
SpreadsheetDoc: An Excel Add-in for
Documenting Spreadsheets

Diogo Canteiro and Jácome Cunha

Universidade Nova de Lisboa, Portugal
d.canteiro@campus.fct.unl.pt

jacome@fct.unl.pt

Abstract. Documentation is an important artefact of any software prod-
uct. This is also the case for spreadsheets were, even considering an in-
dustrial setting, only 30% have some kind of documentation. This makes
their usage and maintenance very difficult.

In this paper we describe a tool, SpreadsheetDoc, that allows users to
document spreadsheets in a structured way, allowing them to describe
different parts of spreadsheets. For instance, for (future) spreadsheet
users, it is possible to describe input and output cells, and for (future)
developers, it is possible to describe computation, that is, formulas: their
arguments, their internal computations, and their outputs.

Keywords: Spreadsheet, Documentation, Tool, Excel, Add-in

1 Introduction

Nowadays, there are a huge number of people using spreadsheets. In fact, spread-
sheet systems are the most used programming system [13], specially by non-
professional programmers, the so-called end users. As in other programming
languages/environments, it is quite common to find spreadsheets with errors. In
fact, the error rate within spreadsheets can be up to 90% [15]. The European
Spreadsheet Risk Interest Group (EuSpRIG)1 regularly updates their web site
with new stories reporting the loses (economical, brand recognition, etc.) caused
by errors in spreadsheets to companies and other entities.

Many reasons exist for this scenario: the lack of abstraction, of a testing
methodology, or a (very) weak type system. Some errors can also be explained
by the lack or poor documentation [18]. Indeed, in many of the cases reported by
EuSpRIG, the lack of or bad documentation is mentioned. Moreover, software
tends to lose some of its efficiency when no proper documentation is available [7].
Without the proper documentation users and developers have more difficulties in
understanding, using, and updating the software. The same happens for spread-
sheets. In a recent study in a financial institution, researchers found that 70% of
users that receive spreadsheets from colleagues have difficulties understanding

1 http://www.eusprig.org/



them [11]. This transferring scenario is quite common as 85% of the study partic-
ipants reported doing so. The same authors report that spreadsheet users browse
them for hours trying to understand them since only 1/3 are documented [10].

Unfortunately, spreadsheet systems do not have a proper form to document
their programs. In modern spreadsheet systems it is possible to add general
notes to a cell, but that is a very unstructured way of doing documentation,
when compared to what tools like JavaDoc allow. This can be compared as
to write ad-hoc comments in a textual language. This makes it quite hard for
spreadsheet developers to actually document their spreadsheets. For instance,
in [9] the authors analysed more than 15.000 spreadsheets available in the En-
ron Email Archive [12], containing the emails from the Enron corporation. They
found that some spreadsheet documentation was in the emails themselves, in-
stead of being in the spreadsheets. This shows that there is the need to document,
but not the proper means.

Users tend to workaround this situation documenting their spreadsheets as
possible. Some write the documentation on a separate worksheet and reference to
it informing that such worksheet is the documentation of the spreadsheet. In this
case, it is not possible to see the documentation and the corresponding document
artefacts at the same time, as one can do using for instance JavaDoc, making it
difficult to relate the documentation with the actual spreadsheet content. Others
write the documentation on the worksheet with the content, close by the cells
they want to describe. However, in these cases users are inserting extra cells in
the spreadsheet, which are not part of the program, making it more complex.

These kinds of documentation make users question its use. Although it is
important to document software, it cannot be done in any way. It is important
to write and organize it in such a way that the target readers will get what they
want. A good documentation will increase the users’ efficiency and effectiveness,
and thus, their productivity [7,16]. Indeed, JavaDoc, for the Java programming
language, is a good example of a successful way of documenting software.

In this paper we present a tool, SpreadsheetDoc, described in Section 3, to
guide spreadsheet developers to write proper documentation. In this case, two
kinds of documentation should be written, as suggested in [20]: i) documentation
for end users, and ii) documentation for developers. Notice that both these types
of documentation should be written by the spreadsheet developers, but part is
intended to be read by end users and part by developers.

