
Detecting Anomalous Energy Consumption in
Android Applications

Tiago Carção, Marco Couto, Jácome Cunha,
João Paulo Fernandes, and João Saraiva

HASLab / INESC TEC, Universidade do Minho, Portugal
CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal

RELEASE, Universidade da Beira Interior, Portugal
{tiagocarcao,mcouto,jacome,jpaulo,jas}@di.uminho.pt

Abstract. The use of powerful mobile devices, like smartphones, tablets
and laptops, are changing the way programmers develop software. While
in the past the primary goal to optimize software was the run time op-
timization, nowadays there is a growing awareness of the need to reduce
energy consumption.
This paper presents a technique and a tool to detect anomalous energy
consumption in Android applications, and to relate it directly with the
source code of the application. We propose a dynamically calibrated
model for energy consumption for the Android ecosystem, and that sup-
ports different devices. The model is then used as an API to monitor
the application execution: first, we instrument the application source
code so that we can relate energy consumption to the application source
code; second, we use a statistical approach, based on fault-localization
techniques, to localize abnormal energy consumption in the source code.

Keywords: Green Computing, Energy-aware Software, Source Code
Analysis

1 Introduction

The software engineering and programming language communities have devel-
oped advanced and widely-used techniques to improve both programming pro-
ductivity and program performance. For example, they developed powerful type
and modular systems, model-driven software development approaches, integrated
development environments, etc that, indeed, improve programming productivity.
These communities are also concerned in providing efficient execution models for
such programs, by using compiler-specific optimizations (like, tail recursion elim-
ination), partial evaluation [1], incremental computation [2], just-in-time compi-
lation [3], deforestation and strictification functional programs [4–6], etc. Most
of those techniques aim at improving performance by reducing both execution
time and memory consumption.

While in the previous century computer users and, as a consequence, software
developers, were mainly looking for fast computer software, this is being chang-

2 Authors Suppressed Due to Excessive Length

ing with the advent of powerful mobile devices, like laptops, tablets and smart-
phones. In our mobile-device age, one of the main hardware/software bottlenecks
is energy-consumption! In fact, mobile-device manufacturers and their users are
as concerned about performance of their device as in battery consumption/life-
time! Unfortunately, developing energy-aware software is a difficult task, still.
While programming languages provide several compiler optimizations, memory
profiler tools, benchmark and time execution monitoring frameworks, there are
no equivalent tools/frameworks to profile/optimize energy consumption.

In this paper we propose a methodology to monitor and detect anomalous
energy consumption for the Android ecosystem: a widely used ecosystem for mo-
bile devices. More precisely, we aim at providing Android application developers
the tool support needed to develop energy-efficient applications. We propose a
three layer methodology, which also account as the contributions of this paper:

– Firstly, we introduce an algorithm/application for the dynamic calibration
of such model, thus allowing the automatic calibration of the model for any
Android device. Moreover, we provide an API so that the calibrated power
model can be accessed by the Android application we wish to monitor in
terms of energy consumption.

– Secondly, we develop an Android application that automatically instruments
the source code of a given Android application the developer wishes to moni-
tor its energy consumption. The instrumentation is performed by embedding
in the source code calls to the (calibrated) power consumption model API.

– Thirdly, we use a testing framework for Android applications in order to exe-
cute the (previously compiled) instrumented application. For each execution
of a test case, we collect the energy consumed. Based on the energy con-
sumed logs we performed several static analysis to detect abnormal energy
consumption.

We have implemented our methodology in two different tools: one to dynam-
ically calibrate our Android power consumption model, using a pre-defined set
of calibrating applications. The second tool is used to automatically instrument
the source code of an application its developed wishes to monitor in terms of
energy consumption.

This paper is organized as follows: Section 2 presents the Android power con-
sumption model, its dynamically calibrating algorithm, and the API that makes
such model a reusable API. Section 3 describes the changes made to the Android
power consumption model so it can be used to monitor power consumption at
the source code level, as well as the changes that the framework does to an appli-
cation source code. Section 4 introduces the framework GreenDroid, describing
how it works and how it relates the previous sections. Section 5 describes the
results generated by the framework. Finally sections 6 and 7 present the related
work and the conclusions, respectively.

