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Abstract Software refactoring is a well-known technique that provides transformations on soft-
ware artifacts with the aim of improving their overall quality.

In the past, we have proposed a catalog of refactorings for spreadsheet models expressed in the
ClassSheets modeling language, which allows us to specify the business logic of a spreadsheet in
an object-oriented fashion.

Reasoning about spreadsheets at the model level enhances a model-driven spreadsheet environ-
ment where a ClassSheet model and its conforming instance (the spreadsheet data) automatically
co-evolves after a refactoring is applied at the model level. Our motivation for such research was
to improve the model and its conforming instance: the spreadsheet data.

In this paper we define such refactorings using previously proposed evolution steps for models
and instances.

We also present an empirical study we designed and conducted in order to confirm our original
intuition that these refactorings have a positive impact on end-user productivity, both in terms of
effectiveness and efficiency.

The results are presented not only in terms of productivity changes between refactored and
non-refactored scenarios, but also in terms of overall user satisfaction, relevance, and experience.

In almost all cases the refactorings indeed improved end-users productivity. Moreover, in most
cases users were more engaged with the refactored version of the spreadsheets they worked with.

1 Introduction

Software refactoring (Fowler, 1999) is the process of modifying the source code of software programs
without changing their semantics. That is to say that while improvements are expected on the
non-functional attributes of a piece of software, it is mandatory that its associated functional
attributes are not affected by refactorings.

Improvements can be achieved, for example, by transforming the software into a new version
with reduced complexity, or with added expressiveness in either the code or its model (or both),
or with diminished overall size (fewer methods, classes, or lines of code).
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In practice, a significant set of automated refactorings is usually available for a concrete pro-
gramming language. This reduces the overall programming effort, since due to the improved qual-
ity of refactored code traditional programming tasks become simpler and can be implemented
faster (Fowler, 1999).

Because of its generic applicability, code refactoring has been studied in different contexts,
ranging from software source code (Fowler, 1999; Mens and Tourwe, 2004) or software mod-
els (Einarsson and Neukirchen, 2012), to spreadsheets (Badame and Dig, 2012). We have ourselves
proposed (Cunha et al, 2014) a series of refactorings for ClassSheets (Engels and Erwig, 2005).

ClassSheets are a high level, object-oriented modeling language for spreadsheets. Integrating
concepts from the Unified Modeling Language (UML), this language provides a modular and
abstract methodology for dealing with spreadsheets, and namely to specify and maintain their
business logic.

The appearance of this modeling language allowed us to develop an environment where concrete
spreadsheets (or spreadsheet instances) are automatically derived from, and maintained together
with abstract specifications (or spreadsheet models) (Engels and Erwig, 2005; Cunha et al, 2012c¢).
This means that an evolution step on either the spreadsheet instance or its model is automatically
propagated to the associated artifact, ensuring their consistency at all times (Cunha et al, 2012b).

In such a model-driven setting, we have shown (Cunha et al, 2015) that end-users are more
efficient (that is, they complete equivalent tasks in less time) and effective (that is, they commit
less errors) when they use a model-driven spreadsheet over regular spreadsheet data. In fact, that
paper presents an empirical study showing that errors can be prevented by carefully reasoning
about, and designing, a concise model, instead of doing so with a potentially large spreadsheet.
This confirms an earlier idea that different, more refined, representations (or models, even though
these representations are all at what we consider here the spreadsheet instance level) for data in
a spreadsheet can improve productivity of end users (Beckwith et al, 2011).

In this paper we revise the refactorings proposed in (Cunha et al, 2014) with the goal of
improving the overall quality characteristics of ClassSheet models. The proposed refactorings are:
extract class, inline class, move attribute, move formula, and remove middle man.' Moreover,
we have specified these refactorings using our bidirectional transformational system previously
introduced in (Cunha et al, 2012b). This is the first contribution of this paper.

Later, we also assess in practice the refactorings catalog of (Cunha et al, 2014). With our work,
we seek to find the answers to the following research questions:

i) Do the spreadsheet instances (automatically) derived from refactored ClassSheet models allow
end users to be more efficient than they would be if manipulating the instances derived from
the corresponding original (non-refactored) models?

i) Do the spreadsheet instances derived from refactored ClassSheet models allow end users to be
more effective than they would be if manipulating the instances derived from the corresponding
original models?

iii) Do spreadsheet users have a better experience working with the spreadsheet instances derived
from refactored ClassSheet models instead of working with the instances derived from the
corresponding original models?

That is to say that we propose to evaluate ClassSheet refactored models by analyzing the
productivity in their instances, since these are standard spreadsheets, a software artifact that is
used daily by millions of end users worldwide. We analyze the effectiveness and efficiency aspects
of productivity, and also by measuring the overall experience of their users. With this goal in
mind, we have designed and conducted an empirical study with spreadsheet end users, being this
study, as well as the analysis of its results, the second and main contribution of this paper. In this
study, we analyzed the quantitative and qualitative differences of the usage of (already) refactored
spreadsheet models versus non-refactored spreadsheet models from an end-user’s perspective.

The lessons learned from the results of our study are very promising. Through a series of
statistical experiments, we found evidence that refactorings do allow improvements of either the

1 As the names suggest, and since ClassSheets resemble the object-oriented (OO) paradigm, the refactorings we
proposed are based on the ones available in the OO realm.
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efficiency or the effectiveness of its instances (or both), with the exception of a single refactoring
from the refactoring catalog proposed in (Cunha et al, 2014).

Finally, we also gathered from the participants of our study feedback of a more qualitative
nature. While the analysis of such feedback is exposed to a certain degree of subjectiveness, we
believe that most of it provides further evidence that the refactorings of (Cunha et al, 2014)
allow the improvement of other spreadsheet characteristics such as readability, understandability
or overall user satisfaction.

This paper is organized as follows. We start by introducing in Section 2 what model-driven spread-
sheets are. In Section 3 we revise the previously introduced refactorings. In Section 4 we present
the empirical validation of the refactorings proposed. Related work is presented in Section 5 and
conclusions and future work in Section 6.

2 Model-Driven Spreadsheets

Engels and Erwig introduced the language ClassSheet (Engels and Erwig, 2005) to leverage han-
dling spreadsheets to a more conceptual level. In a model-driven setting, a ClassSheet is the model
and the spreadsheet data the corresponding instance. Indeed ClassSheets are more abstract than
spreadsheets themselves, smaller, and easier to reason about. This language, which has a textual
and a visual/graphical representation, has been embedded in spreadsheets themselves (Cunha
et al, 2011). In such embedding the visual representation was used. Figure 1 shows an embedded
ClassSheet model of a small warehouse for a bar/coffee shop distribution (the numbered areas will
be referenced in Section 3). Note this spreadsheet does not represent the actual data as it is shown
in a second spreadsheets in Figure 2.

A B c D E F 11 G H 1 J K
1 Order Client Name |Address City Country Contactinf
2 | Product name=""|address=""_city=" country="" id=Contactinf.id
3 Quantity OrderDate [Category |Soldprice Seller TosellPrice UnitPrice Stock
1 qty=0 soldPrice=qgty*unitP seller=Seller.id ToSellPrice=unitP*: unitP=0 st=0
5
6
7 V v
g |seller Sellinf Contactinf
9 |ID Info Name  Cell Home 1D leph Email
10 |id=0 inf=Sellinf.namg name="" cell="" home="" fid=0 telephone="" email=""

Fig. 1: An example of an embedded ClassSheet model for a warehouse goods distribution.