Spreadsheet end users are the ones interested in executing the spreadsheet to
compute the results they want. Thus, they are mostly interested in understand-
ing which cells they should fill in to feed the program, that is, the input, and were
they can find the results, that is, the output. So, spreadsheet developers should
mark and document all the input and output cells, and write documentation for
users, and not for developers, that is, simple and straightforward documenta-
tion. The purpose of the spreadsheet file, and of each worksheet also fits in this
category so users can find the spreadsheet and corresponding worksheet they
need. We describe in detail how to do this in Section 4.



On the other hand, maintainers and future developers of the spreadsheet
must have more technical information about the computations performed. Thus,
cells containing complex formulas should also be documented. In this case, the
documentation should be technical so others can later correct or evolve the
spreadsheet. We discuss this is Section 5

With our tool we also allow to document a particular column, row, or range
of cells (for instance, a table in a spreadsheet, that is, a range separated of the
remaining cells by empty columns and rows).

Users can then read the documentation within the spreadsheet itself, in the
context of the part of the spreadsheet they are using, or read the complete
documentation in a web page, which is generated by our tool in a similar way
as JavaDoc. To generate the web page we first create an XML file where the
complete documentation is saved. Although we decided to present to users a
web page, this intermediate format makes it possible to present documentation
in a different way. Moreover, it also allows to import documentation produced
by other systems, as long as the correct XML file is available. This allows to
publish inside a corporation all the documentation of all spreadsheets, making
it easier for collaborators to find one that already does what they need. More-
over, since spreadsheets can reference other spreadsheets, the navigation to the
corresponding documentation is straightforward, as links connect them.

In Section 2 we present a running example, in Section 6 we discuss related
work, and in Section 7 we present our conclusions and future work.

2 Motivational Example

2.1 Definitions

Before we introduce our motivational example, we will define a few concepts
from the spreadsheet realm.

Workbook/Spreadsheet A workbook is a spreadsheet file. The term spread-
sheet is often used to refer to a workbook, when in fact it refers to the
computer program, such as Excel. We will use these terms interchangeably.

Worksheet A worksheet, or simply sheet, is a single page of a workbook, that
is, one of the tabs that can be found at the bottom of the spreadsheet (in
most spreadsheet systems).

Cell A cell is a rectangular box in a worksheet, that is, the intersection point
of a vertical line (column) and a horizontal line (row). Its name is the con-
catenation of its coordinates: a letter for the column and a number for the
row. It also has content, which can be plain values (for instance, 4 or Bid),
or formulas (for instance, =SUM(A1:A3)).

Row Refers to all the cells contained in a horizontal line (given by a number).
Column Refers to all the cells contained in a vertical line (given by a letter).
Range A range is a group of cells in a worksheet that form a rectangular area.
Input Cell A cell referenced by others, but not referencing any other cell.
Output Cell A cell that references other cells, but its not referenced by others.



2.2 Example

We now describe a spreadsheet which we will use as a running example. This
spreadsheet, shown in Figure 1, was introduced in a book describing how to
create spreadsheets [14].

Fig. 1. A spreadsheet to calculate the winning probabilities of an auction.

This spreadsheet calculates the probability of winning an auction, accord-
ing to a set of assumptions. Although this spreadsheet is well organized and
rather small, it is already difficult to understand. In Figure 2 we show the same
spreadsheet, but now with the formulas visible.

Fig. 2. Spreadsheet of Figure 1 with formulas visible.

In fact, and since this is a well designed spreadsheet, some cells even have
comments on them (denoted by the small triangle in the top right corner of the
corresponding cells). We list next the comments from the spreadsheet:



F4 Decision: Bid (in $million)

I4 Net value if the salvage value is low.

I5 Net value if the salvage value is high.

I8 Net value if the bid is successful.

I9 Net value if the bid is unsuccessful.

