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ABSTRACT
Over the last few years, the interest in the analysis of the energy
consumption of Android applications has been increasing signifi-
cantly. Indeed, there are a considerable number of studies which
aim at analyzing the energy consumption in various ways, such as
measuring/estimating the energy consumed by an application or
block of code, or even detecting energy expensive coding patterns
or API’s.

Nevertheless, when it comes to actually improving the energy
efficiency of an application, we face a whole new challenge, which
can only be achieved through source code improvements that can
take advantage of energy saving techniques. However, there is still
a lack of information about such techniques and their impact on
energy consumption.

In this paper, we analyze the impact of the memoization tech-
nique in the energy consumption of Android applications. We
present a systematic study of the use of memoization, where we
compare implementations of 18 method from different applications,
with and without using memoization, and measure the energy con-
sumption of both of them. Using this approach, we are able to
characterize Android methods that should be memoized.

Our results show that using memoization can clearly be a good
approach for saving energy. For the 18 tested methods, 13 of them
decreased significantly their energy consumption, while for the
remaining 5 we observed unpredictable behavior in 3 of them and
an overall increase of energy consumption in the last 2. We also
included a discussion about when is actually beneficial to use mem-
oization for saving energy, and what is the expected percentage of
gain/loss when memoization works and when it does not.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Software performance; Software evolution;

KEYWORDS
Android, Energy Analysis, Empirical Analysis
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1 INTRODUCTION
The Android ecosystem is evolving at an impressive pace. Since the
operative system can run on a wide variety of devices, from smart-
phones to tablets of several brands, to wereables, its widespread
usage in the last decade was significantly notorious: 12 major ver-
sions were launched in the last 9 years [1], while the number of
available applications in the Google Play Store raised from 30K to
3.5M in the last 7 years [3].

This proliferation helped with the increasing interest in a partic-
ular research area: energy consumption analysis in software. It has
been a hot research topic in the last few years, greatly motivated
not only by the mobile development area, characterized by pow-
erful, yet energy-harvesting, hardware components and software
systems, which run over batteries with limited capacity, but also
by the growing interest of developers in knowing more about how
to develop software in a energy-saving manner [29].

Most of the research works appearing in this area in the last
few years focused on detecting or predicting [17, 18] the energy
consumption that is triggered by a piece of software. For instance,
some of them presented techniques for monitoring and classifying
energy consumption of blocks of code, such as lines of code [23],
methods [13], API calls [25–28], or even code patterns [22, 32]. Even
the energy consumed at the testing phase can be a concern [24], as
well as the display of visual elements in the application views [14].

Nevertheless, the amount of information provided about an ap-
plication, that can be used by developers to reduce its energy con-
sumption at the development phase, is still very low. For instance,
we could not find, to the best of our knowledge, any technique
that shows how to improve energy efficiency by means of memory
usage optimization.

In this paper, we present a systematic study that shows the
energy gains of applying memoization techniques to Android ap-
plications. We based our approach in a study which characterizes
what kind of methods are “pure” (i.e., prone to memoization) [34].
After filtering such methods in an Android application, we applied
the memoization technique to them and created a new “memoized”
application. Finally, we ran a few tests to compare both the raw
and “memoized” application.

Our results showed that memoization can greatly improve the
energy efficiency of an Android application, considering that such

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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application is prone to it, without threatening its normal function-
ing and/or efficiency. At this point, we would like to highlight that
energy efficiency and better performance are not synonymous in
the context of mobile applications [9].

To summarize, with this work we intend to answer the following
research questions:

RQ1 Can memoization be used to reduce energy consumption
in Android applications?

RQ2 Can we determine when is it worthy to use memoization
to save energy?

The remaining of this paper is organized as follows. In Section 2
we introduce the concept of memoization for Android applications
and describe in detail our experimental setting. We then present the
results of the experiment in Section 3. The findings are discussed in
Section 4, where we also answer our research questions. Section 5
presents the threats to the validity of this work. Related approaches
are compared in Section 6. Finally, in Section 7 we present our
conclusions and future work directions.

2 MEMOIZATION OF ANDROID
APPLICATIONS

In this section we describe in detail our experimentation with mem-
oization of Android application, its results, and its analysis.

We start by explaining which kind of Java methods can actually
be memoized.

2.1 What Can be Memoized?
Yang et al. [35] proposed a set of three pre-conditions to classify a
Java method as memoizable:

(1) The method must be pure, that is, it must be a function (note
the return value cannot be void);

(2) The arguments must be immutable (such as Java primitive
types);

(3) The return value cannot depend on static fields, public mem-
ber fields nor publicly exposed member fields.

