
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Memoization for Saving Energy in Android Applications
When and how to do it

Adriano Pinto
NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal
ab.pinto@campus.fct.unl.pt

Marco Couto
HASLab/INESC TEC

Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Jácome Cunha
NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

ABSTRACT
Over the last few years, the interest in the analysis of the energy
consumption of Android applications has been increasing signifi-
cantly. Indeed, there are a considerable number of studies which
aim at analyzing the energy consumption in various ways, such as
measuring/estimating the energy consumed by an application or
block of code, or even detecting energy expensive coding patterns
or API’s.

Nevertheless, when it comes to actually improving the energy
efficiency of an application, we face a whole new challenge, which
can only be achieved through source code improvements that can
take advantage of energy saving techniques. However, there is still
a lack of information about such techniques and their impact on
energy consumption.

In this paper, we analyze the impact of the memoization tech-
nique in the energy consumption of Android applications. We
present a systematic study of the use of memoization, where we
compare implementations of 18 method from different applications,
with and without using memoization, and measure the energy con-
sumption of both of them. Using this approach, we are able to
characterize Android methods that should be memoized.

Our results show that using memoization can clearly be a good
approach for saving energy. For the 18 tested methods, 13 of them
decreased significantly their energy consumption, while for the
remaining 5 we observed unpredictable behavior in 3 of them and
an overall increase of energy consumption in the last 2. We also
included a discussion about when is actually beneficial to use mem-
oization for saving energy, and what is the expected percentage of
gain/loss when memoization works and when it does not.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Software performance; Software evolution;

KEYWORDS
Android, Energy Analysis, Empirical Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft’18, May 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Adriano Pinto, Marco Couto, and Jácome Cunha. 2018. Memoization for
Saving Energy in Android Applications: When and how to do it. In Pro-
ceedings of 5th IEEE/ACM International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft’18). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Android ecosystem is evolving at an impressive pace. Since the
operative system can run on a wide variety of devices, from smart-
phones to tablets of several brands, to wereables, its widespread
usage in the last decade was significantly notorious: 12 major ver-
sions were launched in the last 9 years [1], while the number of
available applications in the Google Play Store raised from 30K to
3.5M in the last 7 years [3].

This proliferation helped with the increasing interest in a partic-
ular research area: energy consumption analysis in software. It has
been a hot research topic in the last few years, greatly motivated
not only by the mobile development area, characterized by pow-
erful, yet energy-harvesting, hardware components and software
systems, which run over batteries with limited capacity, but also
by the growing interest of developers in knowing more about how
to develop software in a energy-saving manner [29].

Most of the research works appearing in this area in the last
few years focused on detecting or predicting [17, 18] the energy
consumption that is triggered by a piece of software. For instance,
some of them presented techniques for monitoring and classifying
energy consumption of blocks of code, such as lines of code [23],
methods [13], API calls [25–28], or even code patterns [22, 32]. Even
the energy consumed at the testing phase can be a concern [24], as
well as the display of visual elements in the application views [14].

Nevertheless, the amount of information provided about an ap-
plication, that can be used by developers to reduce its energy con-
sumption at the development phase, is still very low. For instance,
we could not find, to the best of our knowledge, any technique
that shows how to improve energy efficiency by means of memory
usage optimization.

In this paper, we present a systematic study that shows the
energy gains of applying memoization techniques to Android ap-
plications. We based our approach in a study which characterizes
what kind of methods are “pure” (i.e., prone to memoization) [34].
After filtering such methods in an Android application, we applied
the memoization technique to them and created a new “memoized”
application. Finally, we ran a few tests to compare both the raw
and “memoized” application.

Our results showed that memoization can greatly improve the
energy efficiency of an Android application, considering that such

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MOBILESoft’18, May 2018, Gothenburg, Sweden A. Pinto, M. Couto, J. Cunha

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

application is prone to it, without threatening its normal function-
ing and/or efficiency. At this point, we would like to highlight that
energy efficiency and better performance are not synonymous in
the context of mobile applications [9].

To summarize, with this work we intend to answer the following
research questions:

RQ1 Can memoization be used to reduce energy consumption
in Android applications?

RQ2 Can we determine when is it worthy to use memoization
to save energy?

The remaining of this paper is organized as follows. In Section 2
we introduce the concept of memoization for Android applications
and describe in detail our experimental setting. We then present the
results of the experiment in Section 3. The findings are discussed in
Section 4, where we also answer our research questions. Section 5
presents the threats to the validity of this work. Related approaches
are compared in Section 6. Finally, in Section 7 we present our
conclusions and future work directions.

2 MEMOIZATION OF ANDROID
APPLICATIONS

In this section we describe in detail our experimentation with mem-
oization of Android application, its results, and its analysis.

We start by explaining which kind of Java methods can actually
be memoized.

2.1 What Can be Memoized?
Yang et al. [35] proposed a set of three pre-conditions to classify a
Java method as memoizable:

(1) The method must be pure, that is, it must be a function (note
the return value cannot be void);

(2) The arguments must be immutable (such as Java primitive
types);

(3) The return value cannot depend on static fields, public mem-
ber fields nor publicly exposed member fields.

In our particular case, we have simplified the application of
pre-condition (2) and used only methods that have as arguments
primitive types and in a very specific situation the Context object
of an application.

In the next section we will describe in detail the experimental
study we conducted: the methods analyzed, the conditions under
where such methods were tested, and the full procedure to actually
run the tests and obtain results.

2.2 Experimental Study
The empirical study we conducted was based on three critical
points:

(1) Android applications and methods analysis
(2) Methods refactoring
(3) Experiments execution

Android applications and methods analysis: We used two
Android applications from the MUSE repository, an extension of the
sourcerer repository [7] (Pixate Freestyle [4] and android-demos)

and another one from Fdroid (Chanu [2]). With this set of applica-
tions we intend to represent the Android corpus of applications.
Indeed, we have small and big applications, from different kinds,
etc.

Pixate Freestyle [4] is a free framework that lets the user to
style his native Android views with stylesheets and is very much
based on the graphical component. This application contains 219
classes and it can be found on github. In this application we made
memoization of 4 methods as described in 1.

android-demos is a very specific application from the repository
and we only know that it contains 34 classes. In this application we
made memoization of 4 methods as described in 1.