In the book, one can read some more details about this spreadsheet and cor-
responding computations. What we envision is a system where one can describe
the different parts of the spreadsheet, but in a systematic approach, and in the
corresponding context.

For instance, cell F5 calculates the probability of winning the auction. The
formula present in the book is P(Win) = (Bid - 2)/10, for 2 ≤ Bid ≤ 12.
This formula is more direct than the one presented in the spreadsheet, and the
range of Bid (F4) is now clear. This should be part of that cell’s documentation.

Using our approach, to document such formula, the user would click on the
button to describe cell (“Cell”), under the group “Content Documentation”, and
the wizard shown in Figure 3 would appear:

Fig. 3. Dialogue to document a formula cell.



Since we are documenting a cell, as in any other programming language, the
developer should describe the computation, the input, and the output. The first
text box allows the user to write a general description of the formula. This is
similar to what a Java programmer starts to write when documenting a method.
Next, the user can describe the argument of such formula. In this case, the input
is cell F4, which is the label of the text box. Moreover, the tool also shows the
type of the inputs, in this case, double. This may also help the user to detect
incorrect usage of cells. Finally, the user can describe the output of the formula,
again annotated with the corresponding type.

In the following sections we will describe in detail all the features of our
approach, including how to describe input, output, and computations.

3 The SpreadsheetDoc Add-in

We have developed our tool, SpreadsheetDoc, as an add-in for Excel 2013. To
develop our framework we used the programming language C#, version 4.0, and
Visual Studio Ultimate 2013. To use our SpreadsheetDoc it is necessary to install
it as an add-in within Excel. It will appear as a new ribbon with its name and
when the user clicks on it he/she will have available all its functionalities. Each
of these functionalities is implemented as a method. Thus, the code structure
is simple allowing to easily add new methods/functionalities. Since each func-
tionality can be used to add new documentation or to update existent one, each
method must verify if some documentation already exists for the selected spread-
sheet part (worksheet, cell, etc.). If no documentation exists, then a new form
must be created. Otherwise, the form is loaded with the existing documentation.

Our framework is structured in three parts. The first part is where the user
writes, reads, and updates all the documentation. This is done using the corre-
sponding buttons listed in the ribbon and described in Sections 4 and 5.

The second part is the possibility of importing and exporting XML files with
the documentation. Such file can be used in different ways. For once, it is used
by the tool itself to create a web page where the user can read the spreadsheet
documentation, possibly with links to documentation of other spreadsheets, if
they are referenced.

When exported, this XML file can also be used by other tools as they wish.
For instance, it can be used by other Excel add-ins to show the documentation in
a different way, or by add-ins for other spreadsheet system such as LibreOffice or
OpenOffice so they can open Excel spreadsheets, but also their documentation.

It is also possible to read an XML file to import documentation written
in other tools. This makes it easier to exchange spreadsheet documentation. For
instance, it allows the user to import a new version of the documentation the de-
veloper may have written. It may also be used to import documentation written
for that spreadsheet, but using another spreadsheet software, like OpenOffice.

The third part is where the user reads the documentation on a web page. This
web page is generated based on the XML file already created. Such web page
can potentially be consulted by other people. For instance, inside an organization



there can be a server with all the web pages of all spreadsheets available, and
users can search for some spreadsheet implementing a functionality they need.

Figure 4 illustrates the potential interactions users can have with the envi-
ronment SpreadsheetDoc creates.

Spreadsheet user reads the
documentation in the

spreadsheet or a web page

Spreadsheet developer writes
documentation on the  spreadsheet

using SpreadsheetDoc

The XML can be
exported so it can be
used by other tools

It can import an
XML produced
by other tools

Excel + 
SpreadsheetDoc

Other users can search for
spreadsheets implementing

functionalities they need

Fig. 4. The possible interactions with the SpreadsheetDoc environment.

The tool can be downloaded in the following web page:
https://bitbucket.org/spreadsheetdoc/spreadsheetdoc/.

