Reduced bias Hill estimators

Citation:
Cabral, Ivanilda, Frederico Caeiro, and Ivette M. Gomes. "Reduced bias Hill estimators." International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. Vol. 1790. American Institute of Physics Inc., 2016.

Abstract:

For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.

Notes:

sem pdf conforme despacho

Related External Link