Publications

Export 57 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kiazadeh, A., D. Salgueiro, R. Branquinho, J. Pinto, H. L. Gomes, P. Barquinha, R. Martins, and E. Fortunato, "{Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress}", APL Materials, vol. 3, no. 6, pp. 062804, 2015. AbstractWebsite

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20{%} of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

M
Mateus, R., A. P. Jesus, B. Braizinha, J. Cruz, J. V. Pinto, and J. P. Ribeiro, "Proton-induced gamma-ray analysis of lithium in thick samples", Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 190, pp. 117-121, 2002. AbstractWebsite
n/a
Miguel, C., J. V. Pinto, M. Clarke, and M. J. Melo, "{The alchemy of red mercury sulphide: The production of vermilion for medieval art}", Dyes and Pigments, vol. 102: Elsevier Ltd, pp. 210–217, mar, 2014. AbstractWebsite

abstract Vermilion red, mercury sulphide (a-HgS), was one of the most important reds in art and its use as a pigment dates back to Antiquity. In medieval Europe, it could be mined as cinnabar, or produced as vermilion by heating mercury with sulphur. This work aims to study the production of synthetic vermilion as a medieval pigment and to confirm which was the source (mineral or artificial) of the reds used in Portuguese medieval illuminations. The production of synthetic vermilion was based on the process described in the Judaeo-Portuguese medieval treatise “The book on how to make colours”, using materials and technologies as close as possible to the medieval ones. The reaction mechanism was studied by following the heating process by X-ray diffraction, and it was possible to conclude that the transformation from black cubic b-HgS into red hexagonal a-HgS is a solid-state phase transition, occurring at 235 ?C. This result is contrary to what published in technical art literature, in which this process is described as a sublimation. Moreover, Scanning Electron Microscopy evidenced a sinterization effect on the artificial vermilion, not found in medieval original samples nor in paints prepared with mineral cinnabar from Almadén (Spain). Red mercury sulphide, natural and synthetic,was then prepared as a parchment-glue paint and compared to proteinaceous red paints from 12the13th century minia- tures produced in important medieval monasteries, previously fully characterized by a multi-analytical approach (m-Energy dispersive X-ray fluorescence, m-Fourier Transform Infrared Spectroscopy, Raman microscopy). A comparative Electron probe microanalysis of the red paints point to amineral provenance for medieval vermilion found in Portuguese illuminations

Miguel, C., J. V. Pinto, M. Clarke, and M. J. Melo, "The alchemy of red mercury sulphide: The production of vermilion for medieval art", Dyes and Pigments, vol. 102, pp. 210-217, 2014. AbstractWebsite

Vermilion red, mercury sulphide (α-HgS), was one of the most important reds in art and its use as a pigment dates back to Antiquity. In medieval Europe, it could be mined as cinnabar, or produced as vermilion by heating mercury with sulphur. This work aims to study the production of synthetic vermilion as a medieval pigment and to confirm which was the source (mineral or artificial) of the reds used in Portuguese medieval illuminations. The production of synthetic vermilion was based on the process described in the Judaeo-Portuguese medieval treatise “The book on how to make colours”, using materials and technologies as close as possible to the medieval ones. The reaction mechanism was studied by following the heating process by X-ray diffraction, and it was possible to conclude that the transformation from black cubic β-HgS into red hexagonal α-HgS is a solid-state phase transition, occurring at 235 °C. This result is contrary to what published in technical art literature, in which this process is described as a sublimation. Moreover, Scanning Electron Microscopy evidenced a sinterization effect on the artificial vermilion, not found in medieval original samples nor in paints prepared with mineral cinnabar from Almadén (Spain). Red mercury sulphide, natural and synthetic, was then prepared as a parchment-glue paint and compared to proteinaceous red paints from 12th–13th century miniatures produced in important medieval monasteries, previously fully characterized by a multi-analytical approach (μ-Energy dispersive X-ray fluorescence, μ-Fourier Transform Infrared Spectroscopy, Raman microscopy). A comparative Electron probe microanalysis of the red paints point to a mineral provenance for medieval vermilion found in Portuguese illuminations.