A B C D E F G H 1 ) K L M N 2] P Q
1 |Order Client Name Address  City Country Contactinf Name  Address City Country Contactinf
2 Product Marco C. Rua Carval Braga Portugal 10 Tiago C.  Largo dos I Guimaraes Portugal 11
3 D Name Quantity OrderDate Category SoldPrice Seller ToSellPrice|Quantity OrderDate Category SoldPrice Seller ToSellPric UnitPrice Stock
4 242 Cola 100 4/24/2014 Beverage 50 1 300 120 4/3/2014 Beverage 60 1 300 0.5 00|
5 243 Chocolate 250 4/1/2014 Candy 50 0 240 100 4/6/2014 Candy 20 0 240 0.2 1200]
6 244 Chips 250 4/1/2014 Snack 50 0 280 760 4/24/2014 Snack 152 2 280 0.2 1400
7 245 Coffee Beans 50 4/1/2014 Other 5 0 600| 150 4/24/2014 Other 225 2 600 iG] 400|
8
9
10
11 seller Sellinf Contactinf
12 |iD info Name cell Home 1D lephone Email
13 0 Raphael Bernardo 929992 2515555 10 2948192 marco@um]

14 1 Bernardo Raphael 938294 11 2491842 tiago@um.|
15 2 Ricardo Ricardo 912849 27922 22
16

Fig. 2: An instance for the warehouse goods distribution ClassSheet shown in Figure 1.
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On the top half (rows 1 through 6), we have three classes: Product, Client, and Order.
Product (cell range A3:B5 and J3:K5) contains a product ID, its Name, Unit Price, and amount
in Stock, while expanding vertically (indicated by the ellipsis on row 5). Client (cell range C1:G2)
contains the client’s Name, along with his/her Address, City, and Country, and expands hori-
zontally (indicated by the ellipsis on column I). The Order (cell range C3:H5) is a relationship
class which arises due to the joining of a Product and a Client. This class contains a Quantity
value of the product, an Order Date, a product Category, a Sold Price formula to calculate the
price, and the warehouse’s ToSellprice (expected price) for selling all of that product. The ID
in the Client class references their Contact Info, a class on the bottom half (cell range F8:H11),
which has the client’s Telephone and Email. The Seller’s ID in the Order class references the
Seller class (cell range A8:B11) which references the SellInf class (cell range C8:E11) containing
the Name, Cell number, and Home number of the seller. These last three classes expand vertically.

Figure 2 illustrates an instance of the model from Figure 1. Starting from the bottom left corner,
in a counter-clockwise direction, we can see instances for the Seller, SellInf, ContactInf, Order,
two instances of Client (with the names Tiago C. and Marco C.) and four instances of Product.

Using ClassSheets we have created MDSheet (Cunha et al, 2012c), a framework that provides
a bidirectional model-driven spreadsheet environment. The techniques and language described
in that work allow transformations/evolutions from models to be automatically applied to the
corresponding instances and vice-versa, as illustrated in Figure 3.

Op
ClassSheet M »| ClassSheet'
I

|
conforms to | from

conforms to

Spreadsheet'
Opy, :

Fig. 3: Diagram of MDSheet bidirectional transformation system.

Spreadsheet

H

Given a spreadsheet conforming to a ClassSheet, the user can evolve the model through an
operation of the set Opyy, or the instance through an operation of Opp. The performed operation
on the model/instance is then automatically transformed into the corresponding set of operations
on the instance/model using the to and from transformations, respectively. A new model and data
is obtained with the new data conforming to the new model.

For transformations of models and instances, Opy; and Opp respectively, we have defined
a grammar that represents the functions operating on each one. To implement refactorings on
models we will use the former, and benefit from the existing infrastructure: operations on models
will automatically reflect themselves on updates on the instance.

ModelOperation defines the grammar for the Opy; operations. The application of an update
opy : Opas to a model m : Model is denoted by opyr m : Model.

Other operations include setFormulay; which allows to define a formula, Formula, on a
particular cell. On the model side, a formula may be represented by an empty cell, by a default
plain value (for instance, an integer or a date) or by a function application.

The operation replicate s allows to replicate (or duplicate) a class. The following two operations
allow the addition of a new class to a model: addClassy; adds a new static (non-expandable) class
named ClassName, and addClassExpy; creates a new expandable class. The Direction parameter
specifies if it expands horizontally or vertically. Finally, the function delClassy; is used to delete
a class and respective cells.

Finally, the delClassys deletes a given class.
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Note that MDSheet enforces that each evolution step on the model or on the instance imme-
diately and automatically affects the other artifact. This means that both the instance and the
model are kept synchronous at all times. For more information on the MDSheet system please
refer to (Cunha et al, 2012b,c, 2015).

In the next sections we will define a set of refactoring for ClassSheets that are based on this
existing framework.

3 Model-Driven Spreadsheets Refactoring

As we are building our refactoring system on top of a model-driven framework, we can and will use
some of its features. Indeed, to express the refactorings we will introduce a set of auxiliary functions
defined using the already existing model evolution steps presented in the previous section. Thus,
each refactoring will be expressed as a set of transformations which can be mapped into evolution
steps. Recall that when these steps are applied to the model, they also automatically make the
instances co-evolve accordingly. This will ensure that any refactoring applied to the model will
always produce the corresponding correct spreadsheet instance.

3.1 Refactorings as Evolution Steps

The refactorings are defined using a set of auxiliary functions defined next in ModelRefactoring.
Such functions return an ordered list of the operations (model evolution steps) that must be
applied to the models to refactor them.

All of our refactoring functions return the joining of the ordered lists from the output of our
auxiliary functions. This concatenated list is used by MDSheet to evolve the ClassSheet models
to their refactored version. However, we omit such joining to simplify the algorithms shown. To
note, all the shift functions automatically organize and shift surrounding cells.

We will now present a set of refactorings for ClassSheets, how they apply to the models of
Figure 1, and how they can be implemented in MDSheet. For each of them, we discuss when and
why they would be needed, how to refactor, and express the refactoring function.

3.2 Move Formula
Feature Envy

In the OO paradigm it may happen that a method is used by or uses too many attributes from
another class. This undesirable phenomenon is called feature envy and has also been identified in
spreadsheets (Hermans et al, 2012).

In our case, we can consider classes as being the ClassSheet classes and the methods as being
their formulas. Indeed this method—formula analogy as also been used in (Hermans et al, 2012).

Thus, we move formulas when they are more interested in and used by attributes of another
class than the class on which they are defined.

If we closely analyze the ToSellPrice formula (shown in Figure 1, with the red frame marked
with an I), we can see that not only does it suffer from feature envy, but semantically it makes
more sense being in the Product class since it is defined using attributes from that class and not
from the class Order (where it is now defined).

Refactoring

Fowler typically suggests putting a method in the class which contains most of the data used by it
(move method attribute). This too can be applied to model-driven spreadsheets. We can move the
ToSellPrice formula from the Order class to the Product class. This can be seen in Figure 4,
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in column L, since the formula has now the same background color as the other attributes in
Product (namely UnitPrice and Stock).

A B i | ] K L
1 Order Client i
2 Product | o
3 D Name [ ® ® ®L Category UnitPrice Stock ToSellPrice
4 |id=0 name="" [, - category=""unitP=0 st=0 ToSellPrice=unitP*st
5 H H H H H H
6

Fig. 4: Move formula and move attribute refactoring on ToSellPrice and Category respectively

This refactoring has the potential to improve the representation and understandability of the
spreadsheet (Hermans et al, 2012; Conway and Ragsdale, 1997), as the formula is now closer to
the attributes it uses, and semantically in the correct class.

FEvolution

The steps shown in Refactoring 1 describe the move formula refactoring

Refactoring 1 MoveFormula

Input: fromClass, formulaName, toPoint, line
Output: [ModelOperation]
formula <~ GETFORMULA (fromClass, formulaName)
DELETESHIFT(fromClass, formulaName)
AppSHIFTFORM(line, toPoint, formulaName, formula)

To execute the move formula refactoring on Figure 1 to obtain Figure 4 we would run:
MoVEFORMULA (Order, ToSellPrice, Product, L4, Column)

MoveFormula takes information from the class Order, namely the value ToSellPrice, and
moves it to the class Product, to the position L4.