Detecting Anomalous Energy Consumption in Android Applications 3

2 A Dynamic Power Consumption Model

In this Section we briefly discuss the Android power consumption model pre-
sented in [7]. This is a statically calibrated model that considers the energy
consumption of the main hardware components of a mobile device. Next, we ex-
tend this model in two ways: firstly, we present an algorithm for thee automatic
calibration of the model, so that it can be automatically ported to any Android
based device (Section 2.2). Secondly, we provide an API-based implementation
of the model so that it can be reused to monitor other Android applications
(Section 3.1).

2.1 The Android Power Tutor Consumption Model

We know that different hardware components have different impact in a mobile
device power consumption. As a consequence, an energy consumption model
needs not only to consider the main hardware components of the device, but
also its characteristics. Mobile devices are not different from other computer
devices: they use different hardware components and computer architectures
that have complete different impact in energy consumption. If we consider the
CPU, different mobile devices can use very different CPU architectures (not
only varying in computing power, but also, for example, in the number of CPU
cores), that can also run at different frequencies. The Android ecosystem was
design to support all different mobile (and non-mobile) devices (ranging from
smart-watches to TVs). As a result, a power consumption model for Android
needs to consider all the main hardware components and their different states
(for example, CPU frequency, percentage of use, etc).

There are several power consumption models for the Android ecosystem [8–
11, 7], that use the hardware characteristics of the device and possible states
to provide a power model. Next, we briefly present the power tutor model [7]:
a state-of-the-art power model for smartphones [8]. The Power Tutor [7] model
currently considers six different hardware components: Display, CPU, GPS, Wi-Fi,
3G and Audio, and different states of such components, as described next.

CPU : CPU power consumption is strongly influenced by its use and frequency.
The processor may run at different frequencies when it is needed, and depending
on what is being done the percentage of utilization can vary between 1 and 100;
There is a different coefficient of consumption for each frequency available on the
processor. The consumption of this component at a specific time is calculated
by multiplying the coefficient associated with the frequency in use with the
percentage of utilization.

LCD : The LCD display power model considers only one state: the brightness.
There is only one coefficient to be multiplied by the actual brightness level (that
has 10 different levels).

4 Authors Suppressed Due to Excessive Length

GPS : This component of the power model depends on its mode (active, sleep
or off). The number of available satellites or signal strength end up having little
dependence on the power consumption, so the model has two power coefficients:
one to use if the mode is on and another to use if the mode is sleep.

Wi-Fi : The Wi-Fi interface has four states: low-power, high-power, low-transmit
and high-transmit (the last two are states that the network briefly enters when
transmitting data). If the state of the Wi-Fi interface is low-power, the power
consumption is constant (coefficient for low-power state), but if the state is
high-power the power consumption depends on the number of packets transmit-
ted/received, the uplink data rate and the uplink channel rate. The coefficient
for this state is calculated taking this into account.

3G : This component of the model depends on the state it is operating, a lit-
tle like the Wi-Fi component. The states are CELL DCH, CELL FACH and
IDLE. The transition between states depends on data to transmit/receive and
the inactivity time when in one state. There is a power coefficient for each of the
states.

Audio : The audio is modeled my measuring the power consumption when not
in use and when an audio file was playing at different volume, but the measures
indicate that the volume does not interfere with the consumption, so it was
neglected. There is only one coefficient to take into account if the audio interface
is being used.

Static Model Calibration In order to determine the power consumption of
each Android device’s component the power model needs to be “exercised”. That
is to say, we need to execute programs that vary the variables of each components
state (for example, by setting CPU utilization to highest and lowest values, or
by configuring GPS state to extreme values by controlling activity and visibility
of GPS satellites), while measuring the energy consumption of the device. By
measuring the power consumption while varying the state of a component, it’s
possible to determine the values (coefficients) to include in a device’s specific
instantiation of the model.