Chanu [2] is a well-known application with 538 classes. Basically,
it’s the 4chan site application where you can browse images of
various contents. This is the largest application among the three
and so it was where we most applied the technique of memoization.
10 methods were modified as you can see at 1

However, this range of applications made it quite difficult to
compile and to run (we found incompatibilities between the SDK
version of Android, the level of the Android API of the mobile phone
and the build of the application in Android Studio.). Indeed, we
could not compile and run all the applications in the same setting.
To avoid this issue, we created our own application only with the
methods we wanted to test. Thus, for each Android application we
copied the methods that could be memoized to our own application.
After this process, we have duplicated the application, and in the
second version, memoized all the methods in it.

Method Input Output Application
createIntent Context,String,String Intent Chanu
countLines String int Chanu
planifyText String String Chanu
join List<String>,String String Chanu
threadSubject String,String String Chanu
quoteText String String Chanu
textViewFilter String,boolean String Chanu
getUrl Context,String String Chanu
exifText String String Chanu
getNumeral String,String String Pixate Freestyle
removeLocaleInfoFromFloat String String Pixate Freestyle
addNegativeSign String String Pixate Freestyle
addPositiveSign String String Pixate Freestyle
isMobile String boolean android-demos
readableFileSize long String android-demos
dip2px Context,float int android-demos
px2dip Context,float int android-demos

Table 1: Characterization of methods used in experiments.

We have than executed the application. For that, we created
a class of tests and each method tested was isolated in order to
obtain the measurements with a finer granularity. Each method was
called 50 times with different parameters, so that its behavior was
not trivial. These insertions were carried out cyclically 10,20,30,40
and 50 times. In the case of the versions of the application with
memoization this allowed the insertion of 50 values in the map and
consequent consultation of the same ones as several iterations were
made.

Methods Refactoring: First of all, the applications that re-
spected the conditions already mentioned were extracted. Only

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Memoization for Saving Energy in Android Applications MOBILESoft’18, May 2018, Gothenburg, Sweden

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

then was it possible to apply the technique of memoization. Three
applications were selected for which this spectrum was clearly vis-
ible. Thus, their methods were analyzed manually and after we
proceeded with their modification. In the end, we created an appli-
cation to encompass all the methods that were studied. We have
thus created two versions of this same application, one with all
methods in their original form and another with these memoized
ones.

To do memoization we used the traditional technique, that is, we
saved the input of the methods as key in a HashMap and its output as
value. So, if the method had already been called for that particular
input, then we just accessed its value on the map and returned.
Otherwise, a new entry was created on the map and returned. In
cases where the methods only received an input parameter, this was
directly the key of the map. However, there were cases as can be
seen from ref table: 1 in which more than one argument was passed
as parameter and for this a library called javatuples as in [35] was
used. In this way, the input values were saved in tuples and this
became the key in our HashMap.

Experiments execution: The tests were performed 25 times
for each method in both the original and the memoized versions,
in a Nexus 4 running Android version 5.1.1 - Api level 22 (reported
by Qualcomm for having reliable results regarding energy con-
sumption while using Trepn application [5]).For this, the following
steps were as shown in Figure 1. In each experimentation, if there
were apks of the application and old tests, then they were unin-
stalled and the new ones installed. When the instrumented tests
were carried out, the elaborated test class was executed and the
necessary Trepn calls were made. Thus, at the beginning of the
tests the Trepn application was started, a warm-up of 5 seconds was
done and the measurements were performed. When the method to
be tested ended, the tests stopped and the respective results were
saved. To try to guarantee the maximum absence of external factors
the mobile phone was in flight mode with the screen and wi-fi
turned off and still with no other application installed except the
testing one.

Figure 1: Experimental procedure.

3 RESULTS
In this section we present in detail the results obtained from the
experiment introduced in the previous section.

Figure 2 displays a box plot for each of the 13 methods we could
find a statistically significant difference between the energy con-
sumption of the original method and the energy consumption of the
memoized one in favor of the memoization, that is, when the mem-
oized method spent less energy than the original version1. Each
box plot represents the energy measurements, in millijoules (mJ),
of the 25 executions of the corresponding method presenting the
minimum and maximum values (marked by the whiskers), possible
outliers (marked by small circles), the 1st and 3rd quartiles (bottom
and top of the box), the median (marked by the red horizontal filled
in line), and the average (marked by the blue horizontal dashed
line). Each yellow/green pair represents the original/memoized
version of the method. We also show the notch because it can be
seen as an informal test of the null hypothesis that the medians
are equal, that is, if two notches overlap, then it is not possible to
reject the null hypothesis with a 95% confidence [10]. In Section 4
we will present formal verification of the statistical differences of
the energy measurements.

Note this charts show the energy values for the 10 executions of
the test suite, the first being with new values, and the remaining
with repeated ones. In Section 4 we will detail more the analysis of
different numbers of executions.

In Figure 3 we show the box plots with the energy consumption
of the only two methods where the energy spent by the memoized
versions is statistically different from the original methods, but in
favor of the original ones. Once more, we refer to Section 4 to test
executions greater then 10 times.

Figure 4 presents once more box plots, but now for the three
methods where no statistical difference was found for original and
memoized methods.

For these three methods we executed the same test suite, but now
running it 10, 20, 30, 40, and 50 times. The goal was to take more
advantage of the memoization and understand if this would turn
the method better or worst the original one. Each increment of 10
executions onlymakes thememoizedmethod read the stored values,
while the original version needs to run entirely. However, what
we recorded for these methods is that sometimes the memoized
version is better, but sometimes the orginal one also is. We will
come back to this discussion in Section 4.

The results presented until now seem to indicate that there is a
positive effect in the energy consumption when memoizing meth-
ods.

