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ABSTRACT
Spreadsheets are among the most popular programming lan-
guages in the world. Unfortunately, spreadsheet systems
were not tailored from scratch with modern programming
language features that guarantee, as much as possible, pro-
gram correctness. As a consequence, spreadsheets are pop-
ulated with unacceptable amounts of errors.

In other programming language settings, model-based ap-
proaches have been proposed to increase productivity and
program effectiveness. Within spreadsheets, this approach
has also been followed, namely by ClassSheets. In this pa-
per, we propose an extension to ClassSheets to allow the
specification of spreadsheets that can be viewed as rela-
tional databases. Moreover, we present a transformation
from ClassSheet models to UML class diagrams enriched
with OCL constraints. This brings to the spreadsheet realm
the entire paraphernalia of model validation techniques that
are available for UML.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.2 [Software Engineering]: Object-oriented
design methods; F.1.1 [Models of Computation]: [Rela-
tions between models]
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1. INTRODUCTION
Spreadsheets are widely used by non-professional program-

mers, the so-called end users, to develop business applica-
tions. Spreadsheet systems offer a high level of flexibility,
making it easy to start working with them. This freedom,
however, comes with a price: spreadsheets are error prone
as shown by numerous studies which report that up to 90%
of real-world spreadsheets contain errors [12, 13, 14].

In recent years the spreadsheet research community has
recognized the need to support end-user model-driven soft-
ware development, and to provide spreadsheet developers
and end users with methodologies, techniques and the neces-
sary tool support to improve their productivity. Along these
lines, several techniques have been proposed [1, 6, 9], being
ClassSheets [7] the most powerful domain specific model for
spreadsheets. ClassSheets provide a powerful paradigm for
model-driven software development: a spreadsheet business
model is first defined, from which a customized spreadsheet
application is generated guarantying the consistency of the
spreadsheet with the underlying model.

Despite of its huge benefits, the ClassSheets model has
two important drawbacks: firstly, it is not powerful enough
to capture common end user errors. For example, a great
number of spreadsheets represent database tables1, where
there is an embedded notion of a table key in one column
(as known from database theory). In this context, end users
should be warned by the spreadsheet system if, e.g., a du-
plicated key is introduced in such a column. In fact, in [6]
we have proposed techniques for spreadsheet edit assistance
that rely on relational database models, and that guide end
users in introducing correct data. The ClassSheet model is
a very table syntactic oriented formalism and it lacks this
notion of relational databases [10].

Secondly, although ClassSheets is a model-based formal-
ism, there is no connection between it and the languages and
techniques developed by the modelware community. In fact,
the modelware community has done a considerable amount
of work on model design, transformation, evolution and co-
evolution of models and instances [2], that we are convinced
the ClassSheet formalism could reuse and benefit from.

The goal of this paper is three-fold:

• Firstly, we extend ClassSheets with the notion of re-
lational databases. As a result, the spreadsheet data
is not only organized in ClassSheets tables, but such
tables have also the notion of primary and foreign keys.

1Studies suggest that a huge percentage of spreadsheets are
in fact databases, since no formula is used in them! [3].



• Secondly, we extend our embedding of the ClassSheets
in a spreadsheet system [5] to support the so-called re-
lational ClassSheets. We also extend our embedding so
that it produces customized spreadsheets that guides
end user to edit data that conforms to such relational
ClassSheets.

• Thirdly, we present a transformation from relational
ClassSheets to UML+OCL, and thus, making all para-
phernalia of techniques for model validation, trans-
formation and evolution available to relational Class-
Sheets.

The rest of the paper is organized as follows: in Section 2
we review the ClassSheet modelling language, which is ex-
tended with notions from relational databases in Section 3.
Section 4 presents a transformation from this extended mod-
elling language to UML classes with OCL constraints. In
Section 5 we compare ours and related works and in Sec-
tion 6 we conclude the paper.

2. CLASSSHEETS
ClassSheets [7] are a high-level, object-oriented formalism

to specify the business logic of spreadsheets. ClassSheets
allow users to express business object structures within a
spreadsheet using concepts from the Unified Modeling Lan-
guage (UML). Using the ClassSheets model, it is possible to
define spreadsheet tables and give them names, define labels
for the table’s columns, specify the types of the values such
columns may contain and also the way the tables expand
(e.g., horizontally or vertically).

