Publications

Export 75 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Caeiro, F. A. G. G., Gomes I. M., & Henriques-Rodrigues L. (2016).  A location-invariant probability weighted moment estimation of the Extreme Value Index. International Journal of Computer Mathematics. 93(4), 676 - 695., 2016/4/2 AbstractWebsite

The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.

Caeiro, F., Gomes I. M., Beirlant J., & de Wet T. (2016).  Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. ExtremesExtremes. 19(4), 561 - 589., 2016/12/1 AbstractWebsite

Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.

Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, Gomes I. M., & Cabral I. (2020).  Minimum-variance reduced-bias estimation of the extreme value index: A theoretical and empirical study. Computational and Mathematical Methods. , may: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2008).  Minimum-variance reduced-bias tail index and high quantile estimation.. REVSTAT. 6, 1-20., Number 1 Abstract

{Summary: Heavy tailed-models are quite useful in many fields, like insurance, finance, telecommunications, internet traffic, among others, and it is often necessary to estimate a high quantile, i.e., a value that is exceeded with a probability $p$, small. The semiparametric estimation of this parameter relies essentially on the estimation of the tail index, the primary parameter in statistics of extremes. Classical semi-parametric estimators of extreme parameters show usually a severe bias and are known to be very sensitive to the number $k$ of top order statistics used in the estimation. For $k$ small they have a high variance, and for large $k$ a high bias. Recently, new second-order ``shape'' and ``scale'' estimators allowed the development of second-order reduced-bias estimators, which are much less sensitive to the choice of $k$. Here we study, under a third order framework, minimum-variance reduced-bias (MVRB) tail index estimators, recently introduced in the literature, and dependent on an adequate estimation of second order parameters. The improvement comes from the asymptotic variance, which is kept equal to the asymptotic variance of the classical Hill estimator [ıt B. Hill}, Ann. Stat. 3, 1163–1174 (1975; Zbl 0323.62033)] provided that we estimate the second order parameters at a level of a larger order than the level used for the estimation of the first order parameter. The use of those MVRB tail index estimators enables us to introduce new classes of reduced-bias high quantile estimators. These new classes are compared among themselves and with previous ones through the use of a small-scale Monte Carlo simulation.}

Mateus, A., & Caeiro F. (2020).  A new class of estimators for the shape parameter of a Pareto model. Computational and Mathematical Methods. , nov: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2006).  A new class of estimators of a ``scale'' second order parameter.. Extremes. 9, 193-211., Number 3-4 Abstract

{Let $X_i$ be i.i.d. r.v.s with heavy-tailed CDF $F(x)$ such that $$1-F(x)=(x/C)^{-1/\gamma}((1+(\beta/\rho)(x/C)^{\rho/\gamma} +\beta'(x/C)^{2\rho/\gamma}(1+o(1))),$$ where $\gamma$ is the tail index ($\gamma>0$), and $\rho<0$ and $\beta$ are the ``second order parameters''. The authors construct an estimator for $\beta$ based on the ``tail moments'' $$M_n^{(\alpha)}=(k)^{-1}\sum_{i=1}^k [łog X_{n-i+1:n}-łog X_{n-k:n}]^\alpha. $$ Consistency and asymptotic normality of the estimator are demonstrated. The small sample properties of the estimator are investigated via simulations.}

Caeiro, F., & Mateus A. (2023).  A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution. Mathematics. 11, 1076., feb, Number 5: {MDPI} {AG} AbstractWebsite
n/a
Gomes, I. M., Brilhante F. M., Caeiro F., & Pestana D. (2015).  A new partially reduced-bias mean-of-order p class of extreme value index estimators. Computational Statistics & Data AnalysisComputational Statistics & Data Analysis. 82, 223 - 227., 2015 AbstractWebsite

A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.A class of partially reduced-bias estimators of a positive extreme value index (EVI), related to a mean-of-order-p class of EVI-estimators, is introduced and studied both asymptotically and for finite samples through a Monte-Carlo simulation study. A comparison between this class and a representative class of minimum-variance reduced-bias (MVRB) EVI-estimators is further considered. The MVRB EVI-estimators are related to a direct removal of the dominant component of the bias of a classical estimator of a positive EVI, the Hill estimator, attaining as well minimal asymptotic variance. Heuristic choices for the tuning parameters p and k, the number of top order statistics used in the estimation, are put forward, and applied to simulated and real data.