In Figure 5 we present the percentage of losses in the energy
spent from the original version of the method to the memoized one,
considering the methods where memoization produces positive
results (the methods represented in Figure 2). For each method, we
calculated the percentage of energy decrease as follows. For each
of the 25 executions, we sorted, independently, the original and the
memoized values of energy consumption. We then calculated the
losses of energy from the use of the original version to thememoized

1We have only divided the methods in different charts because they have different
scales of values and to have them all in the same would not allow to properly see all
the details.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MOBILESoft’18, May 2018, Gothenburg, Sweden A. Pinto, M. Couto, J. Cunha

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

cre
ate

Int
en

t

rep
lyT

ex
t

ge
tUrl

ge
tNum

era
l

rem
ov

eLo
cal

eIn
foF

rom
Flo

at

ad
dN

eg
ati

ve
Sig

n

ad
dP

osi
tiv

eS
ign

.

0

25

50

75

100

125

150

175 original
memoized

(a) Methods with consumption between 0 and 175 mJ.

planifyText quoteText isMobile readableFileSize
.

0

100

200

300

400

500

original
memoized

(b) Methods with consumption between 0 and 600 mJ.

textViewFilter exifText
.

0

500

1000

1500

2000

2500

3000 original
memoized

(c) Methods with consumption between 0 and 3000 mJ.

Figure 2: Box plots representing the energy spent by the orig-
inal and memoized methods, considering 10 executions of
the tests, where the memoized version spent less energy.

join threadSubject
.

0

20

40

60

80

100

120

140 original
memoized

Figure 3: Box plots representing the energy spent by the orig-
inal and memoized methods, considering 10 executions of
the tests, where the original version spent less energy.

one using the formula
oriдinal −memoized

oriдinal
× 100. Positive values

represent the fact that there is indeed a loss of energy from the
original to the memoized, thus supporting the use of memoization,
and negative values imply an increase in the energy spent, thus
pointing situations where memoization does not spend less energy.
As we can see, the gains are fairly positive. Note once more we are
only showing the results for running the test suite 10 times, as this
already points to quite positive results. We will discuss these gains
further on in the next section.

As we seen before, two methods got bad results when memoized.
In Figure 6 we present the percentage of losses, which in this case
are mostly gains, that is, there is an increase of the energy spent
from the original to the memoized version.

Finally, as before, in Figure 7, we present the values for the
three methods where there is no clear indication of losses or gains,
considering 10 to 50 executions of the test suite.

To increase the reading of these results, and to give a possible
summary of the, in Table 2 we present the percentage of the energy
not spent comparing the memoized method to the original one of
the 1st and 3rd quartiles. This follows from the box plots, giving
central values of the losses.

Finally, we show in Table 3 the percentage of times the energy
spent by the memoized method is lower than the original one, con-
sidering the 25 runs of each method, for 10 to 50 executions of
the test suite. Note the underlined values are the ones where we
could not find statistical significant difference between the original
and memoized measurements. For all the other methods there is
statistical significant difference between the energy consumption of
the original and the memoized method. Values in bold are marked
when more than 50% of the 25 runs spend more energy in the mem-
oized methods than the original ones. The values with no special
formatting have statistical significance in favor of the memoized
versions.

4 DISCUSSION
The results presented so far were obtained considering that the 18
analyzed methods were invoked only 10 times in each of the 25

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Memoization for Saving Energy in Android Applications MOBILESoft’18, May 2018, Gothenburg, Sweden

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

dip
2p

x 1
0x

dip
2p

x 2
0x

dip
2p

x 3
0x

dip
2p

x 4
0x

dip
2p

x 5
0x

cou
ntL

ine
s 1

0x

cou
ntL

ine
s 2

0x

cou
ntL

ine
s 3

0x

cou
ntL

ine
s 4

0x

cou
ntL

ine
s 5

0x

px
2d

ip
10

x

px
2d

ip
20

x

px
2d

ip
30

x

px
2d

ip
40

x

px
2d

ip
50

x

.

0

25

50

75

100

125

150

175
original
memoized

Figure 4: Box plots representing the energy spent by the original and memoized methods, considering 10 to 50 executions of
the tests, where no consistent statistical difference among the different runs of tests was found for original and memoized
methods.

method 10x 20x 30x 40x 50x
exifText (87, 90) (92, 95)
textViewFilter (85, 88) (94, 94)
planifyText (77, 83) (86, 89)
quoteText (71, 78) (88, 92)
isMobile (70, 82) (84, 96)
readableFileSize (64, 82) (82, 89)
removeLocaleInfoFromFloat (59, 84) (66, 71)
replyText (44, 64) (-9, 17) (41, 76) (41, 71) (48, 76)
createIntent (35, 48) (-21, 6) (35, 54) (21, 43) (49, 66)
addNegativeSign (34, 53) (62, 80) (61, 75) (68, 94) (71, 86)
getUrl (19, 52) (32, 66) (45, 57) (37, 56) (49, 62)
getNumeral (4, 21) (-21, 2) (9, 30) (27, 45) (60, 75)
addPositiveSign (-6, 59) (40, 48) (51, 65) (36, 57) (10, 26)
join (-11, 11) (-40, -8) (-46, -18) (-30, -22) (-36, -19)
px2dip (-55, 0) (2, 60) (-27, 53) (4, 52) (-82, 5)
threadSubject (-62, 1) (-99, -54) (-92, -75) (-280, -101) (-219, -102)
countLines (-84, -7) (16, 62) (-17, 6) (-15, 21) (-53, 16)
dip2px (-161, -60) (24, 47) (-71, -35) (-281, -62) (-21, 17)

Table 2: 1st (on the left hand-side of the column) and 3rd (on the right) quartiles of the energy losses from the use of the
original method to the use of the memoized version.

measured tests. Nevertheless, they already allow us to point out
some interesting observations, while discussing their implications.

The first observation is the most obvious one: memoization has
indeed a clear impact on energy consumption in Android applica-
tions. In fact, for the majority of situations the impact is fairly posi-
tive. Considering the 18 tested methods, the energy consumption
for 13 of them has consistently decreased when using memoization
(as can be seen in Figures 2a, 2b, and 2c). For those methods, we
can observe that the average consumption of the 25 measurements
is always lower when using memoization, as well as the minimum
and maximum values, and the values for the 1st and 3rd Quartile.
Figures 2b and 2c show the methods that had the biggest impact of

all. Hence, we already answer to the first research question (RQ1):
memoization can, in fact, be used to reduce energy consumption in
Android applications.