4 Documentation for Spreadsheet Users

In this section we will describe the SpreadsheetDoc features that allow to write
documentation more directed for spreadsheet end users. An end user is the per-
son who uses the spreadsheet after it has been fully developed. Indeed, they
probably do not even completely understand how it computes the results. Thus
the documentation should be easy to understand. Spreadsheet end users only
intend to input values and read the computed output. They can be seen as any
other software end users. So, spreadsheet developers should write documentation
using the next features focusing on end users. Notice that all the documentation
should be written by developers. However, in some cases it is intended to be
read by end user and in other cases by developers. Indeed, each of the features
we present can be used to write and to read documentation, but should be used
by developers to write and by users to read.

SpreadsheetDoc is composed of five different groups of functionalities: Gen-
eral Documentation, Content Documentation, Input/Output Documentation,



Read Documentation, and XML documentation. In the following we describe
each functionality of each group.

4.1 Documenting a Spreadsheet Program

The first functionality we introduce, part of the General Documentation group,
is the one to document an entire spreadsheet document.

In general an organization makes use of many spreadsheets. For instance, for
the oil company Enron there were more than 15.000 spreadsheets exchanged in
their emails [9]. Thus, it is important to document each spreadsheet file, so users
can know each one and possibly reuse them.

So, the first documentation the user should write is about the spreadsheet
itself. The “Spreadsheet” button in our add-in opens a dialogue box with a text
box inside. The user can then write the spreadsheet’s general purpose. In this
dialogue three buttons are shown: clear, ok, and cancel. The clear button,
as the name suggests, clears the text box. The ok button saves the dialogue box
state. Finally, cancel drops all changes inside the dialogue box. Figure 5 shows
the wizard for our running example, and the description we added.

Fig. 5. The “Spreadsheet” button wizard to document a spreadsheet file.

After writing and saving the documentation, if the user clicks again in the
button, the same wizard will be shown, but this time showing the recorded text.
This behaviour is the same for all the functionalities.



4.2 Documenting Each Worksheet

A spreadsheet can have dozens, even hundreds of worksheets. For the EUSES
spreadsheet corpus the biggest spreadsheet has 106 worksheets [8] and for the
Enron 175 were found in a single spreadsheet file [9]. Thus, it is quite important
to document each of these worksheets, otherwise it becomes impossible to know
what each one is doing.

The “Worksheet” button, from the General Documentation group, has a
structure similar to the previous button, but in this case users should document
the behaviour of the worksheet and not of the spreadsheet. Inside each worksheet
the user should click this button and write the corresponding documentation. It
will be associated with the worksheet the user is in.

So, the documentation generated by the General Documentation group has
the goal of giving users a better understanding of the spreadsheet behaviour,
helping them understanding what was it developed for (Spreadsheet button) and
how each of its pieces work (Worksheet button). The wizard shown is similar to
the one in Figure 5, and thus we do not show it.

4.3 Documenting a Cell

The finest grain in a spreadsheet structure is a cell. Although in most cases
it is not necessary to document each cell individually, some of them must be
documented so one can understand how the spreadsheet works. Since for now
we are focused on user documentation, the description about documentation of
cells with formula is left for Section 5.

The “Cell” functionality, from the group Content Documentation, can be
used to document each and every cell. If the cell is a plain value, then the
wizard shown is similar to the one in Figure 5 (thus we do not show it). The
documentation writer can then describe the cell content. If the content is a
formula, then the description must be more technical, so it can be updated by
other developers. We discuss this in Section 5.

4.4 Documenting a Column

Usually, spreadsheet developers tend to organize the data by rows or columns.
For now we are going to focus on columns. Depending on the spreadsheet struc-
ture, commenting a column can be useful. Indeed, a user may document an entire
column describing its behaviour (for instance, by saying the column computes
the average of the columns before it). This functionality can also be used when
each column of the worksheet has a particular meaning. For instance, in Figure 6
one may wander what each column represents.

In fact, this spreadsheet has another worksheet containing its documentation.
For instance, it clarifies that column N (OK) has the value 1,00 in all its cells.

The use of this functionality makes sense only if the worksheet contains a
single table. If it has more than one, commenting an entire row can be confusing.