Gomes, M. I., Pestana D., & Caeiro F. (2009).  A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator.. Stat. Probab. Lett.. 79, 295-303., Number 3 Abstract

n/a

Cabral, I., Caeiro F., & Gomes M. I. (2022).  On the comparison of several classical estimators of the extreme value index. Communications in Statistics - Theory and Methods. 51, 179-196., Number 1 Abstract
n/a
Caeiro, F. (2015).  Preface of the "2nd Symposium on Computational Statistical Methods". AIP Conference ProceedingsAIP Conference Proceedings. 1702, , 2015/12/31 AbstractWebsite
n/a
Caeiro, F. (2022).  Preface of the Session ?Computational Statistical Methods?. AIP Conference Proceedings. 2425, Abstract
n/a
Gomes, M. I., Caeiro F., Figueiredo F., Henriques-Rodrigues L., & Pestana D. (2020).  Reduced-bias and partially reduced-bias mean-of-order-p value-at-risk estimation: a Monte-Carlo comparison and an application. Journal of Statistical Computation and Simulation. 90, 1735-1752., Number 10 Abstract
n/a
Caeiro, F., & Henriques-Rodrigues L. (2019).  Reduced-bias kernel estimators of a positive extreme value index. Mathematical Methods in the Applied Sciences. 42, 5867-5880., Number 17 Abstract
n/a
Caeiro, F., Gomes M. I., & Rodrigues L. H. (2009).  Reduced-bias tail index estimators under a third-order framework.. Commun. Stat., Theory Methods. 38, 1019-1040., Number 7 Abstract

{Summary: We are interested in the comparison, under a third-order framework, of classes of second-order, reduced-bias tail index estimators, giving particular emphasis to minimum-variance reduced-bias estimators of the tail index $\gamma$. The full asymptotic distributional properties of the proposed classes are derived under a third-order framework and the estimators are compared with other alternatives, not only asymptotically, but also for finite samples through Monte Carlo techniques. An application to the log-exchange rates of the Euro against the USA Dollar is also provided.}

Caeiro, F., & Gomes I. M. (2015).  Revisiting the maximum likelihood estimation of a positive extreme value index. Journal Of Statistical Theory And PracticeJournal Of Statistical Theory And Practice. 9(1), 200 - 218., 2015/1/13 AbstractWebsite

In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.

Caeiro, F., & Gomes M. I. (2009).  Semi-parametric second-order reduced-bias high quantile estimation.. Test. 18, 392-413., Number 2 Abstract

{Summary: In many areas of application, like, for instance, climatology, hydrology, insurance, finance, and statistical quality control, a typical requirement is to estimate a high quantile of probability $1 - p$, a value high enough so that the chance of an exceedance of that value is equal to $p$, small. The semi-parametric estimation of high quantiles depends not only on the estimation of the tail index or extreme value index $\gamma $, the primary parameter of extreme events, but also on the adequate estimation of a scale first order parameter. Recently, apart from new classes of reduced-bias estimators for $\gamma >0$, new classes of the scale first order parameter have been introduced in the literature. Their use in quantile estimation enables us to introduce new classes of asymptotically unbiased high quantiles' estimators, with the same asymptotic variance as the (biased) ``classical'' estimator. The asymptotic distributional properties of the proposed classes of estimators are derived and the estimators are compared with alternative ones, not only asymptotically, but also for finite samples through Monte Carlo techniques. An application to the log-exchange rates of the Euro against the Sterling Pound is also provided.}

Caeiro, F., & Gomes M. I. (2011).  Semi-parametric tail inference through probability-weighted moments.. J. Stat. Plann. Inference. 141, 937-950., Number 2 Abstract

{Summary: For heavy-tailed models, and working with the sample of the $k$ largest observations, we present probability weighted moments (PWM) estimators for the first order tail parameters. Under regular variation conditions on the right-tail of the underlying distribution function $F$ we prove the consistency and asymptotic normality of these estimators. Their performance, for finite sample sizes, is illustrated through a small-scale Monte Carlo simulation.}

Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, & Gomes D. P. (2019).  A simple class of reduced bias kernel estimators of extreme value parameters. Computational and Mathematical Methods. e1025., apr: Wiley AbstractWebsite
n/a
Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, & Gomes I. M. (2022).  The Use of Generalized Means in the Estimation of the Weibull Tail Coefficient. (Anil Kumar, Ed.).Computational and Mathematical Methods. 2022, 1–12., jun: Hindawi Limited AbstractWebsite
n/a
Manuscript
Caeiro, F., Gomes M. I., & Henriques-Rodrigues L. (2013).  A location invariant probability weighted moment EVI-estimator. : Notas e Comunicações do CEAUL 30/20132013_30_port-ppwm-final.pdf
Miscellaneous
Thesis