Tomake this resultsmoremeaningful, wewant to know if there is
statistical evidence behind these observations, that is, if the energy
consumed by thememoized version of these methods is consistently
lower than the original one. In other words, we want to validate if
the obtained values for our experiments are statistically significant.
Thus, we tested the following hypothesis:

H0 : P (A > B) = 0.5
H1 : P (A > B) , 0.5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MOBILESoft’18, May 2018, Gothenburg, Sweden A. Pinto, M. Couto, J. Cunha

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

cr
ea

te
In

te
nt

re
pl

yT
ex

t

pl
an

ify
Te

xt

qu
ot

eT
ex

t
te

xt
Vi

ew
Fil

te
r

ge
tU

rl

ex
ifT

ex
t

ge
tN

um
er

al
re

m
ov

eL
oc

al
eI

nf
oF

ro
m

Flo
at

ad
dN

eg
at

iv
eS

ig
n

ad
dP

os
iti

ve
Si

gn

isM
ob

ile

re
ad

ab
le

Fil
eS

ize

.

20

0

20

40

60

80

100

Figure 5: Energy losses from the original method to the
memoized one of the methods that have positive results.

join threadSubject
.

100

80

60

40

20

0

20

40

Figure 6: Energy losses from the original method to the
memoized one of the methods that have negative results.

dip
2p

x 1
0x

dip
2p

x 2
0x

dip
2p

x 3
0x

dip
2p

x 4
0x

dip
2p

x 5
0x

cou
ntL

ine
s 1

0x

cou
ntL

ine
s 2

0x

cou
ntL

ine
s 3

0x

cou
ntL

ine
s 4

0x

cou
ntL

ine
s 5

0x

px
2d

ip
10

x

px
2d

ip
20

x

px
2d

ip
30

x

px
2d

ip
40

x

px
2d

ip
50

x

.

400

300

200

100

0

100

Figure 7: Energy losses from the original method to the
memoized one of the methods that have no clear positive
or negative direction.

10x 20x 30x 40x 50x
createIntent 72 56 68 68 72
getUrl 60 72 68 76 76
replyText 68 52 84 92 84
getNumeral 56 56 64 68 84
addNegativeSign 56 88 84 100 100
addPositiveSign 56 72 80 84 80
planifyText 100 100 - - -
quoteText 100 100 - - -
textViewFilter 100 100 - - -
exifText 100 100 - - -
removeLocaleInfoFromFloat 80 88 - - -
isMobile 100 100 - - -
ReadableFileSize 88 100 - - -
join 48 32 28 28 24
threadSubject 40 36 20 12 20
countLines 36 68 48 44 44
dip2px 24 68 32 28 56
px2dip 40 56 48 64 44

Table 3: For each method, and for each test setting, we
present the percentage (of the 25 runs) that the memoized
version consumes less energy than the original one. Under-
lined values have statistical significance while all the others
have; bold values represent more than 50% of the 25 runs
spend more energy in the memoized methods than the orig-
inal ones.

where B andA represent, the act of randomly drawing a value from
the set of 25 measurements, with and without using memoization,
respectively. Hence, P (A > B) represents, when drawing from both
A and B, the probability of getting a value from A (without mem-
oization) larger than the one drawn from B (using memoization).
Our null hypothesis is then obtaining a probability of 50%, while
obtaining one different than 50% is the alternative hypothesis.

To understand if there is an overall significant relevance between
the distributions of A and B, we ran the Wilcoxon signed-rank
test, with a two-tail p-value considering α = 0.01 2. The test was
repeated for all the 13 methods where the use of memoization led to
improvements in energy consumption. At the end, the test produced
significant relevance, with the p-value < 0.01 for 11 of the 13 cases.
The exceptions where getUrl and addPositiveSign, both with
parametric distributions, which wewill exclude for now and explain
later. To calculate a non-parametric effect size, Field [16] suggests
using Rosenthal’s formula [30, 31] to compute a correlation, and
compare the correlation values against Cohen’s [11] suggested
thresholds:
• 0.1: small significance;
• 0.3: medium significance;
• 0.5: large significance.

From the 11 scenarios, 8 were non-parametric, and the values
obtained were: 0.4 (medium) for createIntent and replyText

2All the values obtained for this test, for all the methods 18 methods, can be found in
the appendix Table ??

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Memoization for Saving Energy in Android Applications MOBILESoft’18, May 2018, Gothenburg, Sweden

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

methods, and 0.6 (large) for the remaining methods. For the remain-
ing 3 methods, a D’Agostino and Pearson’s test [15] revealed we
were dealing with normal distributions, and so we should calculate
the Cohen’s d coefficient to determine the magnitude of the effect
size. According to Sawilowsky [33], the reference thresholds and
their respective effect size should be

• 0.01: very small;
• 0.2: small;
• 0.5: medium;
• 0.8: large;
• 1.2: very large;
• 2: huge significance.

We obtained values of 0.4 (small) for the getNumeralmethod, 0.6
(medium) for addNegativeSign, and 1.4 (very large) for the method
removeLocaleInfoFromFloat. Considering these reference values,
we have statistical supported to say that, for these methods, using
memoization does lead to energy savings.

The effect size values calculated so far were only for the scenario
where each method was invoked 10 times in each measured test.
It can still be possible that, for methods with lower significance
values, repeating the experience with an increasing number of
invocations would lead to results more or less supportive. Therefore,
we repeated the experience with 20, 30, 40 and 50 invocations,
calculated the significance values and the effect size (see Table 3).
We observe that all the 13 aforementioned methods continue to
have more than 50% of the 25 tests in favor of memoization and,
although in some specific cases the statistical experiment resulted in
no significance, the percentage of memoization favorable tests kept
increasing with the increasing number of invocations for all of them,
and the same happened with the significance. Such cases were the
previously excluded getUrl and addPositiveSignmethod. Hence,
we categorized these 13 methods as prone to memoization.