Power Tutor, as all other similar power models, uses a static model calibration
approach: the programs are executed in a specific device (which is instrumented
in terms of hardware) so that an external energy monitoring device1 is used
to measure the energy consumption. Although, this approach produces a precise
model for that device [7], the fact is that with the widely adoption of the Android
ecosystem makes it impossible to be widely used2. Indeed, the model for each
specific device has to be manually calibrated!

1 A widely used devise is available at http://www.msoon.com/LabEquipment/

PowerMonitor.
2 In fact, [7] reports the calibration of the power model for three devices, only.

Detecting Anomalous Energy Consumption in Android Applications 5

2.2 Power Model: Dynamic Calibration

In order to be able to automatically calibrate the power consumption model of
any Android device, we consider a set of training programs that exercises all
components of the power model. The training programs also change (over its
full range) the state of each component, while keeping the other constant. In
this way, we can measure the energy consumption by that particular component
in that state. To measure the energy consumption, instead of using an external
monitoring device as discussed before, we consider the battery consumed while
running the training applications. The Android API provides access to the bat-
tery capacity of the device, and to the (percentage) level of the battery of the
devices. By monitoring the battery level before and after executing a training
application, we can compute the energy consumed by that application. After
collecting power traces for all hardware components, a multi-variable regression
approach is used to minimize the sum of squared errors for the power coefficient.
Fig. 1 shows the architecture of the dynamic calibration of the power model.

CPU
LCD
WIFI

...

4,3; 3,4
2,4
121; 20
...

POWER
MODEL

INSTANCE
CPU
LCD
WIFI

...

X; Y
Z
W; K
...

POWER
CONSUMPTION

MODEL

TRAINING
APPS

ANDROID
DEVICE

CALIBRATION
APP

Fig. 1: The architecture to dynamically calibrate the power model for different devices

The calibration process executes the set of calibration applications in a spe-
cific device. The generic power model presented in the previous section is then
instantiated. The algorithm to dynamically produce such specific model is pre-
sented next.

public Map <String , Float > calibrate (){

List <Float > consumptions;

Map <String , Float > coefficients;

int N = 20;

6 Authors Suppressed Due to Excessive Length

float after , before;

float capacity = getBatteryCapacity ();

for(Training app : allTrainings){

for(State st : app.getStates ()){

consumptions.clear ();

for(int i = 0; i<N; i++){

before = checkBatteryStatus ();

st.execute ();

after = checkBatteryStatus ();

consumptions.add((after -before)*capacity);

}

coefficients.put(st.getName (), mean(consumptions , N));

}

}

return coefficients;

}

The result of this algorithm is a collection of energy consumption coefficients,
one per state of every hardware component. These coefficients are used to com-
pute the energy consumption of an Android application. For example, when the
CPU component is in a known state (i.e., running at a certain frequency, with
a known percentage of use), then the power model computes the current energy
consumption as a equation of those coefficients. Those Android energy consump-
tion models are often implemented as stand alone applications3, which indicate
the (current) energy consumption of other application running in the same de-
vice. In the next section, we present our methodology to use our models in an
energy profiling tool for Android application developers.

3 Energy Consumption in Source Code

Modern programming languages offer their users powerful compilers, that in-
cluded advanced optimizations, to develop efficient and fast programs. Such
languages also offer advanced supporting tools, like debuggers, execution and
memory profilers, so that programmers can easily detect and correct anomalies
in the source code of their applications. In this section, we present one methodol-
ogy that uses/adapts the (dynamic) power model defined in the previous section,
to be the building block of an energy profiling tool for Android applications. The
idea is to offer Android application developers an energy profiling mechanism,
very much like the one offered by traditional program profilers [12]. That is to
say that we wish to provide a methodology, and respective tool support, that
automatically locates in the source code of the application being developed the
code fragments responsible for an abnormal energy consumption.