Fig. 6. A spreadsheet representing dishwasher detergents taken from [14].

The “Row” button opens a dialogue box with a text box inside, similar to
the one presented in Figure 5 (thus we omit its illustration). This button is also
part of the Contend Documentation group.

4.5 Documenting a Row

In the previous sub-section we described the documentation of a column. The
dual applies for rows. In some cases, spreadsheets are developed column oriented,
but in some other cases, row oriented. Indeed the example shown in Figure 6
could be organized by rows instead of columns. Thus, the documentation writer
must choose the adequate functionality so the user can get the most out of the
documentation.

4.6 Documenting a Range

Spreadsheets are a development framework where users have freedom to do what
they want. So, it is possible (and actually quite common) to have more than one
table on the same worksheet. Then, tables have different objectives and it is
important to understand what is the purpose of each one. So, we created a
functionality where it is possible to document a selected range of cells, that is,
a rectangular selection of cells.

The “Range” button opens a dialogue box with a text box inside so the
user can document the selected range. Again, this is similar to what is shown
in Figure 5. This button is the last of the Content Documentation group. The
documentation generated by this group focus on the understanding by users of
cells, rows, columns, and ranges content.

4.7 Documenting an Input Cell

The third group, Input/Output Documentation, has two functionalities: docu-
menting input cells, and documenting output cells.

The “Input” button opens a dialogue with two text boxes inside. The first
text box is in read-only mode and shows a list of all input cells and corresponding
type, as given by Excel (for instance, Double). As we said, it is read-only and
users cannot modify it. After the user adds a new input cell, the list is updated.
The second text box allows the user to freely document the cell. A cell is added
to the list after the user clicks ok. In such a dialogue four more buttons are sown:
clear, ok, cancel, and remove. The three first buttons act as described before.



The remove button allows the user to remove the current input cell from the
list. This is only possible if the cell is in the list already.

Note that it is possible to document a cell using the “Cell” and the “Input”
functionality simultaneously. The fact that the cell is an input point is impor-
tant for end users, and thus it should be documented as such. However, the
spreadsheet developer may feel the need to add more technical details to such
cell, which may not be of interest for end users, but only for a future developer.

4.8 Documenting an Output Cell

Output cells are where the user usually sees the results produced by the other
cells. Thus, these are probably the most important cells for end users.

Similar to “Input”, the “Output” button opens a dialogue with two text
boxes inside, one (in read-only mode) showing a list with all the output cells
(name and type) of the spreadsheet (top part of Figure 7), and a text box to
describe the current selected output cell (bottom part of Figure 7). For each
output cell, it is also shown its type, as given by Excel. In Figure 7 we show the
wizard for this case, documenting a cell of our running example.

Fig. 7. Dialogue to document an output cell.

Again, notice that output cells may also be documented as cells to explain
more technical details about its content (see Section 5).



4.9 Show Cell Documentation

The fourth group, Read Documentation, has two functionalities: one to read the
documentation on the spreadsheet, and another to read it on a web page.

The “Show documentation” functionality opens a dialogue showing the user
the selected cell documentation. This can be documentation either from the
“Cell” functionality, from the “Row” functionality, or from any other content
documentation. This allows the user to see the complete documentation of a cell
with a single click.

This button has two possible states: enabled and disabled. If the button’s
state is disable it represents that there is no documentation for the selected
cell. Otherwise, it is possible to click on it and read the existent documentation.
Nevertheless, the user can always click on each individual functionality to see
the corresponding documentation.

4.10 Show Documentation Web Page

The last user documentation functionality, is also the last one from the Read
Documentation group. The “Show web page” button opens a web page show-
ing all spreadsheet’s documentation. The web page is created locally using the
documentation previously written. This allows to show the documentation in a
more appealing fashion. Moreover, references to cells are links that can be clicked
to read the corresponding documentation. In fact, if the spreadsheet references
other spreadsheets, and they have documentation, it can also be read.