In this section we review the embedding of ClassSheets
in spreadsheet systems, a technique that we have proposed
in [5]. We mimic the well-known embedding of a domain
specific language in a general purpose one and inherit all
the powerful features of the host language: in our case, the
powerful interactive interface offered by the (host) spread-
sheet system. In order to present our embedding, we con-
sider a model-based spreadsheet system, adapted from [10],
to manage an airline company. The fragment of the Class-
Sheet model for such a system that deals with the pilots’
salaries is given in Figure 1.

Figure 1: Using ClassSheets to create a Salaries sheet.

From an object-oriented point of view, one can see a sum-
mation object, which aggregates a list of objects containing
single values. Looking at the layout structure, and starting
from the blue part2, we see a class labeled Pilot, consist-
ing of a value for which the default is 1000. In fact, this is
not a single value, but a list of values, since the row after
it is labeled with ellipses. The summation object, in red, is
defined by a label Salaries, a footer labeled Total and an
aggregation formula assigned to an attribute named total.

Such an object-oriented extended template is a Class-
Sheets model since it defines classes together with their at-
tributes and aggregational relationships. ClassSheets con-
sist of a list of attribute definitions grouped by classes and
2We assume the digital version of the paper to be colored.

arranged on a two dimensional grid. Additional labels are
used to annotate the concrete representation. References to
other entries are defined by using attribute names, as shown
in the SUM formula in the example. The formal language of
ClassSheets is as follows [7]:

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b p b | bˆb (blocks)
l ∈ Lab ::= h | v | .n (classlabels)
h ∈ Hor ::= n | p n (horizontal)
v ∈ V er ::= p n | p n (vertical)
c ∈ Class ::= l : b | l : b↓ | cˆc (classes)
s ∈ Sheet ::= c | c→ | s p s (sheets)

In the next sections, we go through several concrete illus-
trations of constructions that are common to both spread-
sheet systems and ClassSheets.

2.1 Vertically Expandable Tables
Suppose that we want to record the activity of the com-

pany’s pilots. A simple way of achieving this is to use a
spreadsheet, and a table as the one presented in Figure 2a.
This table has a title, Pilots, and a row with labels, one
for each of the table’s column: ID represents a unique pi-
lot identifier, Name represents the pilot name and Flight
hours represents the total number of hours a pilot has flown.
Each of the subsequent rows represents a concrete pilot.

(a) A concrete table. (b) The visual model.

Pilots : Pilots p t p tˆ
Pilots : ID p Name p Flight hours ˆ
Pilots : (id= "" p name= "" p flight hours= 0)↓

(c) The formal model.

Figure 2: Pilot activity record.
Tables such as the one presented in Figure 2a are fre-

quently used within spreadsheets, and it is fairly simple
to create a model specifying such tables. For the example
shown, we can extract the visual ClassSheets model pre-
sented in Figure 2b and its corresponding formal definition
shown in Figure 2c.

To model the labels we use a textual representation and
the exact same names as in the data sheet (Pilots, ID,
Name and Flight hours). To model the actual data we
abstract concrete column cell values by using a single iden-
tifier: we use the one-worded, lower-case equivalent of the
corresponding column label (so, id, name and flight hours).
Next, a type is associated with each column: columns A and
B hold strings and column C holds integer values (denoted
in the model, respectively, by the empty string “” and 0 fol-
lowing the = sign). Notice that the fourth row of the visual
model contains vertical ellipses in all columns. This means
that it is possible for this column to expand vertically: the
tables that conform to this model can have has many rows
as needed. The scope of the expansion is between the ellip-
sis and the black line (between row 2 and 3). In the formal
model this expansion possibility is expressed by the ↓ sign
which affects the same spreadsheet elements.

2.2 Horizontally Expandable Tables



An airline company must also store information on its air-
planes. This is the purpose of table Planes in the spread-
sheet illustrated in Figure 3a, which is organized as follows:
the first column holds labels that identify each row, namely,
N-Number, Model and Name; cells in row N-Number
(respectively Model and Name) contain the unique iden-
tifier of a plane, (respectively the model of the plane and
the name of the plane). Each of the subsequent columns
contains information about one particular aircraft.

(a) A concrete table. (b) The visual model.

|Planes : Planes p t ˆ
N-Number : (N-Number p n-number= "" ˆ
Model : Model p model= "" ˆ
Name : Name p name= "")→

(c) The formal model.