Nevertheless, the use of memoization is not always synonym
of saving energy. In some cases, it is not possible to determine
whether memoization is suitable for saving energy or not. In our
experiments, we found 3 methods fitting such criteria. The results
of such experiments are shown in Figure 4, in which the methods
where invoked 10 times on each test. As we can see by examining
the box plots, the values for the original version and the version
using memoization are very similar. For instance, the maximum
energy consumption of the original join method is lower than
the memoized version, while both the median and the minimum
values are higher. The memoized addPositiveSign method has
higher values for the median and 3rd quartile when compared to
the original version, while the maximum and the 1st quartile values
are slightly lower.

By running the same statistical experiment performed for the 13
methodswerememoization actually decreased energy consumption,
we observed that the results for dip2px, px2dip, and countLines
methods were not statistically significant. This means that the rea-
son behind the energy consumption being lower is not related to the
use of memoization, neither to the use of the original version of the
method. Similarly, the percentage of tests in favor of memoization
was mostly around 50%, dropping or increasing a few percentage
levels unpredictably when increasing the number of invocations.
Therefore, we categorized these methods as unpredictable.

For the remaining 2 methods (threadSubject and join), we
observed that the energy consumption actually increased in the ma-
jority of cases while using memoization. By looking at Figure 3, we
can see that the tendency is for their memoized version to consume
more energy in the test scenario where a method is invoked 10
times. In fact, if we examine Table 3, we see that for such methods
the percentage of times where the memoized version consumes
less energy is always lower than 50%, for all test scenarios (10, 20,
30, 40 and 50 invocations per test). We ran the same statistical test
as before to check if the values were consistently worse for the
memoized version, and we obtained significant relevance for all of
them, except px2dip. However, the effect size varied from “small
significance” to “medium significance”. Thus, these methods are
then categorized as unfit for memoization.

The most interesting observations can, however, be seen in Ta-
ble 2. The data presented there shows the calculated gains (positive
values) or losses (negative values) when using memoization. To
obtain these values, we first sorted, for each method, the energy
consumed by the original and memoized version, in order to com-
pare the lower/higher energy consumption values of one version
with the lower/higher values of the other. Then, we calculated the
gains pairwise and arranged them in a box plot. The first element of
the pair in each table cell is the gain calculated for the 1st quartile
of the box plots, while the second element is the gain considering
the 3rd quartile. With this, we try to show the gains/losses are
independent of the energy consumption measured value. Indeed
in some cases the energy consumption tends to be low (closer to
the 1st quartile), while in other tend to be high (closer to the 3rd
quartile). In any of these cases the gains/loses are approximate.
Each column contains the gains/loses calculated for the obtained
results of running the same experiment, but varying the number of
times each method is invoked from 10x to 50x.

As expected, we see that the majority of the values are positive,
that is, memoization is, in the majority of cases, a suitable tech-
nique to save energy. In the first 7 methods, the impact is more
notorious since in all the 25 measurements the memoized version
has a significantly lower energy consumption, and when we re-
peated the experiment for 20 invocations per test, the impact is even
greater. Also, the significance values kept increasing, so we stopped
measuring and categorized them as strongly prone to memoization
methods.

If we look only to the pairs with both positive gains in the column
for 10 invocations (methods prone to memoization), the gains can
go from 3% to 90%. Theses values tend to increase if we increase
the number of invocations: for these same methods, considering
20 invocations, if we exclude the ones with negative values, since
they were the cases with no statistical significance (see Table 3),
they go from 31% to 96%. For the other scenarios (30, 40 or 50
invocations), the values are always positive, as the significance
keeps being maintained.

For the unpredictable methods, the gains are also unpredictable:
at the 3rd quartile the value is negative (loss), but for the 1st quartile
is positive (gain). It gets even more unpredictable with the increas-
ing number of invocations: the px2dip method, for instance, has a
negative gain (loss) in the 1st quartile for the 10, 30, and 50 invo-
cations scenarios, while the other values are positive; countLines
has a similar behavior, but the values are not at all proportional;

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MOBILESoft’18, May 2018, Gothenburg, Sweden A. Pinto, M. Couto, J. Cunha

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

dip2px goes from a 161% loss in the 1st quartile for 10 invocations,
to 23% gain for 20 invocations, and back to losing for 30 and 40
invocations, with 70% and 281% loss, respectively, and the same
behavior is observed for the 3rd quartile. Moreover, by looking at
Figure 4, we can see that the interquartile range of the box plot for
the memoized version of these methods is sometimes above and
other times overlapping the original version one, which corrobo-
rates the previous analysis.

Similarly, the values for the unfit for memoization methods are
also expected. We have losses in every tested scenario, for both the
1st and 3rd quartile, except in the first scenario (10 invocations),
where the 3rd quartile has small gains of 10% and 1% for join and
threadSubject, respectively. Even so, in that scenario the statis-
tical test showed there was no significance for both the methods,
while the values for both the 1st and 3rd quartile gains stay nega-
tive as we increase the number of invocations and tend to decrease
proportionally.

This categorization of the methods, as prone/unfit for memoiza-
tion and unpredictable, helps us start answering the to RQ2. With
the data presented and discussed in this section, we can in fact
follow these categories to determine when does memoization lead
to energy savings. Although these classifications where based on a
dynamic approach (i.e., we need to run several experiments first and
a thorough analysis later to reach these conclusions), we strongly
believe that the observations discussed here can actually be used
to perform a more static analysis, by analyzing the resemblances
of the methods in each category.

5 THREATS TO VALIDITY
In this section, we address potential issues that may influence the
findings we report in this work and we detail how we have mini-
mized them the make the results trustworthy and generalizable.

Measuring the energy consumption of a mobile device is a com-
plex task [9]. This is mostly due to the fact that it is quite difficult to
fully isolate the code or application under measured. To address this
issue, we executed our application 25 times, thus giving it enough
slack to have in average results that actually correspond to the truth
and with as low side effects as possible. Moreover, we executed
the application in a completely clean Android device, i.e. without
any other application installed rather than the default ones, and
with all background services disabled. We even put the device in
airplane mode, and with the lowest brightness level, to make sure
the energy consumed by the display was as low as possible.