5 Documentation for Developers

Spreadsheet developers are the ones designing, implementing, and documenta-
tion the spreadsheet. When they write documentation, they should know the
target people that will use their spreadsheet [16]. Indeed, they should distin-
guish documentation for the spreadsheet users and (future) maintainers. The
documentation for developers may have complex details and technical concepts.
The SpreadsheetDoc feature we now describe allows developers to write docu-
mentation for cells they consider complex, for instance, cells with formulas.

Indeed a spreadsheet can have thousands of cells: for the EUSES spreadsheet
corpus the biggest spreadsheet has 889.952 [8], and for the Enron 113.134 [9].
With our framework it is possible to document each cell individually (although
in many cases this is not necessary). The developer must decide which ones
deserve to be documented.

We have previously described the “Cell” functionality to document a par-
ticular cell, in the context of end users. Such functionality can also be used to
described formula cells. The “Cell” button opens a dialogue that is contextu-
alized with the cell content. If the cell contains a plain value (a number or a
string), only a text box is presented as we presented in Section 4.3. On the other
hand, if the cell content is a formula, at least three different text boxes must be
filled in, as shown in Figure 3:



1) The first text box is for the user to write a small description of the selected
cell. The next text boxes are used to describe the input.

2) For each input, that is, for each reference or range in the formula, a text box
is presented so the user can describe such input. Each text box has a label
on the left showing two possible options:

a) If the input is a cell range, such range is shown, so the user knows which
cells he/she is describing. The range type is also shown. The type of a
range however must be computed by our tool as Excel does not have
such information. If all the cells have the same type, then such type is
presented. Otherwise, we compute the type represented in more cells and
present that type, showing the remaining types and corresponding cells.

b) If the input is a reference to a single cell, then the tool presents its name
(reference) and type as given by Excel. This can be seen in Figure 3 for
our running example.

3) Finally, the last text box is used to describe the output generated by the cell.
Its label is the type of the cell.

This documentation process can be compared to the JavaDoc tool where
users document their methods. In this case, developers document formulas. With
JavaDoc the user writes a general description of the method, our first box, de-
scribes each method argument, our following boxes, and finally describes the
return of the method, our last box.

6 Related Work

In [19] the authors present a system to format spreadsheet documentation. This
system uses an external editor to document spreadsheets and macros to format
such text. This can be compared to literate programming, where documenta-
tion and code are kept together in the same file. The objective is to easily write
and update documentation for spreadsheets. However, the user must “program”
the documentation itself, for instance, writing the following code to create a
variable to document a formula: @MACRO(xfor(v)=[@P(@V(f @X(v)))]). These
variables can then be assigned to parts of the spreadsheet and used in the text
documentation. However, this seems difficult to learn, specially for end users.
SpreadsheetDoc on the other hand shows contextualized wizards with the neces-
sary text inputs the documentation writer must fill in, making it more convenient
for end users to document their spreadsheets.

Raymon did a study showing that a good documentation improves mainly
two factors: effectiveness and efficiency of users [16]. So, our framework intends to
improve these two factors. Raymon describes that users usually ask to colleagues
when they do not understand the system they are working with. Others spend
many time understanding what should be done. Thus, users usually lose efficiency
and effectiveness, increasing the losses of their corporations. Our framework aims
to improve the usability of user when writing documentation. For instance, it
is possible to send spreadsheets to other users without the need to explain it



because it is already documented. Thus, users will have less difficulties working
on spreadsheets that were not created by them.

In [20] the author discusses for two kinds of documentation: development
documentation and user documentation. The former is about the software itself,
its internal form, and is created for developers, with technical knowledge about
the software and its implementation details. The later is for the software users,
with possibly no technical skills to understand documentation for developers.
We have also separated both these kinds of documentation in SpreadsheetDoc.
On one hand formulas should be documented technically, that is, with enough
technical detail so they can be updated by other developers. On the other hand,
input and output cells should be documented for end users so they can know
where to input their values and read the results.