In our particular case, we have simplified the application of
pre-condition (2) and used only methods that have as arguments
primitive types and in a very specific situation the Context object
of an application.

In the next section we will describe in detail the experimental
study we conducted: the methods analyzed, the conditions under
where such methods were tested, and the full procedure to actually
run the tests and obtain results.

2.2 Experimental Study
The empirical study we conducted was based on three critical
points:

(1) Android applications and methods analysis
(2) Methods refactoring
(3) Experiments execution

Android applications and methods analysis: We used two
Android applications from the MUSE repository, an extension of the
sourcerer repository [7] (Pixate Freestyle [4] and android-demos)

and another one from Fdroid (Chanu [2]). With this set of applica-
tions we intend to represent the Android corpus of applications.
Indeed, we have small and big applications, from different kinds,
etc.

Pixate Freestyle [4] is a free framework that lets the user to
style his native Android views with stylesheets and is very much
based on the graphical component. This application contains 219
classes and it can be found on github. In this application we made
memoization of 4 methods as described in 1.

android-demos is a very specific application from the repository
and we only know that it contains 34 classes. In this application we
made memoization of 4 methods as described in 1.

Chanu [2] is a well-known application with 538 classes. Basically,
it’s the 4chan site application where you can browse images of
various contents. This is the largest application among the three
and so it was where we most applied the technique of memoization.
10 methods were modified as you can see at 1

However, this range of applications made it quite difficult to
compile and to run (we found incompatibilities between the SDK
version of Android, the level of the Android API of the mobile phone
and the build of the application in Android Studio.). Indeed, we
could not compile and run all the applications in the same setting.
To avoid this issue, we created our own application only with the
methods we wanted to test. Thus, for each Android application we
copied the methods that could be memoized to our own application.
After this process, we have duplicated the application, and in the
second version, memoized all the methods in it.

Method Input Output Application
createIntent Context,String,String Intent Chanu
countLines String int Chanu
planifyText String String Chanu
join List<String>,String String Chanu
threadSubject String,String String Chanu
quoteText String String Chanu
textViewFilter String,boolean String Chanu
getUrl Context,String String Chanu
exifText String String Chanu
getNumeral String,String String Pixate Freestyle
removeLocaleInfoFromFloat String String Pixate Freestyle
addNegativeSign String String Pixate Freestyle
addPositiveSign String String Pixate Freestyle
isMobile String boolean android-demos
readableFileSize long String android-demos
dip2px Context,float int android-demos
px2dip Context,float int android-demos

Table 1: Characterization of methods used in experiments.

We have than executed the application. For that, we created
a class of tests and each method tested was isolated in order to
obtain the measurements with a finer granularity. Each method was
called 50 times with different parameters, so that its behavior was
not trivial. These insertions were carried out cyclically 10,20,30,40
and 50 times. In the case of the versions of the application with
memoization this allowed the insertion of 50 values in the map and
consequent consultation of the same ones as several iterations were
made.

Methods Refactoring: First of all, the applications that re-
spected the conditions already mentioned were extracted. Only
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then was it possible to apply the technique of memoization. Three
applications were selected for which this spectrum was clearly vis-
ible. Thus, their methods were analyzed manually and after we
proceeded with their modification. In the end, we created an appli-
cation to encompass all the methods that were studied. We have
thus created two versions of this same application, one with all
methods in their original form and another with these memoized
ones.

To do memoization we used the traditional technique, that is, we
saved the input of the methods as key in a HashMap and its output as
value. So, if the method had already been called for that particular
input, then we just accessed its value on the map and returned.
Otherwise, a new entry was created on the map and returned. In
cases where the methods only received an input parameter, this was
directly the key of the map. However, there were cases as can be
seen from ref table: 1 in which more than one argument was passed
as parameter and for this a library called javatuples as in [35] was
used. In this way, the input values were saved in tuples and this
became the key in our HashMap.