3 Powertutor application website: https://powertutor.org.

Detecting Anomalous Energy Consumption in Android Applications 7

Our methodology consists of the following steps: First, the source code of the
application being monitored is instrumented with calls to the calibrated power
model. Fig. 2 displays this step.

INSTRUMENTED
SOURCE CODE

ANDROID APP
SOURCE CODE

mW???

DEVELOPER

CPU
LCD
WIFI

...

4,3; 3,4
2,4
121; 20
...

POWER MODEL
INSTANCE

jInst
INSTRUMENTATION

TOOOL

Fig. 2: The behavior of the instrumentation tool

After compiling such instrumented version of the source code, the resulting
application is executed with a set of test cases. The result of such executions
are statistically analyzed in order to determine which packages/methods are
responsible for abnormal energy consumptions.

The source code instrumentation and execution of test cases is performed
automatically as we describe in the next Sections. To instrument the source
code with calls to the power model, we need to model it as an API. This is
discussed first.

3.1 The Model as an API

In order to be able to instrument the source code of an application, with energy
profiling mechanisms, we need to adapt the current implementation of power
model described in section 2.1. That power model is implemented as a stand
alone tool able to monitor executing applications. Thus, we needed to transform
that implementation into an API-based software, so that its methods can be
reused/called in the instrumented source code.

To adapt the power tutor implementation, we introduced a new Java class
that implements the methods to be used/called by other applications and re-
spective test cases. Those methods work as a link interface between the power
consumption model and the applications source code to be monitored.

The methods implemented in the new Java class, called Estimator, and that
are accessible to other applications are:

8 Authors Suppressed Due to Excessive Length

– traceMethod(): The implementation of the program trace .
– saveResults(): store the energy profile results in a file.
– start(): start of the energy monitoring thread.
– stop(): stop of the energy monitoring thread.

3.2 Source Code Instrumentation

Having updated the implementation of the power model so that its energy pro-
filing methods can be called from other applications, we can now instrument an
application course code to call them.

In order to automatically instrument the source code, we need to define the
code fragments to monitor. Because we wish to do it automatically, that is by
a software tool, we need to precisely define which fragments will be considered.
If we consider code fragments too small, for example, a line in the source code,
than, the precision of the power model may be drastically affected: a neglected
amount of energy would probably be consumed. In fact, there is not a tool that
we can use capable of giving power consumption estimates at a so fine grained
level, with reliable results. On the other hand, we should not consider to large
fragments, since this will not give a precise indication on the source code where
an abnormal energy consumption exists.

We choose to monitor application methods, since they are the logical code
unit used by programmers to structure the functionality of their applications.
To automatize the instrumentation of the source code of an application we use
an open source JavaParser tool4: it provides a simple Java front-end with tool
support for parsing and abstract syntax tree construction, traversal and trans-
formation.

We developed a simple instrumentation tool, called jInst, that instruments
all methods of all Java classes of a chosen Android application project, together
with the classes of an Android test project. jInst injects new code instructions,
at the beginning of the method and just before a return instruction (or as the
last instruction in methods with no return), as shown in the next code fragment:

public class Draw{

...

public void functionA (){

Estimator.traceMethod (" functionA", "Draw", Estimator.BEGIN)

;

...

Estimator.traceMethod (" functionA", "Draw", Estimator.END);

}

This code injection allows the final framework to monitor the application,
keeping trace of the methods invoked and energy consumed.

4 Java parser framework webpage: https://code.google.com/p/javaparser.

Detecting Anomalous Energy Consumption in Android Applications 9

3.3 Automatic Execution of the Instrumented Application

After compiling the instrumented source code an Android application is pro-
duced. When executing such application energy consumption metrics are pro-
duced. In order to automatically execute this application with different inputs,
we use Android testing framework5 that is based on jUnit.

In order to use the instrumented application and the developed Estimator
energy class, the application needs to call methods start and stop before/after
every the test case is executed. Both jUnit and Android testing framework allow
test developers to write a setUp() and a tearDown() methods, that are executed
after a test starts and after a test ends, respectively. So, our jInst tool only needs
to instrument those methods so we can measure the consumption for each test,
as shown in the next example:

public class TestA{

...

