visser, “Heterogeneous coupled evolution of software lan-
guages,” in Proceedings of the 11th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2008), ser. Lecture Notes in Computer Science,
K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, Eds., vol. 5301. Heidel-
berg: Springer, September 2008, pp. 630–644.

[49] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva, “Bidirectional
Transformation of Model-Driven Spreadsheets,” in Theory and Practice of Model
Transformations – ICMT 2012, ser. Lecture Notes in Computer Science, Z. Hu and
J. de Lara, Eds. Springer-Verlag, 2012, vol. 7307, pp. 105–120.

40

[50] J. Carver, M. Fisher, II, and G. Rothermel, “An empirical evaluation of a testing
and debugging methodology for excel,” in Proceedings of the 2006 ACM/IEEE inter-
national symposium on Empirical software engineering, ser. ISESE ’06. New York, NY,
USA: ACM, 2006, pp. 278–287.

41