3.3 Move Attribute
When/Why

Another common refactoring for model-driven spreadsheets is mowve attribute. A simple reason to
use it would be moving an attribute in a class to visually enhance the readability, or move an
attribute between classes due to information evolution.

Another reason would be in a relationship class when it is detected that the instanced value
of an attribute varies between one of the outer classes, and does not with the other. This means
that the attribute might be in the wrong place, and should be placed in the class which directly
affects the attribute. This problem can also be found in relational databases due to incorrect
normalization (Maier, 1983; Cunha et al, 2009). We can see a sample of this occur in Figure 2 - 11
on the Category attribute.

Refactoring

Here we choose the attribute we wish to change places, and choose what class and location in that
class we want to change it to. Looking at Figure 1 - II, we would move the Category attribute
into the Product class, and obtain Figure 4 as our new class.
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FEvolution

The steps listed in Refactoring 2 describe the move attribute refactoring.

Refactoring 2 MoveAttribute

Input: fromClass, attributeName, toPoint, line

Output: [ModelOperation]
attribute < GETATTRIBUTE(fromClass, attributeName)
DELETESHIFT(fromClass, attributeName)
ADDSHIFTATTR(line, toPoint, attributeName, attribute)

To execute the move attribute refactoring on the model presented in Figure 1 to obtain the
one presented in Figure 4 we would run:

MoOVEATTRIBUTE(Order, Category, Product, I4)

MoveAttribute moves the value Category from the class Order to the class Product, more
precisely to the position I4.

3.4 Extract Class
When/Why

Models can grow over time due to the creation of new attributes. This growth eventually causes
the model to become too complicated and hard to understand. Where we once had a class with a
clear purpose, we now may have a class doing the work of two. This is also a common scenario in
the OO paradigm.

Since readability in a spreadsheet is important, as it is in any software, the moment we have
a subset of information which is often times neglected, it might be a good practice to extract this
subset, placing it aside as a new entity. For example, imagine that the users of our spreadsheet
example do not tend to use the Address, City, and Country attributes, as shown in Figure 1 -
III. As these are a subset of client information, and make reading the Client class difficult, it is
a good candidate for the extract class refactoring.

Refactoring

We first need to choose which subset of information we want to extract to a new class and create
this new class with a new name. The previous attributes will be removed from the old class, and
placed into the new class along with an ID attribute. Finally, the ID attribute is then referenced
from the old class. This would be applied to produce Figure 5 from Figure 1 - III.

FEvolution

The steps in Refactoring 3 describe the extract class refactoring.
To execute the extract class refactoring on the model in Figure 1 to obtain the one in Figure 5
we would run:

EXTRACTCLASS(Client, ClientInf, Vertical, B8, [address, city, country])

ExtractClass takes the class Client and creates the new class ClientInf. The new class
grows vertically and starts on the position B8. The last argument is a list of values that will be
extracted to the new class.
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B 5 D E
Client Name  Clientinf Contactinf
name="" inf=ClientInf.id id=Contactir
Name Quantity OrderDate SoldPrice
name="" |gty=0 date="2013-01- soldPrice=gi

Clientinf
iD Address City Country
id=0 address='city="" country=""

Fig. 5: Extract class refactoring on Address, City, and Country

Refactoring 3 Extract Class

Input: fromClass, newClass, newClassPos0, newClassPos1, attrStartPoint, line, attrNames
Output: [ModelOperation] oPoint <— GETATTRIBUTE(fromClass, attrNames[0])
expansion <— DIRECTION(fromClass)
CREATECLASS(newClass, expansion, newClassPos0, newClassPos1)
point < attrStartPoint
ADDSHIFTATT(line, point, ‘id’, ‘0’)
for all attrName € attrNames do
point < NEXTPOINT(point)
attr <~ GETATTRIBUTE(fromClass, attrName)
DELETESHIFT(fromClass, attrName)
if value = formula then
AppSHIFTFORM(line, point, attrName, attr)
else
ADDSHIFTATT(line, point, attrName, attr)
end if
end for
ADDSHIFTREF(line, oPoint, newClass + ‘Id’, newClass + ‘.id’)

3.5 Inline Class
When/Why

The inline class refactoring is the reverse of extract class. Inline class would be used in the cases
where a class has insufficient justification of existing, due to not pulling its own weight, simply
not doing much, or even having often consulted information. In these cases, one would remove the
class, and join it with its outer-class or those which reference it.

Refactoring

When the user decides to use this refactoring, he/she would choose the unnecessary class to apply
this refactoring to. The attributes which existed in this unnecessary class would be transferred
over to the referencing classes, replacing the referencing ID attribute, and eliminating the class in
question. We can see this refactoring applied to the model in Figure 1 - IV to obtain the one in
Figure 6.

FEvolution

The steps introduced in Refactoring 4 describe the inline class refactoring.
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B C D E F
Client Name  Clientinf Telephone  Email
name="" inf=ClientInf.id telephone="" email=""

Fig. 6: Inline class refactoring on the ContactInf class

Refactoring 4 Inline Class

Input: className, allClasses
Output: [ModelOperation]
for all class € allClasses do
if REFERS(class, className) then
refName < GETREFERENCENAME(class, className)
DELETESHIFT(class, refName)
for all attr € GETCLASSATTRIBUTES(className) do
line +— GETLINEFOR(class)
point <— GETLASTPOINTOF(class)
attrName <— GETATTRIBUTENAME(attr)
if attr = formula then
ApDSHIFTFORM(line, point, attrName, attr)
else
ADDSHIFTATT(line, point, attrName, attr)
end if
end for
end if
end for
DELETECLASSSHIFT (className)

To execute the inline class refactoring on the model in Figure 1 to obtain the one presented in
Figure 6 we would run InlineClass, which only has to receive as argument the name of the class
ContactInf, as can be seen next:

INLINECLASS(ContactInf, AliModelClasses)

3.6 Remove Middle-Man
When/Why

A middle-man class is defined as a class which acts as a delegator between other classes. This class
does not usually contain enough responsibility, logic, or purpose other than the simple delegation
of operations/information. Along with being insufficiently useful, containing middle-mans usually
complicates the structure and understanding of a spreadsheet (the same happens in the OO realm).

————— T T R I

Quantity OrderDate  SoldPrice  Sellinf

gty=0  date="2013-01- soldPrice=gty seller=Sellinf.name

Sellinf
Name Cell Home
name="" cell="" home=""

Fig. 7: Remove middle-man refactoring
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Refactoring

When a middle-man exists it should be removed. Furthermore, the classes which are being con-
nected via the middle-man should be directly connected to each other.

Looking at Figure 1 - V, we would remove the Seller class, which is only connecting itself to
the SellInf class. We would then connect the Order class directly to the SellInf class, as shown
in Figure 7.

FEvolution

Refactoring 5 list the steps which describe the remove middle-man refactoring.

Refactoring 5 Remove Middle-Man

Input: className, allClasses
Output: [ModelOperation]
for all referencingClass € GETREFERENCESTO(allClasses, className) do
refName < GETREFERENCENAME(referencingClass, className)
DELETESHIFT (referencingClass, refName)
for all referencedClass € GETREFERENCEDCLASSES(allClasses, className) do
line +— GETLINEFOR (referencingClass)
point <— GETLASTPOINTOF (referencingClass)
ADDSHIFTREF(line, point, refName, referencedClass)
for all attr € GETCLASSATTRIBUTES(className) do
attrName < GETATTRIBUTENAME(attr)
if attr = formula then
AppSHIFTFORM(line, point, attrName, attr)
else
ADDSHIFTATT(line, point, attrName, attr)
end if
end for
end for
end for
DELETESHIFTCLASS(className)

To execute the remove middle-man refactoring on the model presented in Figure 1 to obtain
the one shown in Figure 7 we would run:

REMOVEMIDDLEMAN(Seller, AllM odelClasses)

3.7 Refactored Example

Figure 8 shows the complete refactored version of the ClassSheet we have been using as example.
We were able to remove one useless class, and organize the data to be semantically correct. The
refactorings also makes it easier for the user to read and use the spreadsheet more efficiently
by joining attributes closer to their formulas, and placing often used attributes in classes easier
to access (e.g. joining the Client’s email and phone into the Client class). Figure 9 shows the
co-evolved instance, conforming to the model.