@Override

public void setUp (){

Estimator.start(uid);

...

}

...

@Override

public void tearDown (){

Estimator.stop();

...

}

With this approach, we assure that every time a test starts, the method Esti-
mator.start(int uid) is called. This method starts a thread that is going to collect
information from the operating system and then apply the power consumption
model to estimate the energy consumed. The uid argument of the method is
the UID of the application in test, needed to collect the right information. The
tearDown() is responsible for stopping the thread and saving the results.

3.4 Green-aware Classification of Source Code Methods

Now, we need to define a metric to classify the methods according to the influence
they have in the energy consumption. They are characterized as follows:

– Green Methods: These are the methods that have no interference in the
anomalous energy consumptions. They are never invoked when the applica-
tion consumes more energy than the average.

5 Android testing web page: https://developer.android.com/tools/testing/

index.html.

10 Authors Suppressed Due to Excessive Length

– Red Methods: Every time they are invoked, the application has anomalous
energy consumption. They can be invoked when the application has bellow
the average energy consumption as well, but no more than 30% of the times.
They are supposed to be the methods with bigger influence in the anomalous
energy consumption.

– Yellow Methods: The methods that are invoked in other situations: mostly
invoked when the application power consumption is bellow the average.

This representation of methods is also extensible for classes, packages and
projects. In other words, the classification of classes depends on the set of meth-
ods they have, and so packages depend on their respective classes, as the projects
are classified according to their packages. If a class has more than 50% of its
methods classified as Red Methods, then it is a red class. With more 50% of
them as green, it is a Green Class. Otherwise, it is a Yellow class. Packages and
projects follow the same approach.

4 GreenDroid: An Android Framework for Energy
Profiling

At this point, we have power source code instrumentation, consumption mea-
suring, method tracing and automatic test execution using the Android testing
framework. The final result should be a tool that works automatically, and does
all this tasks incrementally. After that, it retrieves the information previously
saved and shows the results obtained. This section explains the workflow of the
framework, along with the information obtained at every point, and how the
results are obtained and generated.

TEST
CASES

INSTRUMENTED
SOURCE CODE

THE APP
(INSTRUMENTED)

TESTING
FRAMEWORK

Fig. 3: The behavior of the monitoring framework

Detecting Anomalous Energy Consumption in Android Applications 11

4.1 Workflow

After the source code of the application and the tests are instrumented as de-
scribed in section 2, the framework executes a set of sequential steps to show
the conclusive results, that being:

– Execute the tests: This is the starting point for the framework. The tests will
be executed twice, the first time to get the trace (list of invoked methods)
and the second to measure power consumption, so that the tracing overhead
does not affect measuring. The results will be saved in files (one for each
test), containing a list of the methods invoked, along with the number of
times it was invoked, and also the execution time of the test and the energy
consumed, in mW.

– Merge the results: After all the tests executed (twice), the framework would
have generated a set of files as big as the number of tests. For convenience,
the tests will be merged in one file to be read, parsed and the information
extracted once.

– Classify the methods: At this point, the framework will get the values read
from the file and classify them (and respective classes, packages and projects)
according to the categories described in section 3.4.

– Generate the results: The framework will than generate a graphical represen-
tation of the source code components, giving them different colors according
to its green-aware classification.

This steps are all represented in Figure 3, that represents how the application,
after instrumented, generates the results for measuring and tracing of the test
cases defined with the Android testing framework.

5 Results

This section shows the results of running multiples tests with our framework
from an open source Android application called 0xBenchmark6. This application
allowed us to simulate different kinds of executions. We managed to run 20
different tests, and each test had a different set of methods invoked (execution
trace). So, for each test we managed to keep the trace, the power consumption,
the time a test executed and the number of times a method was invoked. It
is important to refer that the values presented in the charts reflect, for each
test case, an average of several measures. It makes sense to do it since this is
a statistical approach. If we look at the Fig. 4, we can see that different tests
have different values of power consumption. One could think that the tests with
bigger values for power consumption are the ones with bigger execution times,
and so the energy consumed per unit of time would be nearly the same for all
the tests, but Fig. 5 shows that the consumption per second varies between the
tests.