Figure 3: Information on airplanes.

The Planes table can be modelled by the illustration in
Figure 3b, whose formal definition is given in Figure 3c.
This model may be constructed following the same strat-
egy as in the previous section, but now swapping columns
and rows. The first column contains the label information
and the second column the names abstracting concrete data
values; again, each cell has a name and the type of the el-
ements in that row (in this example, all cells are to hold
strings). The third column has ellipses meaning that rows
are horizontally expandable. Notice that the instance table
has information about three planes.

2.3 Relationship Tables
So far in the paper, we have modelled tables for pilots and

planes; reusing what we built, we can now model, as shown
in Figure 4a, a table to store information on concrete flights.

We can see some of the information we had before: in the
top left corner we have a concrete spreadsheet where, be-
tween rows 8 and 12, we have the pilot information shown
in Figure 2a and between rows 15 and 18 the plane infor-
mation shown in Figure 3a. The lines between rows 1 and
5 represent flight scheduling information. For simplicity, let
us for now focus on columns A to E. Column A holds the
identifier of the pilot for a concrete flight. Row 2, columns
B and F, hold the identifiers of the airplanes assigned to fly
from OPO to NAT, two times, and from LIS to AMS, re-
spectively. Origins and destinations of flights are registered
in Depart and Destination columns, as well as the date
and hour of departure (column Date) and the number of
hours the flight will take (column Hours). Notice that we
can have as many entries for pilots (planes, respectively) as
we need just by adding one row per pilot (and 4 columns per
plane). An example of how we read this table is as follows:

pilot pl1 flew plane N2342 from OPO to NAT on December
12th, 2010, at 14:00 hours and the flight took 7 hours.

The ClassSheet model illustrated in the bottom-right part
of Figure 4a straightforwardly abstracts the data instance
that we have just described. The top block of cells expand
both vertically and horizontally as indicated by the ellipses.

The vertical expansion is necessary to add more pilots; the
horizontal one to add more planes. The colors in the model
are used to distinguish the different entities represented,
namely, pilots, planes, references to pilots in the scheduling
table, reference to planes in the scheduling table and the
flight scheduling itself. In the formal syntax of ClassSheets,
the visual model is represented as shown in Figure 4b. Due
to space constraints, this representation has been given a
vertical look, but actually the model is horizontally com-
posed by three blocks (separated by p).

2.4 Generating Spreadsheets from ClassSheets
The previously described models can be translated into

initial spreadsheets together with tailor-made versions of up-
date operations. These operations are defined to perform the
tasks of insertion or deletion in such a way that the spread-
sheet correctness is always preserved. The model presented
in the bottom-right part of Figure 4a can be used to gen-
erate the spreadsheet in the top-left part of the same figure
that guides end-users introducing correct data (actually, this
spreadsheet has already been edited after the initial genera-
tion). The generated spreadsheet contains the labels in bold
on the model, the initial formulas and buttons to add new
vertical and horizontal blocks of cells. For example, in the
Pilots table, there is a button on row 13 which will insert a
new row. The values that will appear in the new row are the
default values defined in the model and the user can only up-
date them to a value of the same type (string, integer, etc.).
A more complex situation would be to add a new flight; this
involves a pilot and a plane, and some more information.
If the user clicks the button in row 6, the system will add
a new row as explained before, but in this case it will also
update the necessary formulas: it will update the formulas
in cells E7, I7 and K7 to include the new added row. This
mechanism prevents the user from editing the spreadsheet
without correctly updating its formulas, and therefore from
corrupting it. The button in column J works in a similar
way, updating the formulas in cells K4 and K5.

3. CLASSSHEETS AND DATABASES
In the previous section we have reviewed ClassSheets as

proposed in [7] and we have shown a concrete example of
how it can be used in practice. In this section we extend the
original ClassSheet formal language with constructions from
the relational database realm. In this way, we extend further
the amount of validations that are possible for spreadsheets
derived from ClassSheets.