Comparing the original instance to the refactored one, we have 14 less data cells, a reduction of
15%, due to the elimination of redundant data. This reduction increases proportionally in relation
to the data in the instance. For example, if we were to add one more client, we would have 22 less
cells (17% reduction), and with two new clients 30 less cells (18% reduction). We can easily see
that the larger our instance, the more impactful our refactorings.

In the next section we will present an empirical study showing that indeed the refactored
models induce spreadsheet instance that are more effective and efficient to use from their users’
perspective. In fact, we will also show these users have a better experience when using such
improved spreadsheets.
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A B C D E F G H | J K
1 Order Client Name  Clientinf Telephone  Email
2 Product name="" inf=ClientInf.id telephone="" email=""
3 D Name Quantity OrderDate SoldPrice Sellinf Category  UnitPrice Stock ToSellPrice
4 id=0 name="" |gty=0  date="2013-01- soldPrice=gty seller=Sellinf.name category=""unitP=0 st=0 ToSellPrice=unitP*

& Clientinf Sellinf
9 ID Address  City Country Name Cell Home
10 |id=0 address="" city=""  country="" name="" cell=""

11

Fig. 8: The complete ClassSheet model after applying all the refactorings

A B £ D E F G H I 1 K L M N o]

1 Order Client Name Clientinf Telephone Email Name  Clientinf Telephone Email

2 Product Marco C. 0 2948192 marco@uTiago C. 1 2491842 tiago@u

3 Name Quantity OrderDate SoldPrice  Seller Quantity OrderDate SoldPrice  Seller

4 242 Cola 100 4/24/2014 50 Bernardo 120 4/3/2014 60 Bernardo /00 300
5 243 chocolate 250 4/1/2014 50 Raphael 100  4/6/2014 20 Raphael 0.2 1200 240)|
6 244 Chips 250 4/1/2014 50 Raphael 760 4/24/2014 152 Raphael 1400 280)
7 245 Coffee Beans| 50 4/1/2014 75 Raphael 4/24/2014 225 Ricardo d 400 600|
8

9

10

11 Clientinf Sellinf

12 ID Address City Country Name Cell Home

13 0 Rua Carvalho Braga Portugal Bernardo 929992 251 55 55

14 1 Largo dos Pac Guimaraes Portugal Raphael 938294

15 Ricardo 912849 2792222

16

Fig. 9: The instance automatically co-refactored after refactoring the ClassSheet.

4 Empirical Validation

In the scope of software engineering research, empirically evaluating newly proposed techniques
or methodologies is considered essential (Wohlin et al, 2012). Despite the fact that our work on
model-driven spreadsheet refactoring had received positive feedback from the research community,
its assessment in a real-world and practical setting is still crucial. For that reason, we have designed
and executed an empirical study to evaluate our proposed model-driven spreadsheet refactorings.

In particular we are interested in evaluating the impact of the refactored spreadsheets. Although
the refactorings we propose are for ClassSheet models, we intend to study their impact on the
instances. This is so for several reasons:

— The creation and maintenance of spreadsheet models is important, but this does not tend to
be done very often. Therefore, the maintenance of the spreadsheet instances/data is of much
more importance and will happen much more often.

— One model can have several instances. Thus, the more impact we have on the instances, the
better the spreadsheets can be considered as they have more impact, that is, they impact all
the instances users, and not only the one model creator/manager. Thus, although we could
evaluate the management of models themselves, to evaluate the impact of the refactorings on
the instances is of much more importance.

— The users who create and manage the models are more advanced user than the ones operating
the instances, that is, the spreadsheets themselves. Thus, it is more important to improve
the working conditions of less advanced users as they may have more difficulties using bad
spreadsheets that more advanced users (as the ones operating the models).

With this study we try to understand if our refactorings do in fact improve model-driven
spreadsheets in terms of productivity and general user experience.
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To analyze the productivity we designed a set of tasks for users to perform on refactored and
non-refactored versions on the same scenario, measuring the amount of errors they committed
each time, and also how much time it took them to perform such tasks.

To evaluate the users’ experience, we asked a few questions about their preferences (which we
will detail in the next sub-sections).

The perspective of this experiment is from the point of view of a researcher who would like to
know whether or not there is a systematic difference between using non-refactored and refactored
models.

This section will detail the different stages we underwent: design and preparation (Section 4.1),
execution (Section 4.2), analysis (Section 4.3), interpretation (Section 4.4), and discussion (Sec-
tion 4.5). We can summarize the scope of this study as suggested in (Wohlin et al, 2012) as
follows:

Analyze the spreadsheet usage

for the purpose of evaluation

with respect to its productivity and user satisfaction,

from the point of view of the researcher

in the context of the usage of two different spreadsheets by Master students.

4.1 Design

The goal of this study was to measure the quality of our proposed refactorings from a user per-
spective, and evaluate the differences between refactored and non-refactored models.

Specifically, we wanted to evaluate the effectiveness, efficiency, and user acceptance of our
proposed model-driven refactorings over non-refactored versions:

— Effectiveness. Considering how common it is to find errors in spreadsheets, one of the objectives
of our approach was to evaluate the effectiveness of refactored and non-refactored instances of
spreadsheet models.

— Efficiency. Considering how important it is to be able to quickly perform actions in spread-
sheets, we studied the time it takes to complete each task. This should provide information
regarding the efficiency (or lack of it) of spreadsheet model refactorings, and observe the exis-
tence of potential tradeoffs between effectiveness and efficiency.

— User acceptance. We might have cases where our proposed refactorings may drastically reduce
the time needed to perform normal spreadsheet tasks, but in turn may make it difficult for
the user to understand and use the spreadsheet (or the inverse). Due to this, and due to the
importance of user experience, we also want to evaluate the user acceptance.

This study was designed to be conducted in a controlled environment. In order to achieve this,
we decided to perform the study in an off-line academic setting. The participants in this study
were university students attending a Master’s program. As we were evaluating the outcome of
our proposed refactorings, we did not introduce ClassSheet models to the participants, only the
refactored and non-refactored instances of those models. Our participants were asked to solve the
traditional tasks of looking up, updating, and introducing new information in spreadsheets which
were closely adapted from real-world examples.

4.1.1 Hypotheses

As previously stated, we want to test if our proposed refactorings do affect effectiveness (reduced
error rates), the efficiency (increased productivity), and user acceptance. Thus, we can informally
state three hypotheses:

1. In order to perform a given set of tasks, users are less error prone on the proposed refactored
versions, comparing to non-refactored ones.
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2. In order to perform a given set of tasks, users spend less time when using our proposed refac-
tored versions instead of non-refactored ones.

3. In order to perform a given set of tasks, users prefer, perceive, and find it easier to use the
refactored versions over the non-refactored ones.

Formally, three hypotheses are being tested: Hr for the time that is needed to perform a given
set of tasks, Hg for the error rate found and Hy for the user choice rate. They are respectively
formulated as follows:

1. Null hypothesis, Hr,: The time to perform a given set of tasks using our refactored versions is
not less than that taken with non-refactored versions. Hr, : g < 0, where 14 is the expected
mean of the time differences.

Alternative hypothesis, Hp, : pg > 0, i.e., the time to perform a given set of tasks using our
refactored versions is less than with non-refactored versions.

Measures needed: time taken to perform the tasks.