To assure the data retrieved were consistent, both the memoized
and non-memoized applications were run in the same environment,
half of the times starting with the memoized version, and the other
half with the non-memoized one. Thus, this gives us confidence the
differences we found between the two versions is only due to the
usage of memoization or not. Indeed, the absolute energy values
themselves are not what matters most. What is truly important is
that the measurements are consistently different and in favor of
the memoized version.

The energy consumption values were obtained by using Trepn,
a tool developed by Qualcomm, a company that produces mobile
devices processors and other parts. As Trepn uses embedded hard-
ware sensors, it is believed to produce real results. Indeed it has

been used in several other approaches [19–21]. Moreover, Trepn
only measures the energy for the application being monitored, thus
producing real results.

Our experimentation occurred only in one smartphone, and
thus only on one version of the Android operating system. It is
expected to find different absolute values in different smartphones
and Android versions, but the differences between the memoized
versions and original ones are quite consistent and thus it is not
expected to see significant changes in the differences if changing
the evaluation settings.

We have also used an application created by us to execute the
methods we intended to memoize. We did this because it was not
possible to consistently find and run applications under the same
settings. Nevertheless, we have selected the applications with no
particular criteria, as we simply order them by the number of pos-
sible methods to be memoized. Moreover, we have selected all the
methods we could find within these applications, not choosing any
particular methods or kind of methods. The application we created
has only the code of the copied methods, plus the tests we have
created, and nothing else.

Finally, another possible issue is the quality of the executed tests.
It is usually quite difficult to find some tests for Android applica-
tions [12–14]. Thus, we created a test suite for each method we
wanted to analyze. Although they are not real uses of the meth-
ods, we believe they may represent a reasonable use of memoized
methods. Ultimately, only the developer may have some idea about
the real use of the method and thus if it deserves to be memoized.
In any case, we have shown that in the evaluated circumstances
memoization is beneficial to save energy.

6 RELATEDWORK
Yang et al. have proposed a technique and tool to determine the
functional purity of Java methods to more easily determine which
methods can be refactored [35]. In particular, if a method is a pure
function, then it can be memoized. In their evaluation they were
able to successfully memoize several methods from 3 different Java
libraries and to reduce their execution time. Nevertheless, the mem-
ory usage has also grown. In our experiments we have had a similar
result. The most important difference is that we have shown that
memoization has also a positive impact in the energy consumption.

A quite similar approach has also been proposed by Agosta et
al. [6]. In their work they have also defined which Java methods
can be memoized based on their functional purity. Both definitions
are similar. The evaluation was performed using financial functions
and quite good results were achieved both for the energy and time.
Quite interesting is also the fact that they have defined a theoretical
model to predict the effectiveness of the memoization approach in
terms of energy consumption. However, their approach has been
applied to a particular set of computations in a desktop computer,
not a mobile device. In our case, we have used a wide range of
Android applications.

Banerjee and Roychoudhury proposed a set of guidelines to im-
prove energy consumption related to the use of energy-intensive
resources such as the GPS or the camera [8]. Based on these guide-
lines they propose a set of refactorings to ensure the guidelines
are followed within an application. They were to show that by

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Memoization for Saving Energy in Android Applications MOBILESoft’18, May 2018, Gothenburg, Sweden

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

applying the refactoring suggested by their platforms applications
spent between 3 and 29 percent less energy. Our solution can be
combined with this one as they address different issues, possibly
achieve even greater gains.

Cruz and Abreu have also proposed a set of refactorings based
on performance guidelines to improve the energy consumption of
Android applications [14]. They have shown that in general these
refactorings improve the energy consumption of the applications,
although this does not occur for all applications and refactorings.

7 CONCLUSIONS
In this work we have explored the use of memoization in Android
applications, focusing on its impact in the energy consumption. We
selected 18 methods from 3 different applications and designed an
experiment to evaluate the energy consumption of such methods, as
well as their memoized versions. The results from this experiment
show that indeed the use of memoization promotes energy saving
in most cases. This was the case for 13 methods, but for 2 methods
the opposite occurred, and for 3 the memoization was no different
from the original version.

Although the results are quite positive with significant gains,
we need to consider the fact that we cannot describe the impact
in the overall application, as we have isolated the methods from
the applications. As in most cases, it is a decision of the developers
to use or not memoization. Nevertheless, we have shown that to
memoize methods is most likely positive for an Android application.
In any case, we intend to study the impact of these gains in the
overall consumption of the applications.

Despite the extensive discussion about energy, it is still necessary
to understand the impact in terms of execution time and memory
usage. By definition, the energy is related to the execution time,
as enerдy = power × time . Indeed, in general both energy and
time decrease or increase together. We have not analyzed in detail
the execution time, but we have noticed this was also the case
for our experiment. In any case, this still needs to be carefully
analyzed. Regarding the memory usage, we have also not analyzed
the difference between the original and memoized versions of the
methods. Nevertheless, the overhead in the memoized method is
related to the use of a map to store the computed values, which
heavily depends on the number of different values calculated as
the map will need to store all of them. The memoization will have
less impact if fewer elements need to be stored, and more impact
otherwise. On the other hand, the original method memory will
no longer be used, which may balance both versions. In any case,
once again, most likely only the developer will have such informed
guess.

REFERENCES
[1] 2018. Android version history. https://en.wikipedia.org/wiki/Android_version_

history. (2018). Accessed: 2018-01-03.
[2] 2018. Chanu app’s FDroid page. https://f-droid.org/en/packages/com.chanapps.

four.activity. (2018). Accessed: 2018-01-14.
[3] 2018. Number of available applications in the Google

Play Store. https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/. (2018). Ac-
cessed: 2018-01-03.

[4] 2018. PixelateFreestyle app’s FDroid page. https://github.com/Pixate/
pixate-freestyle-android. (2018). Accessed: 2018-01-14.

[5] 2018. Which mobile devices report accurate system power consump-
tion? https://developer.qualcomm.com/forum/qdn-forums/software/
trepn-power-profiler/28349. (2018). Accessed: 2018-01-14.