Miguel, C., J. V. Pinto, M. Clarke, and M. J. Melo, "{The alchemy of red mercury sulphide: The production of vermilion for medieval art}", Dyes and Pigments, vol. 102, 2014. Abstract

Vermilion red, mercury sulphide ($\alpha$-HgS), was one of the most important reds in art and its use as a pigment dates back to Antiquity. In medieval Europe, it could be mined as cinnabar, or produced as vermilion by heating mercury with sulphur. This work aims to study the production of synthetic vermilion as a medieval pigment and to confirm which was the source (mineral or artificial) of the reds used in Portuguese medieval illuminations. The production of synthetic vermilion was based on the process described in the Judaeo-Portuguese medieval treatise "The book on how to make colours", using materials and technologies as close as possible to the medieval ones. The reaction mechanism was studied by following the heating process by X-ray diffraction, and it was possible to conclude that the transformation from black cubic $\beta$-HgS into red hexagonal $\alpha$-HgS is a solid-state phase transition, occurring at 235 C. This result is contrary to what published in technical art literature, in which this process is described as a sublimation. Moreover, Scanning Electron Microscopy evidenced a sinterization effect on the artificial vermilion, not found in medieval original samples nor in paints prepared with mineral cinnabar from Almadén (Spain). Red mercury sulphide, natural and synthetic, was then prepared as a parchment-glue paint and compared to proteinaceous red paints from 12th-13th century miniatures produced in important medieval monasteries, previously fully characterized by a multi-analytical approach ($μ$-Energy dispersive X-ray fluorescence, $μ$-Fourier Transform Infrared Spectroscopy, Raman microscopy). A comparative Electron probe microanalysis of the red paints point to a mineral provenance for medieval vermilion found in Portuguese illuminations. © 2013 Elsevier Ltd. All rights reserved.

Morais, A. R. C., J. V. Pinto, D. Nunes, L. B. Roseiro, M. C. Oliveira, E. Fortunato, and R. Bogel-Łukasik, "{Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification}", ACS Sustainable Chemistry {&} Engineering: American Chemical Society, dec, 2015. AbstractWebsite
n/a
N
Nandy, S., G. Goncalves, J. V. Pinto, T. Busani, V. Figueiredo, L. Pereira, R. F. Paiva Martins, and E. Fortunato, "Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars", Nanoscale, vol. 5, issue 23, pp. 11699-11709, 2013. AbstractWebsite

The present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology.

Nayak, P. K., J. V. Pinto, G. Goncalves, R. Martins, and E. Fortunato, "Environmental, Optical, and Electrical Stability Study of Solution-Processed Zinc-Tin-Oxide Thin-Film Transistors", Journal of Display Technology, vol. 7, issue 12, pp. 640-643, 2011. Abstract
n/a
Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "Photocatalytic behavior of TiO2 films synthesized by microwave irradiation", Catalysis Today, 2015. AbstractWebsite

Titanium dioxide was synthesized on glass substrates from titanium (IV)isopropoxide and hydrochloride acid aqueous solutions through microwave irradiation using as seed layer either fluorine-doped crystalline tin oxide (SnO2:F) or amorphous tin oxide (a-SnOx). Three routes have been followed with distinct outcome: (i) equimolar hydrochloride acid/water proportions (1HCl:1water) resulted in nanorod arrays for both seed layers; (ii) higher water proportion (1HCl:3water) originated denser films with growth yield dependent on the seed layer employed; while (iii) higher acid proportion (3HCl:1water) hindered the formation of TiO2. X-ray diffraction (XRD) showed that the materials crystallized with the rutile structure, possibly with minute fractions of brookite and/or anatase. XRD peak inversions observed for the materials synthesized on crystalline seeds pointed to preferred crystallographic orientation. Electron diffraction showed that the especially strong XRD peak inversions observed for TiO2 grown from the 1HCl:3water solution on SnO2:F originated from a [001] fiber texture. Transmittance spectrophotometry showed that the materials with finer structure exhibited significantly higher optical band gaps. Photocatalytic activity was assessed from methylene blue degradation, with the 1HCl:3water SnO2:F material showing remarkable degradability performance, attributed to a higher exposure of (001) facets, together with stability and reusability.

Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "{Photocatalytic behavior of TiO2 films synthesized by microwave irradiation}", Catalysis Today: Elsevier B.V., 2015. AbstractWebsite
n/a
Nunes, D., L. Santos, P. Duarte, A. Pimentel, J. V. Pinto, P. Barquinha, P. A. Carvalho, E. Fortunato, and R. Martins, "Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior", Microscopy and Microanalysis, vol. 21, issue 01, pp. 11, 2015. Abstract

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals. FAU - Nunes, Daniela

Nunes, D., T. R. Calmeiro, S. Nandy, J. V. Pinto, A. Pimentel, P. Barquinha, P. A. Carvalho, J. C. Walmsley, E. Fortunato, and R. Martins, "{Charging effects and surface potential variations of Cu-based nanowires}", Thin Solid Films: Elsevier B.V., pp. 1–9, 2015. AbstractWebsite

The presentwork reports charging effects and surface potential variations in pure copper, cuprous oxide and cu- pric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved throughmicrowave irradiation and cupric oxide nanowireswere obtained via furnace annealing in at- mospheric conditions. Structural characterization of the nanowireswas carried out byX-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the sub- strate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFMmeasurements in accordancewith their band gap energies. Thework functions(WF) of the Cu-based nano- wires, obtained by KPFM measurements, yieldedWFCuO N WFCu N WFCu2O

Nunes, D., A. Pimentel, J. V. Pinto, T. R. Calmeiro, S. Nandy, P. Barquinha, L. Pereira, P. A. Carvalho, E. Fortunato, and R. Martins, "{Photocatalytic behavior of TiO2 films synthesized by microwave irradiation}", Catalysis Today, vol. 278, 2016. Abstract

© 2015 Elsevier B.V. Titanium dioxide was synthesized on glass substrates from titanium (IV)isopropoxide and hydrochloride acid aqueous solutions through microwave irradiation using as seed layer either fluorine-doped crystalline tin oxide (SnO2:F) or amorphous tin oxide (a-SnOx). Three routes have been followed with distinct outcome: (i) equimolar hydrochloride acid/water proportions (1HCl:1water) resulted in nanorod arrays for both seed layers; (ii) higher water proportion (1HCl:3water) originated denser films with growth yield dependent on the seed layer employed; while (iii) higher acid proportion (3HCl:1water) hindered the formation of TiO2. X-ray diffraction (XRD) showed that the materials crystallized with the rutile structure, possibly with minute fractions of brookite and/or anatase. XRD peak inversions observed for the materials synthesized on crystalline seeds pointed to preferred crystallographic orientation. Electron diffraction showed that the especially strong XRD peak inversions observed for TiO2 grown from the 1HCl:3water solution on SnO2:F originated from a [001] fiber texture. Transmittance spectrophotometry showed that the materials with finer structure exhibited significantly higher optical band gaps. Photocatalytic activity was assessed from methylene blue degradation, with the 1HCl:3water SnO2:F material showing remarkable degradability performance, attributed to a higher exposure of (001) facets, together with stability and reusability.

O
Otero, V., J. V. V. Pinto, L. Carlyle, M. Vilarigues, M. Cotte, and M. J. J. Melo, "{Nineteenth century chrome yellow and chrome deep from Winsor & NewtonTM}", Studies in Conservation, vol. 62, no. 3, pp. 123–149, 2017. AbstractWebsite