6 0xbench can be found at http://0xbenchmark.appspot.com.

12 Authors Suppressed Due to Excessive Length

Fig. 4: Total consumption per test Fig. 5: Consumption per second

Fig. 6: Execution time

So this are very good indicators, they allow us to conclude that execution
time has an influence in the power consumption, but it is not the only relevant
factor. In fact, it might not be one of the most relevant.

So, with the approach described in section 3 to detect tests with excessive
power consumption, we can get a percentage for each method that reflects it’s
influence in energy anomalous tests. The framework will then assign that percent-
age to the respective method, taking into account the test results, and display
a sunburst diagram like the one in Fig. 7 (similar to the approach presented
in MZoltar [13]) that allows the developer to quickly identify the most energy
anomalous methods.

6 Related Work

Power consumption analysis of Android applications is not an unexplored area in
the investigation scope. In the past years, the investigation in the smartphones
power consumption has been increasing. There are a lot of research works indi-
cating that power consumption modeling and energy-aware software are getting
their importance in the investigation scope. We can find different tools designed
to estimate the required energy for an application to do it’s tasks. The majority
of them focus on the Android based smartphones, mostly because it’s an open
source OS7 and statistics reveal that the percentage of selling is much bigger for

7 An Android overview can be found at http://www.openhandsetalliance.com/

android_overview.html.

Detecting Anomalous Energy Consumption in Android Applications 13

Fig. 7: Sunburst diagram (and how to interpret it)

Android devices than iOS devices (iPhone)8. In fact, in the second quarter of
2013 almost 80% of the market share belonged to Android devices.

Most of the research works starts by identifying the hardware components
of the device with significant influence on it’s energy consumption. We have
the example of Power Tutor [7], that is the starting point for many other re-
search works, but also DevScope [11] and related tools (AppScope [10] and
UserScope [14]). This tools have a power consumption model relating the dif-
ferent hardware components of a device to it’s different states and consequent
power consumption values. The main difference lies in the implementation of the
model: one works as an independent Android application, the other is a linux
kernel module, but both of them focus on collecting the hardware components’
usage information from the operative system.

There are other examples of works based on power consumption models and
it’s applications in different areas ([9, 15–17]), however none of them is as power-
ful or adjusted to this project necessities/goals as the remaining ones. Another
interesting example, SEMO [18], has a similar behavior to Power Tutor, but
doesn’t use power consumption models. Instead, is focused in battery discharge
level, and it’s results are a little more unreliable.

8 Information about global smartphone shipments can be found at http:

//techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-

smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc.

14 Authors Suppressed Due to Excessive Length

Other works [19, 20] demonstrate that is possible to have different values
on energy consumption for different softwares designed to do the same tasks,
so this can be a very good indicator that helping developers choose the most
energy-aware solution for a software implementation is a great contribution.

7 Conclusions and Future Work

The energy consumption is nowadays of paramount importance. This is also valid
to software, and specially for applications running in mobile devices. Indeed the
most used platform is clearly the Android and thus we have devote our attention
to its applications.

Given the innumerable quantity of Android versions and devices, our ap-
proach is to create a dynamic model that can be used in any device and any
Android system, and that can give information to the developers about the
methods he/she is writing that consume the most energy. We have created a
tool that can automatically calibrate the model for every phone, and another
to automatically annotate any application source code so the programmer can
have energy consumption measures with almost no effort.

With this work we were able to show that the execution time is highly cor-
related to the total energy consumption of an application. Although this seems
obvious, until now it was only speculative. We have also shown that the total
time and energy the application takes to execute a set of tasks does not indicate
the worst methods. To find them, it is necessary to apply the techniques we
now propose, measuring this consumption by second and computing the worst
methods, called red methods.