We propose the following extensions, marked in red:

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | ϕµ | a = f | b p b | bˆb (blocks)

In a model, as a consequence of the syntactic extension ϕµ,
a column or row can now be declared as containing unique
values. Each of these values is thought of as a primary key
in a relational database. This has important semantic con-
sequences. Consider, for example, the pilot activity record
presented in Section 2.1. There, we declared that the ID col-
umn should hold strings, but the model was not rich enough
to ensure that each pilot in the derived spreadsheet (or each
row in the corresponding column) has a unique identifica-
tion. This can cause two different problems/errors: 1) two
different pilots could be given the same ID, with obvious im-
plications (one being, for example, a pilot assigned to fly a



(a) Spreadsheet instance and ClassSheet model of an airline company.

|Flights : Flights ˆ
|Flights : t ˆ
|PilotsKey : PilotsKey ˆ
|PilotsKey : (pilot key = Pilots.id)↓

p
|Planeskey : Planeskey ˆ
|Planeskey : plane key=Planes.n-number ˆ
.Flight : (Depart p Destination p Date p Hours ˆ
.Flight : (depart= "" p destination= "" p date= d p hours= 0)↓ ˆ
|Planeskey : t p t p t p total = SUM(hours))→

p
|Flights : Flights ˆ
|Flights : Flights ˆ
|TotalPilotHours : TotalPilotHours ˆ
|TotalPilotHours : (total=SUM(hours))↓ ˆ
|Flights : total = SUM(PlanesKey.total)

(b) The formal model.

Figure 4: Spreadsheet of an airline company and an abstract model representing it.

co-worker’s flight); 2) the same pilot could occur in different
rows, with potentially different flight hour records.

This extension is useful for the models that we have seen
so far. In fact, it should be used for the fragments storing
both the information on pilots and planes of Figures 2 and 3,
whose identifiers must be unique:

Pilots : Pilots p t p tˆ
Pilots : IDµ p Name p Flight Hours ˆ
Pilots : (id= "" p name= "" p flight hours= 0)↓

|Planes : Planes p t ˆ
N-Number : (N-Numberµ p n-number= "" ˆ
Model : Model p model= "" ˆ
Name : Name p name= "")→

Now, and just as an example of the extension at work, if
a user tries to insert a new pilot with an identifier already
in use, the spreadsheet derived from the pilots model above
is now able of producing the warning show in Figure 5.

Figure 5: Uniqueness value validation.

As for the extension n.a, it is actually not of a syntac-

tic nature. Indeed, you may notice that such a definition
already occurred in the original ClassSheet language as a
way of referring, in a class, to an attribute of a different
class. In our work, however, this has a stronger interpreta-
tion. Indeed, we view one such occurrence in the same way
a foreign key is viewed in a database model. This means
that, when a spreadsheet model is being constructed, we first
check whether a class n, and the corresponding attribute a
do exist before accepting a cell declaration n.a. Then, we
also verify whether a has been declared as unique (i.e., as a
primary key) in block n. A final validation of the derived
spreadsheet is ensured by construction: it is not possible to
have erroneous values in these cells since the user is only
allowed to fill them by selecting a value from a list with pre-
cisely the values in n.a. Actually, in case the user inserts
a value of the appropriate type in a foreign key cell, we do
not immediately consider an error the fact that such value
is not a primary key of the corresponding table: a situation
like that may reveal an intention of introducing a new tuple
(key, values) in that table. Therefore, the user is in this
case asked either to confirm the erroneous situation or to in-
troduce the values to associate with key, that we correctly
insert in the right table. A concrete situation of this kind
is illustrated in Figure 6, when the user tries to assign pilot
pl4 to a given flight whereas no pilot with that PilotsKey
exists in the Pilots table.

These validations were originally not ensured and, at the



Figure 6: Foreign key validation.

model level, we could easily point (for example, as a result
of miss-typing) to a non existing attribute. Also, at the
spreadsheet level, there was no guarantee that the concrete
value inserted in the spreadsheet was or not correct.

Not being syntactic, this extension would not require any
change in the models presented in the previous section. How-
ever, it is by the new semantic interpretation of Pilots.id,
Planes.n-number and PlanesKey.total that these refer-
ences are guaranteed to be correct in all the different lines
just described.

Technically, these validations are ensured, either at the
(embedded) model level or at the spreadsheet level, by a
series of scripts in the Basic scripting language and under
the spreadsheet system from the OpenOffice.org [11] suite.

4. FROM CLASSSHEETS TO UML+OCL
The Unified Modeling Language (UML) is one of the most

frequently used languages to specify and document (soft-
ware) systems [15]. In particular, class diagrams are very
useful to design business applications. In this section we
propose to map ClassSheets into UML class diagrams. With
this mapping we enable further transformations from spread-
sheets to other paradigms (e.g., the object-oriented).