Experiments execution: The tests were performed 25 times
for each method in both the original and the memoized versions,
in a Nexus 4 running Android version 5.1.1 - Api level 22 (reported
by Qualcomm for having reliable results regarding energy con-
sumption while using Trepn application [5]).For this, the following
steps were as shown in Figure 1. In each experimentation, if there
were apks of the application and old tests, then they were unin-
stalled and the new ones installed. When the instrumented tests
were carried out, the elaborated test class was executed and the
necessary Trepn calls were made. Thus, at the beginning of the
tests the Trepn application was started, a warm-up of 5 seconds was
done and the measurements were performed. When the method to
be tested ended, the tests stopped and the respective results were
saved. To try to guarantee the maximum absence of external factors
the mobile phone was in flight mode with the screen and wi-fi
turned off and still with no other application installed except the
testing one.

Figure 1: Experimental procedure.

3 RESULTS
In this section we present in detail the results obtained from the
experiment introduced in the previous section.

Figure 2 displays a box plot for each of the 13 methods we could
find a statistically significant difference between the energy con-
sumption of the original method and the energy consumption of the
memoized one in favor of the memoization, that is, when the mem-
oized method spent less energy than the original version1. Each
box plot represents the energy measurements, in millijoules (mJ),
of the 25 executions of the corresponding method presenting the
minimum and maximum values (marked by the whiskers), possible
outliers (marked by small circles), the 1st and 3rd quartiles (bottom
and top of the box), the median (marked by the red horizontal filled
in line), and the average (marked by the blue horizontal dashed
line). Each yellow/green pair represents the original/memoized
version of the method. We also show the notch because it can be
seen as an informal test of the null hypothesis that the medians
are equal, that is, if two notches overlap, then it is not possible to
reject the null hypothesis with a 95% confidence [10]. In Section 4
we will present formal verification of the statistical differences of
the energy measurements.

Note this charts show the energy values for the 10 executions of
the test suite, the first being with new values, and the remaining
with repeated ones. In Section 4 we will detail more the analysis of
different numbers of executions.

In Figure 3 we show the box plots with the energy consumption
of the only two methods where the energy spent by the memoized
versions is statistically different from the original methods, but in
favor of the original ones. Once more, we refer to Section 4 to test
executions greater then 10 times.

Figure 4 presents once more box plots, but now for the three
methods where no statistical difference was found for original and
memoized methods.

For these three methods we executed the same test suite, but now
running it 10, 20, 30, 40, and 50 times. The goal was to take more
advantage of the memoization and understand if this would turn
the method better or worst the original one. Each increment of 10
executions onlymakes thememoizedmethod read the stored values,
while the original version needs to run entirely. However, what
we recorded for these methods is that sometimes the memoized
version is better, but sometimes the orginal one also is. We will
come back to this discussion in Section 4.

The results presented until now seem to indicate that there is a
positive effect in the energy consumption when memoizing meth-
ods.

In Figure 5 we present the percentage of losses in the energy
spent from the original version of the method to the memoized one,
considering the methods where memoization produces positive
results (the methods represented in Figure 2). For each method, we
calculated the percentage of energy decrease as follows. For each
of the 25 executions, we sorted, independently, the original and the
memoized values of energy consumption. We then calculated the
losses of energy from the use of the original version to thememoized

1We have only divided the methods in different charts because they have different
scales of values and to have them all in the same would not allow to properly see all
the details.
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planifyText quoteText isMobile readableFileSize
.

0

100

200

300

400

500

original
memoized

(b) Methods with consumption between 0 and 600 mJ.

textViewFilter exifText
.

0

500

1000

1500

2000

2500

3000 original
memoized

(c) Methods with consumption between 0 and 3000 mJ.

Figure 2: Box plots representing the energy spent by the orig-
inal and memoized methods, considering 10 executions of
the tests, where the memoized version spent less energy.
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Figure 3: Box plots representing the energy spent by the orig-
inal and memoized methods, considering 10 executions of
the tests, where the original version spent less energy.

one using the formula
oriдinal −memoized

oriдinal
× 100. Positive values

represent the fact that there is indeed a loss of energy from the
original to the memoized, thus supporting the use of memoization,
and negative values imply an increase in the energy spent, thus
pointing situations where memoization does not spend less energy.
As we can see, the gains are fairly positive. Note once more we are
only showing the results for running the test suite 10 times, as this
already points to quite positive results. We will discuss these gains
further on in the next section.

As we seen before, two methods got bad results when memoized.
In Figure 6 we present the percentage of losses, which in this case
are mostly gains, that is, there is an increase of the energy spent
from the original to the memoized version.

Finally, as before, in Figure 7, we present the values for the
three methods where there is no clear indication of losses or gains,
considering 10 to 50 executions of the test suite.