[6] Giovanni Agosta, Marco Bessi, Eugenio Capra, and Chiara Francalanci. 2012.
Automatic memoization for energy efficiency in financial applications. Sus-
tainable Computing: Informatics and Systems 2, 2 (2012), 105 – 115. DOI:https:
//doi.org/10.1016/j.suscom.2012.02.002 IEEE International Green Computing
Conference (IGCC 2011).

[7] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. 2014. Sourcerer: An In-
frastructure for Large-scale Collection and Analysis of Open-source Code. Sci.
Comput. Program. 79 (Jan. 2014), 241–259. DOI:https://doi.org/10.1016/j.scico.
2012.04.008

[8] Abhijeet Banerjee and Abhik Roychoudhury. 2016. Automated Re-factoring of
Android Apps to Enhance Energy-efficiency. In Proceedings of the International
Conference on Mobile Software Engineering and Systems (MOBILESoft ’16). ACM,
New York, NY, USA, 139–150. DOI:https://doi.org/10.1145/2897073.2897086

[9] Abhijeet Banerjee and Abhik Roychoudhury. 2017. Future of Mobile Soft-
ware for Smartphones and Drones: Energy and Performance. In Proceedings
of the 4th International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft ’17). IEEE Press, Piscataway, NJ, USA, 1–12. DOI:https:
//doi.org/10.1109/MOBILESoft.2017.1

[10] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. 2017.
Graphical Methods for Data Analysis. Chapman and Hall/CRC.

[11] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences . Hilsdale.
NJ: Lawrence Earlbaum Associates 2 (1988).

[12] M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva. 2015. GreenDroid:
A tool for analysing power consumption in the android ecosystem. In Scientific
Conf. on Informatics, 2015 IEEE 13th International. 73–78.

[13] M. Couto, Carção T., J. Cunha, J. P. Fernandes, and J. Saraiva. 2014. Detecting
Anomalous Energy Consumption in Android Applications. In Programming
Languages, Fernando Magno Quintão Pereira (Ed.). LNCS, Vol. 8771. Springer Int.
Publishing, 77–91.

[14] Luis Cruz and Rui Abreu. 2017. Performance-basedGuidelines for Energy Efficient
Mobile Applications. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft ’17). IEEE Press, Piscataway, NJ,
USA, 46–57. DOI:https://doi.org/10.1109/MOBILESoft.2017.19

[15] Ralph B. D’Agostino. 1971. An Omnibus Test of Normality for Moderate and
Large Size Samples. Biometrika 58, 2 (1971), 341–348. http://www.jstor.org/
stable/2334522

[16] Andy Field. 2009. Discovering statistics using SPSS. Sage publications.
[17] S. Hao, D. Li, W.G.J. Halfond, and R. Govindan. 2012. Estimating Android ap-

plications’ CPU energy usage via bytecode profiling. In Green and Sustainable
Software (GREENS), 2012 First Int. Workshop on. 1–7.

[18] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. 2013. Estimating Mobile
Application Energy Consumption using Program Analysis. In Proc. of 35th Int.
Conf. on Software Engineering (ICSE).

[19] Nagaraj Hegde, Edward L. Melanson, and Edward Sazonov. 2016. Development
of a real time activity monitoring Android application utilizing SmartStep. In Pro-
ceedings of the 2016 IEEE 38th Annual International Conference of the Engineering
in Medicine and Biology Society (EMBC). 1886–1889.

[20] Yan Hu, Jiwei Yan, Dong Yan, Qiong Lu, and Jun Yan. 2017. Lightweight en-
ergy consumption analysis and prediction for Android applications. Science of
Computer Programming (2017). DOI:https://doi.org/10.1016/j.scico.2017.05.002

[21] Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, and Paul
Ammann. 2015. EcoDroid: An Approach for Energy-based Ranking of Android
Apps. In Proceedings of the Fourth InternationalWorkshop on Green and Sustainable
Software (GREENS ’15). IEEE Press, Piscataway, NJ, USA, 8–14. http://dl.acm.org/
citation.cfm?id=2820158.2820161

[22] D. Li and W. G. J. Halfond. 2014. An Investigation into Energy-saving Program-
ming Practices for Android Smartphone App Development. In Proc. of 3rd Int.
Workshop on Green and Sustainable Software (GREENS 2014). ACM, 46–53.

[23] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. 2013. Calculating Source
Line Level Energy Information for Android Applications. In Proc. of 2013 Int.
Symposium on Software Testing and Analysis (ISSTA 2013). ACM, 78–89.

[24] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond. 2014. Integrated Energy-
directed Test Suite Optimization. In Proc. of 2014 Int. Symposium on Software
Testing and Analysis (ISSTA 2014). ACM, 339–350.

[25] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. 2014. Mining Energy-greedy API Usage Patterns in Android
Apps: An Empirical Study. In Proc. of 11th Working Conf. on Mining Software
Repositories (MSR 2014). ACM, 2–11.

[26] K. Liu, G. Pinto, and Y. D. Liu. 2015. Data-Oriented Characterization of
Application-Level Energy Optimization. In Fundamental Approaches to Soft-
ware Engineering, Alexander Egyed and Ina Schaefer (Eds.). LNCS, Vol. 9033.
Springer Berlin Heidelberg, 316–331.

[27] R. Pereira, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva. 2016. The Influence
of the Java Collection Framework on Overall Energy Consumption. In Proc. of
5th Int. Workshop on Green and Sustainable Software (GREENS ’16). ACM, 15–21.