Recall the Salaries ClassSheets model that we presented
in Figure 1. In Figure 7 we show it again (Figure 7a) to-
gether with its equivalent class diagram (Figure 7b).

(a) ClassSheets model.

total:Integer

Salaries

value:Integer=1000

Pilot

SUM(Pilot.value)

*

(b) UML class diagram.

Figure 7: Two models for the Salaries sheet.

This example illustrates the similarities between the two
representations. The (ClassSheets) Pilot class is represented
in UML as a class with the same name and the same at-
tribute, value, of type Integer and initial value 1000. For
the Salaries class the transformation is achieved in a simi-
lar way, just noticing that total is defined as the sum of the
values of the Pilot class. The two classes are connected:
Salaries is composed of zero or more Pilot elements.

In the following sections we systematize the transforma-
tion of ClassSheets into UML by translating each of the
elements that compose the extended ClassSheets language
that we have given in Section 3. In fact, we generate spec-
ifications within the UML-based Specification Environment
(USE): this framework supports UML execution and OCL
constraint checking therefore providing analysts, designers
and developers with the opportunity to employ model-driven

techniques for software production [8].

4.1 Mapping ClassSheets Into UML Classes
The mapping from ClassSheets to UML is divided into

two phases: firstly, UML classes are generated; secondly,
the associations between the generated classes are inferred.
In this section we present the first transformation encoded
in function T , which uses some auxiliary functions. The first
of these functions is getType: it receives a formula f , which
is used to define the value of an attribute a such that a = f ,
and returns a pair whose first component is the type of a
and whose second component is its (textual) definition.

Type = String
Definition = String
AttType = Type × Definition

getType : Fml → AttType
getType ϕ = (getType1 ϕ,ϕ)
getType (n . a) = getType (getAttDef (n . a))
getType (ϕ (f , ..., f )) = (getType2 (ϕ (f , ..., f )), (ϕ (f , ..., f )))

If an attribute is defined by a default value ϕ, getType re-
turns the type of ϕ as a string (given by getType1) together
with ϕ itself. As an example, if we have an attribute defini-
tion a = ϕ such as value = 0, then the result of getType ϕ
is (Integer, 0).

In case an attribute is defined as a reference to another,
the function getAttDef is used to get such attribute defini-
tion. The function getType is then recursively applied to
retrieve the attribute’s type and definition.

Finally, if an attribute is defined as a formula, getType2 is
used to retrieve the formula’s type and the formula definition
is itself used to complete the result.

Given the simplicity of getType1, getAttDef and getType2,
their definition is not given here, but it can be seen in the
implementation3.

Next, we introduce function getAtts, that receives a block
b and returns the set of attribute definitions that occur in b.

Attribute = AttName × AttType

getAtts : Block → {Attributes }
getAtts ϕ = ∅
getAtts (a = f ) = {a × (getType f )}
getAtts (b1 p b2) = getAtts b1 ∪ getAtts b2
getAtts (b1ˆb2) = getAtts b1 ∪ getAtts b2
getAtts (bµ) = getAtts b

Whenever an attribute definition a = f is found, getAtts
creates the singleton set with the name of the attribute being
defined, a, paired with the result of applying getType to the
definition of a, i.e., to f . In the remaining cases, getAtts
simply recurses over the structure of blocks. This function
will be used to calculate the attributes of a new UML class.

The next function, called getName, receives the label of
a class and returns the string in that label:

UMLClassName = String

getName : Lab → UMLClassName
getName (. n) = n getName (n) = n
getName (| n) = n getName (| n) = n

The last auxiliary function, addClass, receives a UML class
c (represented by its name and the set of its attributes) and
a set s of the classes that have already been mapped from
ClassSheets to UML and inserts c in s according to the rule:

3That is available in the HaExcel folder of http://haskell.
di.uminho.pt/websvn/



if there is already in s a class with the same name as c, then
the attributes of c are added to the existing class; otherwise,
the new class is added to s.

UMLClass = UMLClassName × Attributes

addClass : UMLClass → {UMLClass } → {UMLClass }
addClass c { } = {c}
addClass (l × ls) ({ l ′ × ls′} ∪ t) =

if l ≡ l ′ then { l ′ × (ls ∪ ls′)} ∪ t
else { l ′ × ls′} ∪ (addClass c t)

We are now in position to present the transformation func-
tion T . It receives a sheet and a set of its initial classes and
returns the set of its mapped classes.