To increase the reading of these results, and to give a possible
summary of the, in Table 2 we present the percentage of the energy
not spent comparing the memoized method to the original one of
the 1st and 3rd quartiles. This follows from the box plots, giving
central values of the losses.

Finally, we show in Table 3 the percentage of times the energy
spent by the memoized method is lower than the original one, con-
sidering the 25 runs of each method, for 10 to 50 executions of
the test suite. Note the underlined values are the ones where we
could not find statistical significant difference between the original
and memoized measurements. For all the other methods there is
statistical significant difference between the energy consumption of
the original and the memoized method. Values in bold are marked
when more than 50% of the 25 runs spend more energy in the mem-
oized methods than the original ones. The values with no special
formatting have statistical significance in favor of the memoized
versions.

4 DISCUSSION
The results presented so far were obtained considering that the 18
analyzed methods were invoked only 10 times in each of the 25
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Figure 4: Box plots representing the energy spent by the original and memoized methods, considering 10 to 50 executions of
the tests, where no consistent statistical difference among the different runs of tests was found for original and memoized
methods.

method 10x 20x 30x 40x 50x
exifText (87, 90) (92, 95)
textViewFilter (85, 88) (94, 94)
planifyText (77, 83) (86, 89)
quoteText (71, 78) (88, 92)
isMobile (70, 82) (84, 96)
readableFileSize (64, 82) (82, 89)
removeLocaleInfoFromFloat (59, 84) (66, 71)
replyText (44, 64) (-9, 17) (41, 76) (41, 71) (48, 76)
createIntent (35, 48) (-21, 6) (35, 54) (21, 43) (49, 66)
addNegativeSign (34, 53) (62, 80) (61, 75) (68, 94) (71, 86)
getUrl (19, 52) (32, 66) (45, 57) (37, 56) (49, 62)
getNumeral (4, 21) (-21, 2) (9, 30) (27, 45) (60, 75)
addPositiveSign (-6, 59) (40, 48) (51, 65) (36, 57) (10, 26)
join (-11, 11) (-40, -8) (-46, -18) (-30, -22) (-36, -19)
px2dip (-55, 0) (2, 60) (-27, 53) (4, 52) (-82, 5)
threadSubject (-62, 1) (-99, -54) (-92, -75) (-280, -101) (-219, -102)
countLines (-84, -7) (16, 62) (-17, 6) (-15, 21) (-53, 16)
dip2px (-161, -60) (24, 47) (-71, -35) (-281, -62) (-21, 17)

Table 2: 1st (on the left hand-side of the column) and 3rd (on the right) quartiles of the energy losses from the use of the
original method to the use of the memoized version.

measured tests. Nevertheless, they already allow us to point out
some interesting observations, while discussing their implications.

The first observation is the most obvious one: memoization has
indeed a clear impact on energy consumption in Android applica-
tions. In fact, for the majority of situations the impact is fairly posi-
tive. Considering the 18 tested methods, the energy consumption
for 13 of them has consistently decreased when using memoization
(as can be seen in Figures 2a, 2b, and 2c). For those methods, we
can observe that the average consumption of the 25 measurements
is always lower when using memoization, as well as the minimum
and maximum values, and the values for the 1st and 3rd Quartile.
Figures 2b and 2c show the methods that had the biggest impact of

all. Hence, we already answer to the first research question (RQ1):
memoization can, in fact, be used to reduce energy consumption in
Android applications.

Tomake this resultsmoremeaningful, wewant to know if there is
statistical evidence behind these observations, that is, if the energy
consumed by thememoized version of these methods is consistently
lower than the original one. In other words, we want to validate if
the obtained values for our experiments are statistically significant.
Thus, we tested the following hypothesis:

H0 : P (A > B) = 0.5
H1 : P (A > B) , 0.5
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Figure 5: Energy losses from the original method to the
memoized one of the methods that have positive results.
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Figure 6: Energy losses from the original method to the
memoized one of the methods that have negative results.
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Figure 7: Energy losses from the original method to the
memoized one of the methods that have no clear positive
or negative direction.