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history
https://f-droid.org/en/packages/com.chanapps.four.activity
https://f-droid.org/en/packages/com.chanapps.four.activity
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://github.com/Pixate/pixate-freestyle-android
https://github.com/Pixate/pixate-freestyle-android
https://developer.qualcomm.com/forum/qdn-forums/software/trepn-power-profiler/28349
https://developer.qualcomm.com/forum/qdn-forums/software/trepn-power-profiler/28349
https://doi.org/10.1016/j.suscom.2012.02.002
https://doi.org/10.1016/j.suscom.2012.02.002
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1145/2897073.2897086
https://doi.org/10.1109/MOBILESoft.2017.1
https://doi.org/10.1109/MOBILESoft.2017.1
https://doi.org/10.1109/MOBILESoft.2017.19
http://www.jstor.org/stable/2334522
http://www.jstor.org/stable/2334522
https://doi.org/10.1016/j.scico.2017.05.002
http://dl.acm.org/citation.cfm?id=2820158.2820161
http://dl.acm.org/citation.cfm?id=2820158.2820161

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MOBILESoft’18, May 2018, Gothenburg, Sweden A. Pinto, M. Couto, J. Cunha

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[28] G. Pinto and F. Castor. 2014. Characterizing the Energy Efficiency of Java’s
Thread-Safe Collections in a Multi-Core Environment. In Proc. of SPLASH’2014
workshop on Software Engineering for Parallel Systems (SEPS), SEPS, Vol. 14.

[29] G. Pinto, F. Castor, and Y. D. Liu. 2014. Mining Questions About Software Energy
Consumption. In Proc. of 11th Working Conf. on Mining Software Repositories (MSR
2014). ACM, 22–31.

[30] Robert Rosenthal. 1991. Meta-analytic procedures for social research. Vol. 6. Sage.
[31] Robert Rosenthal, H Cooper, and LV Hedges. 1994. Parametric measures of effect

size. The handbook of research synthesis (1994), 231–244.
[32] C. Sahin, L. Pollock, and J. Clause. 2014. How Do Code Refactorings Affect

Energy Usage?. In Proc. of 8th ACM/IEEE Int. Symposium on Empirical Software
Engineering and Measurement (ESEM ’14). ACM, 36:1–36:10.

[33] Shlomo Sawilowsky. 2009. New Effect Size Rules of Thumb. 8 (11 2009), 597–599.
[34] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. 2014. Revealing

Purity and Side Effects on Functions for Reusing Java Libraries. In Proceedings
of the 14th International Conference on Software Reuse for Dynamic Systems in
the Cloud and Beyond (ICSR 2015), Ina Schaefer and Ioannis Stamelos (Eds.).
Springer International Publishing, Cham, 314–329. DOI:https://doi.org/10.1007/
978-3-319-14130-5_22

[35] J. Yang, K. Hotta, Y. Higo, and S. Kusumoto. 2015. Towards purity-guided refactor-
ing in Java, In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME) (2015), 521–525. DOI:https://doi.org/10.1109/ICSM.2015.
7332506

A APPENDIX
A.1 Statistical Significance Values
This section presents the complete set of statistical significance
values of the differences between the energy consumption of the
original and memoized methods discussed in Section 4.

https://doi.org/10.1007/978-3-319-14130-5_22
https://doi.org/10.1007/978-3-319-14130-5_22
https://doi.org/10.1109/ICSM.2015.7332506
https://doi.org/10.1109/ICSM.2015.7332506

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Memoization for Saving Energy in Android Applications MOBILESoft’18, May 2018, Gothenburg, Sweden

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

method x10 x20 x30 x40 x50
createIntent 0,008041299 0,58122813 0,097970132 0,004530068

0,374813377 0,078006845 0,704286941 0,234020535 0,401449861
signif. NOT signif. Medium signif. NOT signif. signif.

replyText 0,008041299 0,903626797 0,000239913 0,000493159
0,374813377 0,017123454 0,519411432 1,214290831 0,492774948

signif. NOT signif. signif. Very Large signif. signif.
getNumeral 0,008041299 0,882352227 0,231167213

0,408655198 0,020928666 0,169331932 0,630904041 1,609746553
Small signif. NOT signif. NOT signif. Medium signif. Very Large signif.

removeLocaleInfoFromFloat 0,008041299
1,393672067 1,915076039

Very Large signif. Very Large signif.
addNegativeSign 0,008041299 1,23E-05 1,23E-05

0,633443528 1,929771523 1,637670151 0,618346942 0,618346942
Medium signif. Very Large signif. Very Large signif. signif. signif.

getUrl 0,174210276 0,003821977 0,011876382 0,001078559 0,002469714
0,192163204 0,409060285 0,355787318 0,462333252 0,428086345
NOT signif. signif. NOT signif. signif. signif.

addPositiveSign 0,58122813 0,000890538 0,128450538
0,078006845 0,73071236 1,149329788 0,469943676 0,214994475
NOT signif. Medium signif. Large signif. signif. NOT signif.

exifText 1,23E-05
0,618346942 4,969633412

signif. Huge signif.
textViewFilter 1,23E-05 1,23E-05

0,618346942 0,618346942
signif. signif.

planifyText 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.
quoteText 1,23E-05 1,23E-05

0,618346942 0,618346942
signif. signif.

isMobile 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.
readableFileSize 4,07E-05

0,580294823 2,881652532
signif. Huge signif.

join 0,59980234 0,032427612
0,074201633 0,536376123 0,30251435 0,948059876 0,931683899
NOT signif. Medium signif. NOT signif. Large signif. Large signif.

threadSubject 0,008041299 0,026430974 0,000363626 0,000295767
0,406992268 0,313929986 0,86293659 0,504190584 0,511801008
Small signif. NOT signif. Large signif. signif. signif.

dip2px 0,008041299 0,026430974
0,753436407 0,313929986 0,555634732 0,612999871 0,067050489

Medium signif. NOT signif. Medium signif. Medium signif. Very Small signif.
countLines 0,008041299 0,087527127 0,544909588 0,367385491

0,218636178 0,241630959 0,085617269 0,044835853 0,1274746
Small signif. NOT signif. NOT signif. Very Small signif. NOT signif.

px2dip 0,008041299 0,58122813 0,903626797
0,035701915 0,078006845 0,017123454 0,360779422 0,083062057

Very Small signif. NOT signif. NOT signif. Small signif. Very Small signif.

Table 4: Statistical significance values of the differences between the energy consumption of the original and memoized meth-
ods.

	Abstract
	1 Introduction
	2 Memoization of Android Applications
	2.1 What Can be Memoized?
	2.2 Experimental Study

	3 Results
	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusions
	References
	A Appendix
	A.1 Statistical Significance Values