T : Sheet → {UMLClass } → {UMLClass }
T (. n : ) cs = cs
T (l : b) cs = addClass (getName l × getAtts b) cs
T (c1ˆc2) = T c2 (T c1 cs)
T (c→) cs = T c cs
T (s1 p s2) cs = T s2 (T s1 cs)

Cell classes, i.e., classes labelled with . n are not converted
to UML classes because they represent relationships between
other classes, and thus they will be converted into associa-
tions instead (see Section 4.2). This is expressed by the first
statement. From each class with a label other than . n a new
class is generated according to T ’s second statement. Such
class is constructed using the name in the label l and the
attributes in the definition of the block b; the constructed
class is then added to the already computed ones.

When the sheet is built using two classes c1 and c2, the
third statement first applies T to c1 and then T again to
the result of the first application. A similar situation is
implemented in the fourth statement for sheets that consist
of the composition of two other sheets s1 and s2.

The remaining case occurs when a sheet is composed by
an expandable class (fourth case in T ). In such case, the
function recurses on the expandable class.

As we explained before, T transforms a ClassSheet into a
set of UML class diagrams represented as UMLClass values.
To make the result available to other tools, such as USE , we
need to export it to simple text. The function ppUMLClass
receives a UML class diagram and computes a string:

ppUMLClass : UMLClass → String
ppUMLClass (UMLClass s l) =
"class " + s + "\nattributes\n" + ppAtts l + "end\n"

Function ppAtts generates a string for the classes’ attributes:

ppAtts : {Attribute } → String
ppAtts { } = ""
ppAtts ({a × (t × d)} ∪ r) = a + ":" + t + "=" + d + ppAtts r

The generated string can be import and manipulated by
tools like USE . For our running example, the generated
classes are shown next:

class Pilots attributes
id : String = ""
name : String = ""
flight_hours : Integer = 0

end

class Planes attributes
n-number : String = ""
model : String = ""
name : String = ""

end

class PilotsKey attributes
total : Integer

= SUM(hours)
pilot_key : String

= Pilots.id end

class PlanesKey attributes
total : Integer

= SUM(hours)
planes_key : String

= Planes.n-number end

class Flights attributes
total : Integer = SUM(PlanesKey.total) end

In the next section we will explain how to generate the
associations between the UML classes representing the con-
nection between the ClassSheet classes.

4.2 Mapping ClassSheets Into Associations
In the previous section we have presented a systematic

transformation from ClassSheet diagrams to UML classes.
In this section we introduce a mapping from ClassSheets to
UML associations that link the generated classes. These
associations together with the generated classes constitute a
complete UML model. As in the previous section, we start
by presenting some auxiliary functions and definitions.

We view an association as a tuple with the following infor-
mation: the name of the association, the two classes being
linked as well as the cardinalities of the association in each
end, and the attributes of the association.

AssocName = String
Association = AssocName × (UMLClassName × Cardinality)
× (UMLClassName × Cardinality) × {Attribute }

The first function we introduce, getName′, receives a class
and returns a its name. In case a class is composed of two
classes, it is the name of the first that is returned.

getName′ : Class → UMLClassName
getName′ (l : ) = getName l
getName′ (c1ˆ ) = getName′ c1

The next function, getParent , returns what we call the par-
ent of a class. The parent of a class with name c is a class c1
if there exists an association between c1 and another class
c2 such that the name of c2 matches c.

getParent :: UMLClassName → {Association } → UMLClassName
getParent c { } = c
getParent c (( × (c1 × ) × (c2 × ) × ) ∪ r) =

if (c ≡ c2) then c1 else getParent c r

We are now in conditions to define the function that gener-
ates UML class associations from a ClassSheet model. The
following code implements such transformation:

C : Sheet → UMLClassName → {Association } → {Association }
C ((c1ˆc2) p ((c3ˆ(. p : b))→ p r)) parent as =

let nc2 = getName′ c2
nc3 = getName′ c3
assoc = p × (nc2 × "*") × (nc3 × "*") × (getAtts′ b)
sh = ((c1ˆc2) p ((c3ˆEmptyClass)→ p r))

in {assoc} ∪ (C sh parent as)

C ((l : )ˆc) parent as =
let nl = getName l
in if parent ≡ nl

then C c (getParent nl as) as
else let a = nl × (parent × "1") × (nl × "*") × {}

in C c nl ({a } ∪ as′)

C (c1ˆc2) parent as = C c2 parent (C c1 parent as)

C (c→) parent as = C c parent as

C (s1 p s2) parent as = C s2 parent (C s1 parent as)
assocs as = as

The mapping function C receives a ClassSheet , the name of
the class that first appears in the model, parent , and an
accumulative set of associations.