The Winsor & NewtonTM (W&N) nineteenth century archive database includes digitised images of hand- written instructions and workshop notes for the manufacture of their artists' materials. For the first time, all 183 production records for yellow lead chromate pigments were studied and evaluated. They revealed that W&N produced essentially three pigment types: lemon/pale based on mixed crystals of lead chromate and lead sulphate [Pb(Cr,S)O4]; middle on pure monoclinic lead chromate [PbCrO4]; and deep that contains the latter admixed with basic lead chromate [Pb2CrO5]; accounting for 53, 22, and 21% of the production, respectively. Production records for primrose (4%) were also included since the formulation results in mixed crystals with a high percentage of lead sulphate, which, according to the literature, leaves it more prone to degradation. Each pigment type is characterised by only one or two main synthetic pathways; process variations reveal a systematic and thorough search for a high-quality durable product. A comparison of the chemical composition of pigment reconstructions with early W&N oil paint tubes showed that their records entitled ‘pale' and ‘lemon' correlated with the pigment in their tube labelled chrome yellow and, ‘middle' and ‘deep' with the label chrome deep. Lemon and middle pigment formulations were made into oil paints to assess their relative photo-stability. The degradation process was followed by colorimetry and was studied by synchrotron radiation-based techniques. Based on the X-ray absorption spectroscopy data, the possibility for creating a stability index for chrome yellows is discussed. Keywords:

Otero, V., M. F. Campos, J. V. Pinto, M. Vilarigues, L. Carlyle, and M. J. Melo, "{Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings}", Heritage Science, vol. 5, no. 1, 2017. Abstract

© 2017 The Author(s). This work focuses on the study of the 19th century yellow chromate pigments based on barium (BaCrO4), zinc (4ZnCrO4K2O3H2O) and strontium (SrCrO4). These pigments, which are reported to shift in hue and darken, have been found in 19th century artworks. A better understanding of their historic manufacture will contribute to the visual/chemical interpretation of change in these colours. Research was carried out on the Winsor & Newton (W&N) 19th century archive database providing a unique insight into their manufacturing processes. One hundred and three production records were found, 69% for barium, 25% for zinc and 6% for strontium chromates, mainly under the names Lemon, Citron and Strontian Yellow, respectively. Analysis of the records shows that each pigment is characterised by only one synthetic pathway. The low number of records found for the production of strontium chromate suggests W&N was not selling this pigment formulation on a large scale. Furthermore, contrary to what the authors have discovered for W&N chrome yellow pigments, extenders were not added to these pigment formulations, most probably due to their lower tinting strength (TS). The latter was calculated in comparison to pure chrome yellow (PbCrO4, 100% TS) resulting in 92% for barium, 65% for zinc potassium and 78% for strontium chromate pigments. This indicates that W&N was probably using extenders primarily to adjust pigment properties and not necessarily as a means to reduce their costs. Pigment reconstructions following the main methods of synthesis were characterised by complementary analytical techniques: Fibre optic reflectance spectroscopy, X-ray diffraction, micro-Raman and micro-Fourier transform infrared spectroscopies. These pigments can be clearly distinguished on the basis of their infrared CrO42-asymmetric stretching fingerprint profile (between 1000 and 700 cm-1) and of their Raman CrO42-stretching bands (850-950 cm-1). This enabled their identification in historic paint samples: a tube of late 19th century W&N Lemon Yellow oil paint and micro-samples from paintings by three Portuguese painters, António Silva Porto (1850-1893), João Marques de Oliveira (1853-1927) and Amadeo de Souza-Cardoso (1887-1918). The good correlation found between the reconstructions and historic samples validates their use as reference materials for future photochemical studies.

P
Pardal, T., S. Messias, M. Sousa, A. S. R. Machado, C. M. Rangel, D. Nunes, J. V. Pinto, R. Martins, and M. N. {Da Ponte}, "{Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte}", Journal of CO2 Utilization, vol. 18, 2017. Abstract

© 2017 Elsevier Ltd. Graphical abstract: The electrochemical reduction of carbon dioxide dissolved in a solution of water and ionic liquid as electrolyte, at high-pressure and near room-temperature, is reported. This work describes an electro-deposition strategy for the preparation of copper substrate cathodes, coated with bimetallic zinc-copper films, obtained from deep-eutectic solvents plating baths. The prepared bimetallic cathodes showed electrochemical activity for syngas production in 1-butyl-3-methylimidazolium triflate, with yields of 85N$μ$L (normal microliter)cm−2C−1/170N$μ$Lcm−2h−1, high selectivities, tunable H2/CO ratio and low energetic requirements.