2. Null hypothesis, Hg,: The error rate in spreadsheets when using our refactored versions is
not smaller than with non-refactored. Hg, : pq < 0, where pg4 is the expected mean of the
differences of the error rates.

Alternative hypothesis, Hg, : puq > 0, i.e., the error rate when using our refactored versions is
smaller than with non-refactored versions.

Measures needed: error rate for each spreadsheet.

3. Null hypothesis, Hy,: The user choice rate in spreadsheets when using our refactored versions
is not smaller than with non-refactored. H,, : pq < 0, where uq4 is the expected mean of the
differences of the user choice rate.

Alternative hypothesis, Hy, : pag > 0, i.e., the user choice rate when using our refactored
versions is smaller than with non-refactored versions.

Measures needed: user’s choice for each attribute (preference, understandability, ease of use,
and correctness) for each spreadsheet.

4.1.2 Variables

The independent variables are: Hp the time to perform the tasks, for Hg the error rate, and Hy
for the user choice rate.

4.1.8 Subjects and Objects

The participants in this study were first year Master students, undergoing a course at the Uni-
versidade do Minho. A total of twenty students accepted our invitation and participated in our
study. More details about the subjects participating in the study are presented in Section 4.3.

The objects for this study consisted of three different spreadsheets. Two of these (each with
a specific scenario) were for the actual study, which are further described in Section 4.1.5. The
third spreadsheet was used to perform a tutorial alongside the participants before beginning the
study using the other two spreadsheets. This design choice attempts to minimize the threats to
construct validity, namely the mono-operation bias (refer to Section 4.4.1 for more details on
threats to validity).

4.1.4 Design

For this study, we followed a standard design with one factor and two treatments, as presented
in (Wohlin et al, 2012). The factor is the spreadsheet usage, that is, the insertion, update, and
retrieval of information in a spreadsheet. The treatments are refactored and non-refactored spread-
sheets. The dependent variables are measurable in a ratio scale, and hence a parametric test is
suitable. However, as described further on, other conditions to apply a parametric test are not
met. Thus, an equivalent non-parametric test is used.
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Furthermore, blocking is provided in a way that each hypothesis is tested independently for
each scenario. This reduces the impact of the differences between the two.

4.1.5 Instrumentation

As mentioned, our study was supported using three different spreadsheets, two for the actual
study and one for a pre-study tutorial. We will begin by explaining the two used for the study.
The refactorings are fully implemented in the MDSheet framework to automatically evolve the
ClassSheets. The participants, however, did not have to interact with the framework, but only to
visually look for information and fill in empty cells, as explained below.

The first has a scenario identical to the one used in our previous example (Section 2): a
warehouse goods distribution spreadsheet. This spreadsheet had two worksheets of the warehouse
example, with three of the five refactorings applied on one, and the remaining two on the other. In
other words, we shuffled the five refactorings between the two worksheet copies. This spreadsheet
scenario will be termed orders from now on.

In this first scenario, orders, we had 7 instances of the client class, 7 instances of client infor-
mation, 9 instances of the product class, 63 instances of the order class, and 9 instances of seller
class.

The second spreadsheet scenario was heavily based on a spreadsheet we obtained from a local
food bank in Braga. This spreadsheet scenario contained information on the distribution of basic
products and commodities. Specifically it contained information on: the products, the various
institutions, and the amount of each product distributed to each institution. The product contained
information on the product’s name, code, amount in stock, category, and distribution unit. The
institutions had information on its name, id, type, city, country, amount of lunch and dinner
hampers, total hampers, website, email, and telephone. Replicating the structure, we created the
ClassSheet classes for this scenario, giving us a total of 6 classes (product, institution, distribution,
address, websites, and contact information). Once again, this spreadsheet had two worksheets of
the same example, with three of the five refactorings applied on one, and the remaining two on
the other. This spreadsheet scenario will now be termed foodbank from now on. The division of
refactorings between the two worksheets allows us to evaluate the individual refactorings, and
eliminate the tendecies of always selecting one spreadsheet (the fully refactored version) over the
other (with no refactorings).

In our second scenario, foodbank, we had 10 instances of the product class, 18 instances of the
institution class, 180 instances of the distribution class, 5 instances of the address class, and 18
instances for both the websites and contact information classes.

To note, the application of the refactorings did not alter the information represented in the
spreadsheets, only the layout and structure of the various classes, sometimes adding or removing
classes, but always maintaining consistency.

Guidelines were also provided to participants: they consisted of the list of tasks to be performed.
For these tasks, we used Google forms, allowing us to present the tasks to the participants in their
own computer in a simple way. Using this form, we had a page with the download links for the
spreadsheets used in this study (both for the tutorial, and the two study scenarios), a pre-study
questionnaire to obtain some basic profiling of our participants, simple instructions and comments,
and a page to upload the spreadsheets post-study. The tasks were presented in the form, allowing
us to take advantage of the integrated form mechanisms such as text-boxes and grids. The form
was also divided into two parts, the first with the orders’ tasks and the second with the foodbank’s
tasks, allowing them to focus on one scenario at a time.

For both scenarios, five tasks were presented. Each task is related to one of our five refactorings,
allowing us to evaluate each refactoring individually and in an isolated form. Each refactoring has
two associated tasks (one in each scenario). If in one scenario a data insertion/update task is
given, a data retrieval task is given in the other scenario, and vice-versa. Having both types of
tasks (read/write) gives us a better view of the refactor. Part of the tasks are shown (non-essential
data is ommitted, being replaced by “[...]”):
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Orders
i) “Fill in the missing categories for the products. Consult the following table: [...]”
1) “How many different cities do we have clients in?”
i73) “What is the ExpectedProficts value of: [...]”
iv) “We need to contact our clients [...]. What are their telephone numbers?”
v) “[...] takes care of all the [...] orders from now on. Update the spreadsheet to represent this
information.”
Foodbank
i) “The category of [...]. Please update the spreadsheet to represent this information.”
11) “We need to contact [...]. What are their emails?”
i1i) “Correct the total amount of meals [...] have”

iv) “What are the distribution units of [...]?”
v) “Fill in the missing institution addresses. Consult the following table: [...]

7

Each task was to be completed in each worksheet, for both the refactored and non-refactored
version. The tasks were shown twice, with a preceding “Using worksheet X”, and each repetition
had two text boxes for the participants to state the time they began and the time they finished
the task (a large clock was displayed during the study for the participants).

In the tasks with data insertion/update, they would directly use the spreadsheets. While in
data retrieval tasks they would answer the question using Google form’s incorporated text boxes.
In the case of the data retrieval tasks, each worksheet (from each spreadsheet) had different values
so the answer would not be the same, eliminating learning effects and forcing the participants to
actively retrieve data.

Additionally, at the end of each task, the participants were asked to choose between the first
worksheet, the second, or neither on four attributes:

i) “Which worksheet do you prefer to work with?”

1) “Which one do you feel is more understandable?”

i7i) “Which one do you feel was easier (to complete the task in)?’
iv) “Which one do you believe has the more correct structure?”

Users also had a section where they could comment on the two worksheets, stating their
opinions and what they would change.

Finally, we copied each of the two scenario spreadsheets, and inverse the worksheet order,
providing yet another shuffle. In other words, in one copy we had the first worksheet as worksheet 4
and the second as worksheetp, while in the second copy the first worksheet was worksheetp and
the second worksheet 5. Now we have four physical spreadsheets (each scenario repeated) with
shuffled worksheets. The two copied forms would be distributed between two randomly chosen
groups (each form had the appropriate download links for the associated spreadsheets).

The third spreadsheet (tutorial spreadsheet) contains examples of the previous two scenarios
to allow the participants to understand and work with these examples before beginning the study.
This allowed them to familiarize themselves with the spreadsheet, the layout, and context. The
tutorial consisted of insertion, update, and data retrieval tasks.