Nevertheless, there is still work to be done. Indeed it is still necessary to
evaluate the precision of the results of our consumption measurements. Since we
do not use real measurements from the physical device components, we still need
to confirm that the results we can compute are accurate enough.

References

1. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3)
(September 1996) 480–503

2. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM
Trans. Program. Lang. Syst. 28(6) (November 2006) 990–1034

3. Krall, A.: Efficient javavm just-in-time compilation. In: International Conference
on Parallel Architectures and Compilation Techniques. (1998) 205–212

4. Wadler, P.: Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science 73 (1990) 231–248

5. Saraiva, J., Swierstra, D.: Data Structure Free Compilation. In Stefan Jähnichen,
ed.: 8th International Conference on Compiler Construction, CC/ETAPS’99. Vol-
ume 1575 of LNCS. (March 1999) 1–16

6. Fernandes, J.P., Saraiva, J., Seidel, D., Voigtländer, J.: Strictification of circu-
lar programs. In: Proceedings of the 20th ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation. PEPM ’11, ACM (2011) 131–140

Detecting Anomalous Energy Consumption in Android Applications 15

7. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: ”Ac-
curate Online Power Estimation and Automatic Battery Behavior Based Power
Model Generation for Smartphones”. Proc. Int. Conf. Hardware/Software Code-
sign and System Synthesis (October 2010)

8. Dong, M., Zhong, L.: ”Self-Constructive High-Rate System Energy Modeling for
Battery-Powered Mobile Systems”. MobiSys ’11 Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services (2011)

9. Kjaergaard, M.B., Blunck, H.: ”Unsupervised Power Profiling for Mobile Devices”.
8th International ICST Conference, Copenhagen, Denmark (December 2011)

10. Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H.: ”AppScope: Application Energy
Metering Framework for Android Smartphones using Kernel Activity Monitoring”.
USENIX Annual Technical Conference (USENIX ATC’12) (June 2012)

11. Jung, W., Kang, C., Yoon, C., Kim, D., Cha, H.: ”DevScope: A Nonintrusive
and Online Power Analysis Tool for Smartphone Hardware Components”. In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’12) (October 2012)

12. Runciman, C., Röjemo, N.: Heap Profiling for Space Efficiency. In Launchbury, J.,
Meijer, E., Sheard, T., eds.: Second International School on Advanced Functional
Programming. Volume 1129 of LNCS. (1996) 159–183

13. Machado, P., Campos, J., Abreu, R.: ”MZoltar: Automatic Debugging of Android
Applications”. First international workshop on Software Development Lifecycle for
Mobile (DeMobile), co-located with European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE) 2013, Saint Petersburg, Russia (2013)

14. Jung, W., Kim, K., Cha, H.: ”UserScope: A Fine-grained Framework for Collecting
Energy-related Smartphone User Contexts”. IEEE International Conference on
Parallel and Distributed Systems(ICPADS 2013) (December 2013)

15. Kim, D., Jung, W., Cha, H.: ”Runtime Power Estimation of Mobile AMOLED
Displays”. 2013 Design, Automation & Test Europe (DATE’13) (March 2013)

16. Carroll, A., Heiser, G.: ”An Analysis of Power Consumption in a Smartphone”.
USENIXATC’10 Proceedings of the 2010 USENIX conference on USENIX annual
technical conference (2010)

17. Zhang, L., Gordon, M.S., Dick, R.P., Mao, Z.M., Dinda, P., Yang, L.:
”ADEL: An Automatic Detector of Energy Leaks for Smartphone Applications”.
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis (2012)

18. Ding, F., Xia, F., Zhang, W., Zhao, X., Ma, C.: ”Monitoring Energy Consump-
tion of Smartphones”. Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and Social
Computing (October 2012)

19. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: ”Method Reallocation to Re-
duce Energy Consumption: An implementation in Android OS”. Symposium On
Applied Computing ’14 (2014)

20. Noureddine, A., Rouvoy, R., Seinturier, L.: ”Unit Testing of Energy Consumption
of Software Libraries”. Symposium On Applied Computing ’14 (2014)