The first case occurs when a cell class . p : b is defined.
In this case we infer an association between the cell on the
left, c2, and the one on top of the cell class, c3 with arity



∗ − ∗. The name of this association is the label of the cell
class p. This association is added to the existing ones and
the function recurses over the same input sheet with one
difference: the cell class is substituted by an “empty class”
so the remaining associations can be found.

The second case occurs when two classes are composed.
Here, if parent is equal to the label of the first class, then
the function recurses over the second class, but with parent
being the parent of the first class. Otherwise, an association
between parent and the first class is created. The name
of this association is the label of the argument class. The
function recurses again over the second class.

In the remaining cases the function recurses over the ar-
gument ClassSheets.

As in the previous section, from the output computed by
C, we can generate a representation of the associations that
can be read by the USE framework. The following function
receives an association and returns a string representing it.

ppAssociation :: Association → String
ppAssociation (n × (c1 × cd1) × (c2 × cd2) × {}) =

ppAssociationAux "association " n c1 cd1 c2 cd2 + "end\n"
ppAssociation (n × (c1 × cd1) × (c2 × cd2) × atts) =

let ppatts = "attributes\n" + ppAttributes atts + "\nend"
in ppAssociationAux
"associationclass " n c1 cd1 c2 cd2 + ppatts

ppAssociationAux aca n c1 cd1 c2 cd2 =
aca + n + " between\n" +

"\t" + c1 + "[" + cd1 + "]\n" ++
"\t" + c2 + "[" + cd2 + "]\n"

The function has two cases: the first one, with no attributes
in the association, generates a regular UML association. For
the second case, with attributes, an association class is gen-
erated so the attributes can be inserted in the model.

For our example, the associations generated are as follows:

association PilotsKey
between

Flights[1]
PilotsKey[*] end

association PlanesKey
between

Flights[1]
PlanesKey[*] end

associationclass FlightDetails between
PilotsKey[*]
PlanesKey[*]

attributes
depart : String = ""
destination : String = ""
date : String = "d"
hours : Integer = 0 end

The complete UML class diagram generated by our tech-
niques and drawn by the USE tool is shown in Figure 8:

Figure 8: UML class diagram for the flights example.

4.3 Generating OCL

In the previous sections we introduced functions to gen-
erate UML class diagrams from ClassSheets. But we also
need to generate OCL code to guarantee that both represen-
tations ensure the same properties. In particular, we need
to generate certain restrictions on classes that hold primary
and foreign keys. In the case of primary keys, we need to
ensure that no value used as such key is repeated. In the
case of foreign keys, we need to make sure that all these
values correctly point to an existing primary key.

In order to generate the conditions that must invariantly
hold for primary key values, we start by defining a function
that generates sets of pairs, each one containing the label of
the class which the invariant is associated with and a set of
blocks that represent the primary key.

pk : Sheet → {Lab × {Block }}
pk (l : b) = { l × (pkaux b)}
pk (c1ˆc2) = pk c1 + pk c2
pk (c→) = pk c
pk (s1 p s2) = pk s1 + pk s2

Function pk uses function pkaux to search for all the primary
key blocks:

pkaux :: Block → {Block }
pkaux (ϕµ) = {ϕ}
pkaux (b1 p b2) = pkaux b1 + pkaux b2
pkaux (b1ˆb2) = pkaux b1 + pkaux b2
pkaux = {}

To generate USE compatible constraints, we define a func-
tion ppPKs that creates an invariant for each element in the
set produced by function pk .

ppPKs : {Lab × {Block }} → String
ppPKs {} = ""
ppPKs ({ l × {}} ∪ r) = ppPKs r
ppPKs ({ l × bs } ∪ lbs) =

let n = name l
in "context " + n +

"inv pk" + n + " : " + n + ".allInstances->" +
"forAll(a1, a2 | a1 <> a2 implies " + ppPKs′ 1 bs +
" <> " + ppPKs′ 2 bs + ")" + ppPKs lbs