4.1.6 Data Collection Procedure

To correctly collect the spreadsheet data from the participants, and match the spreadsheet with
the form, we would hand out, to each participant, a ticket with a number and the form url link
before executing the study. Google’s forms not only allowed us to create the tasks, but also allows
an automatic form submission of the participant’s responses. This information was automatically
placed into a spreadsheet when the participant finished the study, and provided an upload link for
the spreadsheets.

As Google forms automatically collected the form data, the steps were simple:

1. Handing out and filling study consentment form.
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Handing out ticket number and study form url link.

Spreadsheet tutorial with participants.

Performing the study.

Submission of study form.

Submission of spreadsheets the participants edited during the study.
Collecting consentment forms.

Ntk W

All the participants were expected to perform all the tasks on the respective spreadsheets.
We also asked the participants to complete the tasks in a quick but correct way. Thus, we did
not prioritize answering time in relation to correctness. The goal of the study is not to compare
one spreadsheet against another, but instead to compare the spreadsheet usage of our proposed
refactored versions to the non-refactored ones.

4.1.7 Analysis Procedure and Evaluation of Validity

The analysis of the collected data is achieved performing paired tests where the performance of
each participant on the refactored version of the spreadsheet is tested against the non-refactored
version. For this, the following tests are available: paired t-test, Wilcoxon sign rank test, and the
dependent-samples sign-test.

Since the study is composed of several tasks, and each participant may not complete all of
them, participants that do not complete all the tasks for both treatments of a spreadsheet will be
discarded from the global analysis of that spreadsheet. This will allow us to compare the results
of the remaining participants against each other, and not doing so could lead to incorrect illations
given that a concrete task may be more error-prone than the others.

To ensure the validity of the data collected, several kinds of support were planned: constant
availability to clarify any doubt, tutorial to teach and get used used to the spreadsheet, and
supervise the work done by the subjects in a way that does not interfere with their tasks. This last
point consists of navigating through the room and see which subjects look like they are having
problems and try to help them if it is about something that does not influence the results of the
study (problems using Google Forms, accessing and downloading the worksheets, for example).

4.2 Execution

This empirical study was performed in a classroom with twenty participants, all of them being
Master students in informatics. All the participants performed the study at the same time, but
the spreadsheets were shuffled in a way that no participant could use other participant’s answers.

Initially, a consentement form was signed by the participants. This was to explain the purpose
of the study, ensure them confidentiality, and inform them they could leave at anytime they wanted
without any kind of reprisal. All the participants were encouraged to write whatever answer or
opinion they thought best fit the questionnaire.

The concept of classheet instances was introduced, and some basic problems related to reading,
analyzing and editing a spreadsheet were performed with them to ensure they had the basic
necessary knowledge, and to ensure they were not completely oblivious to the tasks.

The study consisted of a form created with the aid of Google Forms, and spreadsheets the
users were suppose to use during the study. All the participants were given a number which they
used to download the spreadsheets to ensure different variations of the spreadsheets were spread
across the participants and across the room.

The participants were also asked to use their own computers. This was to ensure they were
working with their familiar hardware, and the time for the tasks was not spent unnecessarily on
things like using an unfamiliar operative system or keyboards with unfamiliar layouts.

The first part of the form consisted on basic information related to the participants (gender,
age) and their expertise with software models and spreadsheets. The other parts of the forms
consisted on a set of tasks, and an upload site for the participants to upload the result of tasks
that asked them to edit or insert information.
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During the study the participants were supervised. This was to ensure that tasks that were
not related to the study itself (download and upload spreadsheets, access the forms, problems
interpreting the questions, for example) were rapidly answered and would not interfere with the
time of the main tasks.

4.3 Analysis

The global analysis was performed with results from the participants who completed all the tasks
for both scenarios, as described in Section 4.1.7. A initial step was to normalize all the shuffled
scenarios and worksheets, after which we had a total of 19 out of 20 participants. Only 1 was fully
discarded, because halfway through the study an external problem occurred preventing him from
continuing.

We analyzed each refactoring from each scenario individually, i.e., we did not join the data
from both scenarios into one. This allowed us to analyze the refactorings from two different uses:
read and write. We then merged the data and analyzed the refactors from a global perspective.

4.8.1 Descriptive Statistics

Subjects: Basic information about the participants was gathered, namely their gender, age, back-
ground, and familiarity with spreadsheets and models (such as UML, ER, CPN, etc.). From the
twenty participants, nineteen were male and one was female. Most of them were aged between
twenty-one and twenty-six, with two being over twenty-six. The subjects all came from an IT
background, either informatics engineering, computer science, or information technology and com-
munication. The average level of familiarity, from a scale of 1 (low) to 5 (high), for spreadsheets
was 4, and for models was 3.

Time Spent: As expected, differences were found in the time that participants used to perform
the tasks. The minimum times recorded on each scenario were by participants using our proposed
refactorings. Table 1 shows the average time in seconds each participant took to achieve the given
read tasks, both with and without our proposed refactorings.

Table 1: Average and standard deviation time in seconds each participant took to achieve the read
tasks.

Move Formula Move Attribute Extract Class Inline Class  Remove Middle-Man
Non-refact.  57.947 + 45.227  53.474 + 24.315 45.053 £+ 19.293 49 + 18.614 49.632 + 20.699
Refactored  41.842 + 28.775 30.526 4+ 13.290 31.053 £ 23.350 48 + 26.199 38 + 13.561

Similar results were obtained for the write tasks, shown below in Table 2.

Table 2: Average and standard deviation time in seconds each participant took to achieve the
write tasks.

Move Formula Move Attribute Extract Class Inline Class Remove Middle-Man
Non-refact.  58.421 £ 31.904  206.158 + 108.106 98 + 56.788 50.263 + 40.395 82.579 + 31.370
Refactored 34.842 4+ 11.645 85.789 + 56.983 86.421 4+ 33.191 35.684 + 35.657 86 + 52.237

Error rates: To evaluate the correctness of the spreadsheets produced during the study, error rates
were used. Each task required either an answer to be given, or a series of cells to be filled and
updated. In the cases where an answer would need to be given (read tasks), we considered a wrong
answer as an error, so either 0% error or 100%. In the cases where the participant had to insert
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and update (write tasks), we considered every possible cell as a possible error. So if the participant
had to insert information into 4 cells, and wrote 2 incorrect values, the error rate was 50%.

In Table 3, we show the amount of participants that made at least one error in the given tasks,
both with and without our proposed refactorings, in both scenarios.

Table 3: Amount of participants that made at least one error

Move Formula Move Attribute Extract Class Inline Class Rem. Middle-M.

Read  Write Read Write Read  Write Read  Write Read Write
Non-refact. 8 3 2 4 8 2 0 0 1 1
Refactored 1 1 2 0 3 0 0 0 0 0

A superficial analysis shows that our refactored versions had less participants committing
errors compared to the non-refactored version. The inline class tasks had no errors committed,
the remove middle-man (read and write) and the move attribute (read) tasks had same error rate,
and the extract class (write) had low amount of errors overall.

Acceptance: In most cases participants chose our proposed refactored versions over the non-
refactored version in relation to the four attributes for user-acceptance: their preferred version,
which version they felt was more understandable, which one they felt was easier (to complete
the task in), and which one they believed had the more correct structure. The choices of the
participants are represented in Figure 10 and Figure 11 for the read and write tasks respectively.

In Figure 10, we can easily see that our refactored version was the most popular, albeit in
Figure 10.(a) and Figure 10.(d) there does seem to be a small handful of participants who chose
the non-refactored version in some of the attributes.

Looking at Figure 11 we begin to see more of a competition. In Figure 11.(a) and Figure 11.(b),
our version is the most popular. In Figure 11.(c), more participants chose the non-refactored version
to be more understandable, while preferring the refactored version for the other three attributes.
Finally, in Figure 11.(d) and Figure 11.(e), the results for the two versions seem to be very simillar,
with a slight advantage in the non-refactored version.