Abraham et al. developed a framework called UCheck [1]. This framework
can compute the labels that affect each cell. Thus, when using the headers func-
tionality the tool displays arrows directed from the header cells (labels) to the
target cells, that is, the ones labelled by such text. The units functionality runs
the unit checker and the system marks the cells with unit errors. For instance,
a cell that adds cells with label apples and cells with label oranges is probably
wrong. This work can also be seen as an automatic way of documenting spread-
sheets, as it more explicitly shows information about the relationship of cells and
their labels. It is interesting and relevant to our work because, by automatically
inferring the headers, we could use this to show to users the correspondent labels
of selected cells. Thus, we intend to integrate the inference system in our frame-
work providing more information to users when they document spreadsheets,
and specially when they read it. The more information we can provide to users,
the more easily they will understand the spreadsheet they are working on.

7 Conclusions

Spreadsheets are the most used programming environments in the world. How-
ever, they lack many of the features modern programming environments offer.
In particular, there is no structured way of documenting spreadsheet programs.
Indeed, there is strong evidence that users wast too much time trying to under-
stand spreadsheets, specially when they are using one that was not created by
them. They search within spreadsheets trying to find some kind of documenta-
tion, ask for help to colleagues, or end up by quitting.

To alleviate this scenario, in this paper, we have presented a tool, Spread-
sheetDoc, to document spreadsheets. It is built as an Excel add-in so users can
easily install and use it. For each part of the spreadsheet SpreadsheetDoc offers
the correct wizard with the necessary fields to be filled in by the user. The user
can then read the documentation within the spreadsheet, but also in a web page
generated from such documentation. It is also possible to export the documenta-
tion via an XML file so it can be reused by other tools. In fact, it is also possible
to import documentation from an XML file.



7.1 Future Work

The work we present in this paper is the very first step towards easing the
creating of documentation for spreadsheets. There are however many important
directions for future work.

The most important one is the validation of our approach. Although we
believe that it can help users to be more productive, we do not yet have the
empirical evidence of such fact. In fact, there are at least two kinds of evalu-
ations we intend to do. First, we intend to evaluate the usability of our tool,
trying to learn if end users understand the purpose of each of its parts, and
can actually use it in the correct way. Second, we will investigate its impact in
users productivity, that is, given the same spreadsheet, one documented with
our tool, and another not documented, or even documented with the current
ad-doc techniques, investigate if users more easily and faster can understand
the spreadsheet documented with SpreadsheetDoc. These evaluations will be
performed with empirical studies, which we will design and run based on our
previous experience [2, 3, 6].

Another quite interesting and promising direction is the automation or infer-
ence of documentation. As we mentioned, we intend to integrate the inference
of headers and units [1], which will automatically give some documentation for
users. For instance, for our running example, we would like to automatically
document the input of cell F5 as being Bid, and not as being cell F4 (as Bid

it the label of cell E4), since the label is much more informative than the cell
reference. Moreover, we would also like to integrate some heuristics to auto-
matically describe existing formulas, in a similar way as described in [17] for
mining business rules from spreadsheets. For instance, for our running exam-
ple, the system could automatically infer the following description for cell I10:
Cell I10 calculates Win? No, that is, the maximum between Profit new ship and
Profit tug/barge. This can easily be inferred from the formula, its inputs, and
corresponding labels. Again, we have some experience in automatically inferring
information from spreadsheet [4, 5], which will help us succeed in this work.

In this first approach we did not work on documenting the visual basic for
applications (VBA) scripts that are part of some spreadsheets. Although this
may seem important, in the Enron’s corpus only 47 spreadsheets (out of more
than 15.000) used VBA scripts [9]. Also in the EUSES corpus only 126 (out
of 4.498) used VBA [8]. Nevertheless, we will also address this in future work.
Since in this case we are probably addressing more advanced users, we intend
to follow an approach similar to JavaDoc, where the programmer annotates the
different parts of the source code, and from which it is possible to generate a
comprehensive web page. This will extend the web page generated by our tool.