10x 20x 30x 40x 50x
createIntent 72 56 68 68 72
getUrl 60 72 68 76 76
replyText 68 52 84 92 84
getNumeral 56 56 64 68 84
addNegativeSign 56 88 84 100 100
addPositiveSign 56 72 80 84 80
planifyText 100 100 - - -
quoteText 100 100 - - -
textViewFilter 100 100 - - -
exifText 100 100 - - -
removeLocaleInfoFromFloat 80 88 - - -
isMobile 100 100 - - -
ReadableFileSize 88 100 - - -
join 48 32 28 28 24
threadSubject 40 36 20 12 20
countLines 36 68 48 44 44
dip2px 24 68 32 28 56
px2dip 40 56 48 64 44

Table 3: For each method, and for each test setting, we
present the percentage (of the 25 runs) that the memoized
version consumes less energy than the original one. Under-
lined values have statistical significance while all the others
have; bold values represent more than 50% of the 25 runs
spend more energy in the memoized methods than the orig-
inal ones.

where B andA represent, the act of randomly drawing a value from
the set of 25 measurements, with and without using memoization,
respectively. Hence, P (A > B) represents, when drawing from both
A and B, the probability of getting a value from A (without mem-
oization) larger than the one drawn from B (using memoization).
Our null hypothesis is then obtaining a probability of 50%, while
obtaining one different than 50% is the alternative hypothesis.

To understand if there is an overall significant relevance between
the distributions of A and B, we ran the Wilcoxon signed-rank
test, with a two-tail p-value considering α = 0.01 2. The test was
repeated for all the 13 methods where the use of memoization led to
improvements in energy consumption. At the end, the test produced
significant relevance, with the p-value < 0.01 for 11 of the 13 cases.
The exceptions where getUrl and addPositiveSign, both with
parametric distributions, which wewill exclude for now and explain
later. To calculate a non-parametric effect size, Field [16] suggests
using Rosenthal’s formula [30, 31] to compute a correlation, and
compare the correlation values against Cohen’s [11] suggested
thresholds:
• 0.1: small significance;
• 0.3: medium significance;
• 0.5: large significance.

From the 11 scenarios, 8 were non-parametric, and the values
obtained were: 0.4 (medium) for createIntent and replyText

2All the values obtained for this test, for all the methods 18 methods, can be found in
the appendix Table ??
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methods, and 0.6 (large) for the remaining methods. For the remain-
ing 3 methods, a D’Agostino and Pearson’s test [15] revealed we
were dealing with normal distributions, and so we should calculate
the Cohen’s d coefficient to determine the magnitude of the effect
size. According to Sawilowsky [33], the reference thresholds and
their respective effect size should be

• 0.01: very small;
• 0.2: small;
• 0.5: medium;
• 0.8: large;
• 1.2: very large;
• 2: huge significance.

We obtained values of 0.4 (small) for the getNumeralmethod, 0.6
(medium) for addNegativeSign, and 1.4 (very large) for the method
removeLocaleInfoFromFloat. Considering these reference values,
we have statistical supported to say that, for these methods, using
memoization does lead to energy savings.

The effect size values calculated so far were only for the scenario
where each method was invoked 10 times in each measured test.
It can still be possible that, for methods with lower significance
values, repeating the experience with an increasing number of
invocations would lead to results more or less supportive. Therefore,
we repeated the experience with 20, 30, 40 and 50 invocations,
calculated the significance values and the effect size (see Table 3).
We observe that all the 13 aforementioned methods continue to
have more than 50% of the 25 tests in favor of memoization and,
although in some specific cases the statistical experiment resulted in
no significance, the percentage of memoization favorable tests kept
increasing with the increasing number of invocations for all of them,
and the same happened with the significance. Such cases were the
previously excluded getUrl and addPositiveSignmethod. Hence,
we categorized these 13 methods as prone to memoization.

Nevertheless, the use of memoization is not always synonym
of saving energy. In some cases, it is not possible to determine
whether memoization is suitable for saving energy or not. In our
experiments, we found 3 methods fitting such criteria. The results
of such experiments are shown in Figure 4, in which the methods
where invoked 10 times on each test. As we can see by examining
the box plots, the values for the original version and the version
using memoization are very similar. For instance, the maximum
energy consumption of the original join method is lower than
the memoized version, while both the median and the minimum
values are higher. The memoized addPositiveSign method has
higher values for the median and 3rd quartile when compared to
the original version, while the maximum and the 1st quartile values
are slightly lower.

By running the same statistical experiment performed for the 13
methodswerememoization actually decreased energy consumption,
we observed that the results for dip2px, px2dip, and countLines
methods were not statistically significant. This means that the rea-
son behind the energy consumption being lower is not related to the
use of memoization, neither to the use of the original version of the
method. Similarly, the percentage of tests in favor of memoization
was mostly around 50%, dropping or increasing a few percentage
levels unpredictably when increasing the number of invocations.
Therefore, we categorized these methods as unpredictable.