Pereira, S., A. Gonçalves, N. Correia, J. Pinto, L. Í. Pereira, R. Martins, and E. Fortunato, "Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature", Solar Energy Materials and Solar Cells, vol. 120, Part A, pp. 109-115, 2014. AbstractWebsite

In this work we report the role of thickness on electrochromic behavior of nickel oxide (NiO) films deposited by e-beam evaporation at room temperature on ITO-coated glass. The structure and morphology of films with thicknesses between 100 and 500 nm were analyzed and then correlated with electrochemical response and transmittance modulation when immersed in 0.5 M LiClO4–PC electrolyte. The NiO exhibits an anodic coloration, reaching for the thickest film a transmittance modulation of 66% between colored and bleached state, at 630 nm, with a color efficiency of 55 cm2 C−1. Very fast switch between states was obtained, where coloration and bleaching times are 3.6 s cm−2 and 1.4 s cm−2, respectively.

Pinheiro, A., A. Ruivo, M. Ferro, J. V. Pinto, J. Deuermeier, T. Mateus, A. Santa, M. J. Mendes, R. Martins, S. Gago, C. A. T. Laia, and Á. Hugo, {Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics}, , 2023. Abstract
n/a
Pinto, J. V., R. C. da Silva, E. Alves, M. J. Soares, T. Monteiro, and R. Gonzalez, "Stability and optical activity of Er implanted MgO", Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 218, pp. 128-132, 2004. AbstractWebsite
n/a
Pinto, J. V., M. M. Cruz, R. C. da Silva, E. Alves, and M. Godinho, "Magnetic properties of TiO2 rutile implanted with Ni and Co", Journal of Magnetism and Magnetic Materials, vol. 294, issue 2, pp. E73-E76, 2005. AbstractWebsite
n/a
Pinto, J. V., R. Branquinho, P. Barquinha, E. Alves, R. Martins, and E. Fortunato, "Extended-Gate ISFETs Based on Sputtered Amorphous Oxides", Journal of Display Technology, vol. 9, issue 9, pp. 729-734, 2013. AbstractWebsite
n/a
Pinto, J. V., M. M. Cruz, R. C. da Silva, E. Alves, R. Gonzalez, and M. Godinho, "Magnetic nanoscale aggregates of cobalt and nickel in MgO single crystals", European Physical Journal B, vol. 45, issue 3, pp. 331-338, 2005. AbstractWebsite
n/a
Pinto, J. V., M. M. Cruz, R. C. da Silva, N. Franco, A. Casaca, E. Alves, and M. Godinho, "Anisotropic ferromagnetism induced in rutile single crystals by Co implantation", European Physical Journal B, vol. 55, issue 3, pp. 253-260, 2007. AbstractWebsite
n/a
R
Raiola, F., P. Migliardi, G. Gyurky, M. Aliotta, A. Formicola, R. Bonetti, C. Broggini, L. Campajola, P. Corvisiero, H. Costantini, J. Cruz, A. D'Onofrio, Z. Fulop, G. Gervino, L. Gialanella, A. Guglielmetti, G. Imbriani, C. Gustavino, A. P. Jesus, M. Junker, R. W. Kavanagh, P. G. P. Moroni, A. Ordine, J. V. Pinto, P. Prati, V. Roca, J. P. Ribeiro, D. Rogalla, C. Rolfs, M. Romano, F. Schumann, D. Schurmann, E. Somorjai, F. Strieder, F. Terrasi, H. P. Trautvetter, and S. Zavatarelli, "Enhanced electron screening in d(d, p)t for deuterated Ta", European Physical Journal A, vol. 13, issue 3, pp. 377-382, 2002. AbstractWebsite
n/a
Ribeiro, J. P., A. P. Jesus, B. Braizinha, J. Cruz, R. Mateus, and J. V. Pinto, "Experimental study of the F-19(p,alpha gamma)O-16 reaction", Nuclear Physics A, vol. 688, issue 1-2, pp. 468C-471C, 2001. AbstractWebsite
n/a