References

1. R. Abraham and M. Erwig. Header and unit inference for spreadsheets through
spatial analyses. In Proc. of the 2004 IEEE Symposium on Visual Languages and
Human Centric Computing, pages 165–172, Washington, DC, USA, 2004. IEEE.



2. L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva. An empirical study on
end-users productivity using model-based spreadsheets. In S. Thorne and G. Croll,
editors, Proc. of the EuSpRIG Annual Conference, pages 87–100, 2011.

3. L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva. End-users productivity in
model-based spreadsheets: An empirical study. In M. Costabile, Y. Dittrich, G. Fis-
cher, and A. Piccinno, editors, Proceedings of the Third International Symposium
on End-User Development, pages 282–288, Heidelberg, June 2011. Springer.

4. J. Cunha, M. Erwig, J. Mendes, and J. Saraiva. Model inference for spreadsheets.
Journal of Automated Software Engineering (ASE), pages 1–32, 2014. in press.

5. J. Cunha, M. Erwig, and J. Saraiva. Automatically inferring ClassSheet models
from spreadsheets. In Proc. of the 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 93–100, Washington, DC, USA, 2010. IEEE.

6. J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva. Embedding, evolution, and
validation of spreadsheet models in spreadsheet systems. IEEE Transactions on
Software Engineering, 43(3):241–263, 2014.

7. K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet. Supporting architecture
documentation: A comparison of two ontologies for knowledge retrieval. In Proc.
Int. Conf. on Evaluation and Assessment in Soft. Eng., pages 3:1–3:10. ACM, 2015.

8. M. Fisher and G. Rothermel. The EUSES spreadsheet corpus: A shared resource
for supporting experimentation with spreadsheet dependability mechanisms. In
Proc. of the First Workshop on End-user Soft. Eng., pages 1–5. ACM, 2005.

9. F. Hermans and E. Murphy-Hill. Enron’s spreadsheets and related emails: A
dataset and analysis. In Proceedings of the International Conference on Software
Engineering (ICSE’15), Firenze, Italy, May, 2015. (to appear).

10. F. Hermans, M. Pinzger, and A. van Deursen. Breviz: Visualizing spreadsheets
using dataflow diagrams. CoRR, abs/1111.6895, 2011.

11. F. Hermans, M. Pinzger, and A. van Deursen. Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In Proc. of the 33rd International
Conference on Software Engineering, pages 451–460. ACM, 2011.

12. B. Klimt and Y. Yang. Introducing the Enron corpus. In CEAS 2004 - First
Conference on Email and Anti-Spam, 2004.

13. J. Lawrance, R. Abraham, M. M. Burnett, and M. Erwig. Sharing reasoning about
faults in spreadsheets: An empirical study. In 2006 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 35–42. IEEE, 2006.

14. S. G. Powell and K. R. Baker. The Art of Modeling with Spreadsheets. John Wiley
& Sons, Inc., New York, NY, USA, 2003.

15. K. Rajalingham, D. R. Chadwick, and B. Knight. Classification of spreadsheet
errors. CoRR, abs/0805.4224, 2008.

16. J. G. Raymond. Audience identification for end user documentation. In Proceedings
of the June 7-10, 1982, National Computer Conference, AFIPS ’82, pages 281–285,
New York, NY, USA, 1982. ACM.

17. S. Roy. Business rule mining from spreadsheets. In F. Hermans, R. F. Paige, and
P. Sestof, editors, Proceedings of the Second Workshop on Software Engineering
Methods in Spreadsheets, volume 1355 of SEMS ’15, pages 5–6. CEUR, 2015.

18. J. E. Scott. Technology acceptance and erp documentation usability. Commun.
ACM, 51(11):121–124, Nov. 2008.

19. R. M. Snyder. A system for automating the update of spreadsheet documentation.
J. Comput. Sci. Coll., 23(2):163–169, Dec. 2007.

20. B. van Loggem. Software documentation: A standard for the 21st century. In
Proceedings of the International Conference on Information Systems and Design
of Communication, ISDOC ’14, pages 149–154, New York, NY, USA, 2014. ACM.