For the remaining 2 methods (threadSubject and join), we
observed that the energy consumption actually increased in the ma-
jority of cases while using memoization. By looking at Figure 3, we
can see that the tendency is for their memoized version to consume
more energy in the test scenario where a method is invoked 10
times. In fact, if we examine Table 3, we see that for such methods
the percentage of times where the memoized version consumes
less energy is always lower than 50%, for all test scenarios (10, 20,
30, 40 and 50 invocations per test). We ran the same statistical test
as before to check if the values were consistently worse for the
memoized version, and we obtained significant relevance for all of
them, except px2dip. However, the effect size varied from “small
significance” to “medium significance”. Thus, these methods are
then categorized as unfit for memoization.

The most interesting observations can, however, be seen in Ta-
ble 2. The data presented there shows the calculated gains (positive
values) or losses (negative values) when using memoization. To
obtain these values, we first sorted, for each method, the energy
consumed by the original and memoized version, in order to com-
pare the lower/higher energy consumption values of one version
with the lower/higher values of the other. Then, we calculated the
gains pairwise and arranged them in a box plot. The first element of
the pair in each table cell is the gain calculated for the 1st quartile
of the box plots, while the second element is the gain considering
the 3rd quartile. With this, we try to show the gains/losses are
independent of the energy consumption measured value. Indeed
in some cases the energy consumption tends to be low (closer to
the 1st quartile), while in other tend to be high (closer to the 3rd
quartile). In any of these cases the gains/loses are approximate.
Each column contains the gains/loses calculated for the obtained
results of running the same experiment, but varying the number of
times each method is invoked from 10x to 50x.

As expected, we see that the majority of the values are positive,
that is, memoization is, in the majority of cases, a suitable tech-
nique to save energy. In the first 7 methods, the impact is more
notorious since in all the 25 measurements the memoized version
has a significantly lower energy consumption, and when we re-
peated the experiment for 20 invocations per test, the impact is even
greater. Also, the significance values kept increasing, so we stopped
measuring and categorized them as strongly prone to memoization
methods.

If we look only to the pairs with both positive gains in the column
for 10 invocations (methods prone to memoization), the gains can
go from 3% to 90%. Theses values tend to increase if we increase
the number of invocations: for these same methods, considering
20 invocations, if we exclude the ones with negative values, since
they were the cases with no statistical significance (see Table 3),
they go from 31% to 96%. For the other scenarios (30, 40 or 50
invocations), the values are always positive, as the significance
keeps being maintained.

For the unpredictable methods, the gains are also unpredictable:
at the 3rd quartile the value is negative (loss), but for the 1st quartile
is positive (gain). It gets even more unpredictable with the increas-
ing number of invocations: the px2dip method, for instance, has a
negative gain (loss) in the 1st quartile for the 10, 30, and 50 invo-
cations scenarios, while the other values are positive; countLines
has a similar behavior, but the values are not at all proportional;
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dip2px goes from a 161% loss in the 1st quartile for 10 invocations,
to 23% gain for 20 invocations, and back to losing for 30 and 40
invocations, with 70% and 281% loss, respectively, and the same
behavior is observed for the 3rd quartile. Moreover, by looking at
Figure 4, we can see that the interquartile range of the box plot for
the memoized version of these methods is sometimes above and
other times overlapping the original version one, which corrobo-
rates the previous analysis.

Similarly, the values for the unfit for memoization methods are
also expected. We have losses in every tested scenario, for both the
1st and 3rd quartile, except in the first scenario (10 invocations),
where the 3rd quartile has small gains of 10% and 1% for join and
threadSubject, respectively. Even so, in that scenario the statis-
tical test showed there was no significance for both the methods,
while the values for both the 1st and 3rd quartile gains stay nega-
tive as we increase the number of invocations and tend to decrease
proportionally.

This categorization of the methods, as prone/unfit for memoiza-
tion and unpredictable, helps us start answering the to RQ2. With
the data presented and discussed in this section, we can in fact
follow these categories to determine when does memoization lead
to energy savings. Although these classifications where based on a
dynamic approach (i.e., we need to run several experiments first and
a thorough analysis later to reach these conclusions), we strongly
believe that the observations discussed here can actually be used
to perform a more static analysis, by analyzing the resemblances
of the methods in each category.

5 THREATS TO VALIDITY
In this section, we address potential issues that may influence the
findings we report in this work and we detail how we have mini-
mized them the make the results trustworthy and generalizable.