4.3.2 Hypothesis Testing

The significance level used throughout the evaluation of all the tests is 0.05. The evaluation of the
tests was performed using the R environment for statistical computing (R Core Team, 2013).

Comparison of times : The difference of times between the execution of tasks in the non-refactored
and refactored versions do not follow a normal distribution. Thus, we used the Wilcoxon test,
which is the best for these cases (Wohlin et al, 2012).

Looking at the results of applying the Wilcoxon test to test our hypotheses, shown in Table 4,
we can see that the time taken to perform the tasks is statistically smaller using our refactorings
as opposed to the non-refactorings in 7 out of 10 cases.

Table 4: Wilcoxon p-values for comparison of time.

Move Formula Move Attribute  Extract Class Inline Class Remove Middle-Man
Read 0.01303000 0.00035440 0.01302000 0.35550000 0.02367000
Write 0.002135000 0.00010490 0.32160000 0.01110000 0.63620000

We decided to further analyze the three non-passing cases, extract class (write), inline class
(read) and remove middle-man (write), and verify if the inverse hypothesis is true, in other words,
are the non-refactored versions statistically faster. This produced Wilcoxon p-values of 0.6927,
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Fig. 10: Post-task questions (read).

0.6606, and 0.3802 respectively. Once again, the results are greater than the significance level, and
in turn, we cannot conclude that one or the other version is statistically faster.

We took this one step further and merged the data from the tasks into one instead of separate
read and write operations. This allowed us to analyze the refactorings from a global perspective
of the refactorings and non-refactorings. In this case, we can see that the time taken to perform
the tasks is statistically less using 4 out of our 5 proposed refactorings, as shown in Table 5.

Table 5: Wilcoxon p-values for comparison of time from a global perspective.

Move Formula Move Attribute

Extract Class

Inline Class

Remove Middle-Man

0.0009704 0.000004768

0.03223

0.004707

0.5321
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Comparison of error rates: The differences of error rates between the execution of tasks in the non-
refactored and refactored versions do not follow a normal distribution. Thus, we used once again
the Wilcoxon test to test the null hypothesis for both versions in order to be able to compare the
results.

The results obtained from the tests, shown in Table 6, show that the number of errors are
statistically less using our refactored versions in 4 cases, move formula (read and write), extract
class (read), and move attribute (write). In the case of extract class (write), we do not have
enough statistical evidence to claim the same, albeit the only two errors which occurred were on
the non-refactored version.

Table 6: Wilcoxon p-values for comparison of errors.

Move Formula Move Attribute  Extract Class Inline Class Remove Middle-Man
Read 0.03630000 0.00000000 0.03593000 0.00000000 0.50000000
Write 0.20710000 0.04860000 0.17290000 0.00000000 0.50000000
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As expected and previously mentioned, the other cases did not produce any interesting results
due to either having no errors, low amount of errors, or same error rate. Once again we merged
the data from the tasks into one instead of separate read and write operations, and analyzed the
error rates from a global perspective. We expected to have more interesting results as we also now
have a bigger pool of error rates from both versions. The results are shown in Table 7. Here we
can see that the errors rates are statistically smaller using 3 out of 5 of our refactorings. The inline
class did not produce any results (as there were no errors), and the remove middle-man did not
produce enough statistical evidence to pass our hypothesis.

Table 7: Wilcoxon p-values for comparison of errors from a global perspective.

Move Formula  Move Attribute  Extract Class Inline Class Remove Middle-Man
0.01675 0.04876 0.01844 0.00000 0.1855

User acceptance: In order to test this hypothesis, we only considered the participants who chose
one version over the other, and did not consider answers stating the user did not have a specific
preference. For this, we used a binomial sign test, with the same 0.05 significance level, to test the
null hypothesis for both versions.

Table 8 shows the p-values for our binomial sign tests. In more than half of the cases, we
had enough statistical evidence to validate our hypothesis. In a majority of the read tasks, users
chose our refactored version for the four attributes (preference (P), understandability (U), ease
of use (E), and correctness (C)). Participants seem to be divided among the last three, extract
class, inline class, and remove middle-man, for the write tasks. While two out of these three had
enough statistical evidence showing that participants believed it to be more correct, we did not
have enough evidence to validate our hypothesis for the other three attributes.

Table 8: Binomial sign test p-values for comparison of user choices of preference, understandability,
ease of use, and correctness.

Move Formula Move Attribute Extract Class
R W R A% R W
P 0.2101 0.00003052 0.007385 0.0002747 0.00000763 0.2101
U 0.2101 0.00027470 0.007538 0.3593 0.0007286 0.6072
E  0.09625 0.00001526 0.02127 0.00000763 0.00007629 0.1671
(@] 0.4545 0.0005188 0.001312  0.00007629 0.00000763  0.03088
Inline Class Rem. Middle-Man
R w R w
P 0.05737 0.6072 0.00001526 1.0
U 0.07681 1.0 0.001312 0.8145
E 0.6291 0.8036 0.000145 0.4807
(@] 1.0 0.3323 0.004425 0.03088

Finally, we once again merged the read and write tasks to form a global perspective analysis
on our refactorings, which can be seen in Table 9. Our first three refactorings show statistical
evidence to validate our hypothesis on our four attributes, with the last two yielding the same
conclusion from the lower level analysis.

Interestingly enough, if we look at Table 5, we can see how we do in fact improve the user’s
efficiency with the inline class during the write tasks. We also believe that both the extract class
and inline class are heavily influenced by the way of how he/she prefers the data. In other words,
if they rather work with more denormalized data (inline class) or more normalized data (extract
class). This is also supported by the fact that users believed the extract class versions were more
correct (in both read and write tasks), while the inline class versions were apparently not so clear.
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Table 9: Binomial sign test p-values for comparison of user choices of preference, understandability,
ease of use, and correctness from a global perspective

Move Formula  Move Attribute  Extract Class Inline Class Remove Middle-Man

P 0.0001131 0.00000256 0.00003856 0.4583 0.007

U 0.0003241 0.007632 0.05011 0.2962 0.06525
B 0.00002236 0.00000077 0.0001162 1.0 0.06525
C 0.002102 0.00000012 0.00000194 0.6076 0.7428

One possible reason is that these are MSc students have studied data-base normalization, and
correct data design patterns, and possibly found it incorrect and harder to initially understand
the idea of denormalizing data. Nevertheless, extract class and inline class are essentially opposite
operations, and this allows users to structure their data to their preference.

4.4 Interpretation

The results from this empirical analysis suggest that the refactorings we propose create better
instances, by increasing user productivity. However, some aspects have to be taken into account
in this results.

4.4.1 Threats to Validity

The goal of this study is to analyze if applying refactoring to a ClassSheet improves the overall
quality of both the model and its instances, while ensuring that the setting presented represents
the theory we developed with this work.

Next, we analyze possible threats to the validity of the results obtained, divided in the four
categories of (Cook and Campbell, 1979):

Conclusion validity: The low number of participants might imply a low statistical power from the
results. To overcome this issue more powerful statistical tests were performed where possible,
taking always into account the necessary assumptions.

Subjects were asked to perform the same task on refactored and non-refactored spreadsheets.
We were carefully to shuffle the tasks so that half the participants started with the refactored
version and half the participants started with the non-refactored spreadsheet, which means the
overall results we not affected. However, there might exist some ‘carry-over effect’.

Internal Validity: Several actions were taken with the objective of minimizing the effects of inde-
pendent variables.

The time to perform the study was minimized as much as possible, to maintain the participants
focused on the tasks, and the study was performed only once with these participants.

All the material for the study (forms, spreadsheets, the uploading website) were developed
with the concerns of collecting only relevant information and minimizing distractions to the main
tasks. Also, all the subjects whom we did not discard (19 out of 20) performed all the tasks (but
in different order and with spreadsheets with different values but the exact same layout).