The auxiliary function ppPKs ′ generates a string contain-
ing all the blocks. It receives an integer so that it can be
reused to generate code for both sides of the inequation
on ppPKs. For a class with two primary keys "ID" and
"name", for example, ppPKs ′ would generate a string such
as "a1.ID a1.name".

ppPKs′ : Integer → {Block } → String
ppPKs′ { } = ""
ppPKs′ n (b ∪ bs) = "a" + n + "." + b + " " + ppPKs′ n bs

For our running example, the OCL code generated for the
Pilots class, and that guarantees the safe use of a primary
key value on the pilots identification, is shown next:

context Pilots
inv pkPilots : Pilots.allInstances->forAll(
a1, a2 | a1 <> a2 implies a1.id <> a2.id)

The functions to generate code for foreign key validation
are in all similar to the ones shown above. For this reason,
we refrain from showing the complete definitions of the func-
tions that implement it. In essence, we define a function that
produces lists of pairs, each one containing the label of the
class being affected by the constraint and a triple of strings
given by an auxiliary function fkaux . The definition of fk
for the remaining cases follows the definition of pk .



fk :: Sheet → {Lab × {String × String × String }}
fk (l : b) = { l × (fkaux b)}
fkaux :: Block → {String × String × String }
fkaux (k = n . a) = {k × n × a }

Each generated element contains the name of the attributes
being defined as a foreign key, k , the name of the class being
referenced, n, and the attribute in that class, a.

The generated OCL code that implements the foreign
plane key validation in the PlanesKey class is as follows.

context planeskey : PlanesKey
inv fkPlanesKey : Planes.allInstances->
exists(a | a.n-number = planeskey.planes_key)

5. RELATED WORK
The work presented in this paper has strong connections

with [7]. Indeed, in that paper the authors have proposed
the ClassSheet modelling language for spreadsheets and used
UML to witness the class structure of ClassSheets. Our
studies also involve ClassSheets and UML, but several as-
pects distinguish our paper and [7]. Firstly, we have taken
the original ClassSheet language of [7] and extended it with
both syntactic constructions and deeper semantics. Namely,
we have focused on spreadsheets that can be viewed as re-
lational databases and, for such spreadsheets, our extended
modelling language offers more correctness guarantees on
the derived spreadsheets than the original one. Secondly,
the UML diagrams presented in [7] are given, on concrete
examples, just as illustrations of ClassSheet properties. The
diagrams shown are quite simple and one can easily see the
relation to particular ClassSheets. However, the purpose
of [7] was not to obtain them automatically from ClassSheets
models. On the contrary, in this paper we have formalised
a transformation from the extended ClassSheet language to
UML. The generation of OCL to ensure model properties
consists of a final distinction between our work and [7].

The derivation of UML class diagrams with OCL con-
straints from ClassSheets opens a wide range of validation
possibilities for spreadsheets. Concrete validation techniques
are outside the scope of this paper, but we should point as
interesting the combination of our work with some others:
[8] offers an animation based approach for the validation of
UML models and OCL constraints; [4] provides a validation
environment for UML that checks consistency, completeness
and dependability requirements. We believe these and other
techniques can cooperate to further reduce the still alarming
number of errors in spreadsheets.

6. CONCLUSIONS
In this paper we have extended ClassSheets with charac-

teristics from relational databases. This means that we are
now able of specifying database oriented spreadsheets where
it is possible to define primary and foreign keys.

We have also shown how to systematically transform an
extended ClassSheet into a UML class diagram (classes, as-
sociations and OCL restrictions). UML class diagrams are
generated under the notation of the USE framework, and
thus we allow for immediate verification of the spreadsheet
model. This framework allows one to create instances of the
given UML model and verify the OCL constraints on those
objects. Moreover, it is also possible to define pre and post-
conditions on operations. From this, it must also be possible

to generate spreadsheet macros/formulas to ensure the con-
straints. This is an aspect that we have not fully explored
yet, but that we plan to do in the future.

We have implemented our transformation in the Haskell
programming language under the HaExcel framework. The
tests we have run show, for example, that we generate the
same UML models shown in [7].
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