Measuring the energy consumption of a mobile device is a com-
plex task [9]. This is mostly due to the fact that it is quite difficult to
fully isolate the code or application under measured. To address this
issue, we executed our application 25 times, thus giving it enough
slack to have in average results that actually correspond to the truth
and with as low side effects as possible. Moreover, we executed
the application in a completely clean Android device, i.e. without
any other application installed rather than the default ones, and
with all background services disabled. We even put the device in
airplane mode, and with the lowest brightness level, to make sure
the energy consumed by the display was as low as possible.

To assure the data retrieved were consistent, both the memoized
and non-memoized applications were run in the same environment,
half of the times starting with the memoized version, and the other
half with the non-memoized one. Thus, this gives us confidence the
differences we found between the two versions is only due to the
usage of memoization or not. Indeed, the absolute energy values
themselves are not what matters most. What is truly important is
that the measurements are consistently different and in favor of
the memoized version.

The energy consumption values were obtained by using Trepn,
a tool developed by Qualcomm, a company that produces mobile
devices processors and other parts. As Trepn uses embedded hard-
ware sensors, it is believed to produce real results. Indeed it has

been used in several other approaches [19–21]. Moreover, Trepn
only measures the energy for the application being monitored, thus
producing real results.

Our experimentation occurred only in one smartphone, and
thus only on one version of the Android operating system. It is
expected to find different absolute values in different smartphones
and Android versions, but the differences between the memoized
versions and original ones are quite consistent and thus it is not
expected to see significant changes in the differences if changing
the evaluation settings.

We have also used an application created by us to execute the
methods we intended to memoize. We did this because it was not
possible to consistently find and run applications under the same
settings. Nevertheless, we have selected the applications with no
particular criteria, as we simply order them by the number of pos-
sible methods to be memoized. Moreover, we have selected all the
methods we could find within these applications, not choosing any
particular methods or kind of methods. The application we created
has only the code of the copied methods, plus the tests we have
created, and nothing else.

Finally, another possible issue is the quality of the executed tests.
It is usually quite difficult to find some tests for Android applica-
tions [12–14]. Thus, we created a test suite for each method we
wanted to analyze. Although they are not real uses of the meth-
ods, we believe they may represent a reasonable use of memoized
methods. Ultimately, only the developer may have some idea about
the real use of the method and thus if it deserves to be memoized.
In any case, we have shown that in the evaluated circumstances
memoization is beneficial to save energy.

6 RELATEDWORK
Yang et al. have proposed a technique and tool to determine the
functional purity of Java methods to more easily determine which
methods can be refactored [35]. In particular, if a method is a pure
function, then it can be memoized. In their evaluation they were
able to successfully memoize several methods from 3 different Java
libraries and to reduce their execution time. Nevertheless, the mem-
ory usage has also grown. In our experiments we have had a similar
result. The most important difference is that we have shown that
memoization has also a positive impact in the energy consumption.

A quite similar approach has also been proposed by Agosta et
al. [6]. In their work they have also defined which Java methods
can be memoized based on their functional purity. Both definitions
are similar. The evaluation was performed using financial functions
and quite good results were achieved both for the energy and time.
Quite interesting is also the fact that they have defined a theoretical
model to predict the effectiveness of the memoization approach in
terms of energy consumption. However, their approach has been
applied to a particular set of computations in a desktop computer,
not a mobile device. In our case, we have used a wide range of
Android applications.

Banerjee and Roychoudhury proposed a set of guidelines to im-
prove energy consumption related to the use of energy-intensive
resources such as the GPS or the camera [8]. Based on these guide-
lines they propose a set of refactorings to ensure the guidelines
are followed within an application. They were to show that by
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applying the refactoring suggested by their platforms applications
spent between 3 and 29 percent less energy. Our solution can be
combined with this one as they address different issues, possibly
achieve even greater gains.

Cruz and Abreu have also proposed a set of refactorings based
on performance guidelines to improve the energy consumption of
Android applications [14]. They have shown that in general these
refactorings improve the energy consumption of the applications,
although this does not occur for all applications and refactorings.

7 CONCLUSIONS
In this work we have explored the use of memoization in Android
applications, focusing on its impact in the energy consumption. We
selected 18 methods from 3 different applications and designed an
experiment to evaluate the energy consumption of such methods, as
well as their memoized versions. The results from this experiment
show that indeed the use of memoization promotes energy saving
in most cases. This was the case for 13 methods, but for 2 methods
the opposite occurred, and for 3 the memoization was no different
from the original version.