By controlling the group of participants and the tools they used we controlled and reduced
threats to the internal validity of this study.

There is also the possibility of existing errors when measuring, for example, the times the
participants took to perform each individual task. This was minimized by the fact that partici-
pants had the exact same background, performed the exact same tasks and were using familiar
environments (all participants used their personal computers). This means variations in time are
due to the tasks themselves, not to external factors, but introduces problems when generalizing
(further below we explain why).
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Construct Validity: To ensure construct validity on this study we defined several hypothesis that
covered the aspects we wanted to analyze. Also, the participants were guaranteed not to be affected
by the result or by their answers because they were not under evaluation (this was told to them
several times).

The tasks we asked the participants to perform are typical spreadsheet tasks of information
analysis, edition and retrieval, and they were introduced to these during a preliminar tutorial. We
also gave the participants spreadsheets with different values (this was told to them), to avoid them
copying the answers from other participants, since they were all in the same room.

We believe the construction of this study allows a correct evaluation of the implication of
refactorings in the usage of spreadsheets.

External Validity: This validity is related to the ability of generalizing the results of the study to
industrial practice. The different spreadsheets used were all based on spreadsheets we obtained
from industrial partners, with minimal changes only to control the duration of the study. Never-
theless, since the group of participants was small and homogeneous, it is hard to generalize the
results without further analyzing the domain in which the spreadsheets are being used.

4.4.2 Inferences

This study was performed in a very specific setting which makes it hard to generalize the results.
The fact that a) the spreadsheets were based on real information provided by industrial partners
and b) Master students can be comparable to professionals (Host et al, 2000) creates the possibility
that applying refactorings to a spreadsheet model can be useful, by reducing potential errors and
increasing the productivity of professionals.

4.5 Discussion

The results and analysis we present strongly suggest that refactorings have a positive impact
on the usage of spreadsheets. These refactorings were inspired by the ones available for the OO
paradigm, to which ClassSheets can be mapped (Cunha et al, 2012e).

Several researchers have proposed the detection of smells for spreadsheets (some also based on
the OO realm) (Hermans et al, 2012; Pinzger et al, 2012; Cunha et al, 2012d,a). Unfortunately,
they usually do not propose the corresponding refactorings to eliminate the smells. Nevertheless,
given the good results we achieved in this study it is expected that other refactorings may also
improve the quality of spreadsheets (although empirical validation is required). Thus, this study
design can and should be used to evaluate other refactorings that may be proposed in the future.

Another interesting discussion includes the terms evaluated by our study. With the amount of
errors being a common issue in spreadsheets, it is only natural to try to take that in account when
considering techniques for spreadsheets engineering and usage.

One cannot evaluate the amount of errors without considering the time it takes to accomplish a
certain task. If one proposes a technique that fully eliminates the errors but exponentially increases
the amount of time it takes to do the job, then such technique probably will not be accepted by
spreadsheet users, or any other users by that matter.

Finally, even improving users’ efficiency and effectiveness, the new spreadsheet should engage
users. Thus, it is crucial to evaluate the overall user experience and acceptance of our technique. As
spreadsheets are naturally the end-users’ language of choice, that is, the programming environment
for non-professional programmers, their perspective is quite important.

Although we have shown that the refactorings we proposed can be used to improve spread-
sheets, as they in general specify spreadsheet transformations, one may assume they may also be
used to produce not so good spreadsheets. Indeed this is also the case for the refactorings available
for other languages. Nevertheless. we characterized the context in which they can/should be used
to improve spreadsheets.
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5 Related Work

After the popular book of Martin Fowler (Fowler, 1999) the concepts of code smells associated with
program refactorings became widely used to improve the quality of software programs: code smells
give an indication of poor quality of the software source code, in terms e.g. of its comprehensibility,
while program refactorings are used to improve such perspective of quality. The main goal of
program refactoring is to improve the overall quality of the software and not identify or to correct
bugs/faults, nor to optimize/improve the performance of a program.

Although refactorings aim at improving software quality, several research studies show that
they are not always effective in their aim (Stroggylos and Spinellis, 2007; Alshayeb, 2009). In this
line, we have presented in this paper an empirical study that we conducted in order to confirm
that the catalog of ClassSheet refactorings we proposed earlier does improve the overall quality of
model-driven spreadsheet development.

Program refactorings have been widely applied/studied in different programming languages,
like for example in C++ (Graf et al, 2007), Haskell (Li and Thompson, 2008), Erlang (Li and
Thompson, 2012), and in software formalisms, like for example in software product line vari-
ability (Borba, 2011), in software security (Maruyama and Omori, 2011), in computer gram-
mars (Kosar et al, 2004), and in UML models (Sunyé et al, 2001).

In the context of program refactorins, there are several empirical studies that validate their
use by professional software engineers (Cunha et al, 2015), or the use of refactorings by software
engineers in evolving software systems (?), or in inducing faults (?), and in many other software
development areas. The validation of refactorings in the context of (end-users) spreadsheet devel-
opment has not received the same research work. This paper presents a first empirical study of
end-users using refactorings for model-driven spreadsheets. Felienne’s et al. paper (?) presents a
qualitative empirical study evaluating refactoring spreadsheet formulas by end-users. Our paper,
however, presents a study where end-users have to perform more end-user oriented tasks, that is to
say, more spreadsheets specific tasks, like for example, refactorings that involve layout operations.

There are also other works on applying program refactorings to spreadsheets formulas. Of
special mention is (Badame and Dig, 2012), where the authors suggest a set of transformations to
formulas using an Excel plugin. The fundamental difference to our work is that the refactorings
we propose are applied to the spreadsheet model, which being more concise, makes the reasoning
easier. WYSIWYG (Fisher IT et al, 2002; Rothermel et al, 2000) is a tool for spreadsheet testing
that helps users to find bugs and problems in spreadsheets. Contrary to our approach, this tool
requires user input to find faults and works only individually on instances of spreadsheets.

Hermans et al. (Hermans et al, 2012; Pinzger et al, 2012) have various works on spreadsheet
smells. They sometimes refer refactorings for the smells they introduce, but they specially focus
on the detection of smells, not on their elimination. Their work is complementary to ours, as they
focus on detecting spreadsheet problems and we, while sharing this same concern, have further
focused in this work on solving some of them.

6 Conclusions

In this paper we have built on previous work where we proposed a set of refactorings for Class-
Sheet models, a formalism that has been widely used in the context of model-driven spreadsheet
engineering.

While based on our experience in this context we have argued in the past that our refactorings
provided better models, it is only after the work described in this paper that this argument has
been fully realized and extended to their instances.

We have designed and conducted an empirical study comparing two scenarios: one where our
refactorings are applied against one where they are absent. From the analysis of the obtained
results, we have found statistical evidences that refactorings do allow spreadsheet engineering
productivity improvements. These evidences are also substantiated with some qualitative data, of
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a more subjective interpretation, that we gathered from the participants of our study. Indeed, in
most cases the study participants had a better experience working with the refactored versions.

We foresee several directions for future work, including a study on the applications of the
refactorings and a user’s experience with them. We tested variables that we consider of extreme
importance for analyzing spreadsheet usage, namely effectiveness, efficiency, and user acceptance.
The fact is that there is not a definition for spreadsheet quality, similar to the one described
in ISO/IEC 9126 for software, where functionality, reliability or maintainability, for example, are
clearly defined. To evaluate the quality of a spreadsheet several aspects could have been chosen,
from the quality of the data itself, to the model complexity or readability. We are currently working
on how well-known quality models can fit spreadsheets and how can quality be clearly defined. A
first approach to this is described in (Cunha et al, 2013).

We are also working on smells detection tools for spreadsheets, such as the one presented
in (Cunha et al, 2012a). This could be adapted to automatically identify when a refactoring could
and should be applied.
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