Although the results are quite positive with significant gains,
we need to consider the fact that we cannot describe the impact
in the overall application, as we have isolated the methods from
the applications. As in most cases, it is a decision of the developers
to use or not memoization. Nevertheless, we have shown that to
memoize methods is most likely positive for an Android application.
In any case, we intend to study the impact of these gains in the
overall consumption of the applications.

Despite the extensive discussion about energy, it is still necessary
to understand the impact in terms of execution time and memory
usage. By definition, the energy is related to the execution time,
as enerдy = power × time . Indeed, in general both energy and
time decrease or increase together. We have not analyzed in detail
the execution time, but we have noticed this was also the case
for our experiment. In any case, this still needs to be carefully
analyzed. Regarding the memory usage, we have also not analyzed
the difference between the original and memoized versions of the
methods. Nevertheless, the overhead in the memoized method is
related to the use of a map to store the computed values, which
heavily depends on the number of different values calculated as
the map will need to store all of them. The memoization will have
less impact if fewer elements need to be stored, and more impact
otherwise. On the other hand, the original method memory will
no longer be used, which may balance both versions. In any case,
once again, most likely only the developer will have such informed
guess.
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A APPENDIX
A.1 Statistical Significance Values
This section presents the complete set of statistical significance
values of the differences between the energy consumption of the
original and memoized methods discussed in Section 4.
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method x10 x20 x30 x40 x50
createIntent 0,008041299 0,58122813 0,097970132 0,004530068

0,374813377 0,078006845 0,704286941 0,234020535 0,401449861
signif. NOT signif. Medium signif. NOT signif. signif.

replyText 0,008041299 0,903626797 0,000239913 0,000493159
0,374813377 0,017123454 0,519411432 1,214290831 0,492774948

signif. NOT signif. signif. Very Large signif. signif.
getNumeral 0,008041299 0,882352227 0,231167213

0,408655198 0,020928666 0,169331932 0,630904041 1,609746553
Small signif. NOT signif. NOT signif. Medium signif. Very Large signif.

removeLocaleInfoFromFloat 0,008041299
1,393672067 1,915076039

Very Large signif. Very Large signif.
addNegativeSign 0,008041299 1,23E-05 1,23E-05

0,633443528 1,929771523 1,637670151 0,618346942 0,618346942
Medium signif. Very Large signif. Very Large signif. signif. signif.

getUrl 0,174210276 0,003821977 0,011876382 0,001078559 0,002469714
0,192163204 0,409060285 0,355787318 0,462333252 0,428086345
NOT signif. signif. NOT signif. signif. signif.

addPositiveSign 0,58122813 0,000890538 0,128450538
0,078006845 0,73071236 1,149329788 0,469943676 0,214994475
NOT signif. Medium signif. Large signif. signif. NOT signif.

exifText 1,23E-05
0,618346942 4,969633412

signif. Huge signif.
textViewFilter 1,23E-05 1,23E-05

0,618346942 0,618346942
signif. signif.

planifyText 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.
quoteText 1,23E-05 1,23E-05

0,618346942 0,618346942
signif. signif.

isMobile 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.
readableFileSize 4,07E-05

0,580294823 2,881652532
signif. Huge signif.

join 0,59980234 0,032427612
0,074201633 0,536376123 0,30251435 0,948059876 0,931683899
NOT signif. Medium signif. NOT signif. Large signif. Large signif.

threadSubject 0,008041299 0,026430974 0,000363626 0,000295767
0,406992268 0,313929986 0,86293659 0,504190584 0,511801008
Small signif. NOT signif. Large signif. signif. signif.

dip2px 0,008041299 0,026430974
0,753436407 0,313929986 0,555634732 0,612999871 0,067050489

Medium signif. NOT signif. Medium signif. Medium signif. Very Small signif.
countLines 0,008041299 0,087527127 0,544909588 0,367385491

0,218636178 0,241630959 0,085617269 0,044835853 0,1274746
Small signif. NOT signif. NOT signif. Very Small signif. NOT signif.

px2dip 0,008041299 0,58122813 0,903626797
0,035701915 0,078006845 0,017123454 0,360779422 0,083062057

Very Small signif. NOT signif. NOT signif. Small signif. Very Small signif.

Table 4: Statistical significance values of the differences between the energy consumption of the original and memoized meth-
ods.
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