Publications

Export 64 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach, Viegas, Aldino, Bras Natercia F., Cerqueira Nuno M. F. S. A., Fernandes Pedro Alexandrino, Prates Jose A. M., Fontes Carlos M. G. A., Bruix Marta, Romao Maria Joao, Carvalho Ana Luisa, Ramos Maria Joao, Macedo Anjos L., and Cabrita Eurico J. , Febs Journal, MAY 2008, Volume 275, Number 10, p.2524-2535, (2008) Abstract
n/a
Ligand-based nuclear magnetic resonance screening techniques., Viegas, Aldino, Macedo Anjos L., and Cabrita Eurico J. , Methods in molecular biology (Clifton, N.J.), 2009, Volume 572, p.81-100, (2009) Abstract
n/a
Ligand based nuclear magnetic resonance screening techniques, Viegas, A., Macedo A. L., and Cabrita E. J. , Ligand Macromolecule Interactions in drug discovery, Methods in Molecular Biology, New York, p.81-100, (2010)
Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding, Viegas, Aldino, Manso Joao, Nobrega Franklin L., and Cabrita Eurico J. , Journal of Chemical Education, JUL 2011, Volume 88, Number 7, p.990-994, (2011) AbstractWebsite

Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein−ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor and only using small quantities of nonlabeled macromolecule. Moreover, the attractiveness of this experiment is also extendable to the classroom. In the context of a practical NMR class, this experiment is ideal to illustrate some fundamental NMR concepts, such as the nuclear Overhauser effect and relaxation in a multidisciplinary context, bridging chemistry and biochemistry with a taste of medicinal chemistry.

We use the readily available human serum albumin (HSA), 6-d,l-methyl-tryptophan (6-CH3-Trp), and 7- d,l-methyl-tryptophan (7-CH3-Trp) to introduce the STD-NMR experiment and to illustrate its applicability for ligand screening, mapping of binding moieties, and determination of the dissociation constant, in a context that can be explored or adapted to the student’s course level and topic (chemistry or biochemistry). We also cover the most important theoretical aspects of the STD experiment, calling attention to some of its limitations and drawbacks without a complex theoretical approach.

Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11), Viegas, Aldino, Sardinha João, Duarte Daniel F., Carvalho Ana Luisa, Fontes Carlos M. G. A., Romao Maria Joao, Macedo Anjos L., and Cabrita Eurico J. , Biochemical Journal, Volume 451, p.289-300, (2013) AbstractWebsite

Non-catalytic cellulosomal carbohydrate-binding modules (CBMs) are responsible for increasing the catalytic efficiency of cellulosic enzymes by selectively putting the substrate (a wide range of poly- and oligosaccharides) and enzyme into close contact. In the present work we carried out an atomistic rationalization of the molecular determinants of ligand specificity of a family 11 CBM from thermophilic C. thermocellum (CtCBM11), based on a NMR and molecular modeling approach. We have determined the NMR solution structure of CtCBM11 at 25 and 50 ºC and derived information on the residues of the protein involved in ligand recognition and on the influence of the length of the saccharide chain on binding. We obtained models of the CtCBM11/cellohexaose and CtCBM11/cellotetraose complexes by docking in accordance with the NMR experimental data. Specific ligand/protein CH-π and Van der Waals interactions were found to be determinant for the stability of the complexes and for defining specificity. Using the order parameters derived from backbone dynamics analysis in the presence and absence of ligand and at 25 and 50 ºC, we determined that the protein’s backbone conformational entropy is slightly positive. This data in combination with the negative binding entropy calculated from ITC studies supports a selection mechanism where a rigid protein selects a defined oligosaccharide conformation.

Binding of ibuprofen, ketorolac and diclofenac to COX-1 and COX-2 studied by saturation transfer difference NMR, Viegas, Aldino, Manso Joao, Corvo Marta C., Marques Manuel M. B., and Cabrita Eurico J. , Journal of Medicinal Chemistry, Volume 54, Issue 24, p.8555-8562, (2011) AbstractWebsite

Saturation Transfer Difference-NMR (STD-NMR) spectroscopy has emerged as a powerful screening tool and a straightforward way to study the binding epitopes of active compounds in early stage lead discovery in pharmaceutical research. Here we report the application of STD NMR to characterize the binding of the anti-inflammatory drugs ibuprofen, diclofenac and ketorolac to COX-1 and COX-2. Using well-studied COX inhibitors and by comparing STD signals with crystallographic structures we show that there is a relation between the orientations of ibuprofen and diclofenac in the COX-2 active site and the relative STD responses detected in the NMR experiments. Based on this analysis we propose that ketorolac should bind to the COX-2 active site in similar orientation as that of diclofenac. We also show that the combination of STD NMR with competition experiments constitutes a valuable tool to address the recently proposed behavior of COX-2 as functional heterodimers and complement enzyme activity studies in the effort to rationalize COX inhibition mechanisms.

T
Development of PMMA membranes functionalized with hydroxypropyl-beta-cyclodextrins for controlled drug delivery using a supercritical CO(2)-assisted technology, Temtem, M., Pompeu D., Jaraquemada G., Cabrita E. J., Casimiro T., and Aguiar-Ricardo A. , International Journal of Pharmaceutics, JUL 6 2009, Volume 376, Number 1-2, p.110-115, (2009) Abstract
n/a
Molecular interactions and CO2-philicity in supercritical CO2. A high-pressure NMR and molecular modeling study of a perfluorinated polymer in scCO(2), Temtem, Marcio, Casimiro Teresa, Santos Gil A., Macedo Anjos L., Cabrita Eurico J., and Aguiar-Ricardo Ana , Journal of Physical Chemistry B, FEB 15 2007, Volume 111, Number 6, p.1318-1326, (2007) Abstract
n/a
S
Structural, Physical, and Chemical Modifications Induced by Microwave Heating on Native Agar-like Galactans, Sousa, Ana M. M., Morais Simone, Abreu Maria H., Pereira Rui, Sousa-Pinto Isabel, Cabrita Eurico J., Delerue-Matos Cristina, and Gonca̧lves Maria Pilar , Jornal of Agricultural and Food Chemistry , Volume 60, p.4977-4985, (2012) Abstract

Native agars from Gracilaria vermiculophylla produced in sustainable aquaculture systems (IMTA) were extracted under conventional (TWE) and microwave (MAE) heating. The optimal extracts from both processes were compared in terms of their properties. The agars’ structure was further investigated through Fourier transform infrared and NMR spectroscopy. Both samples showed a regular structure with an identical backbone, β-D-galactose (G) and 3,6-anhydro-α-L-galactose (LA) units; a considerable degree of methylation was found at C6 of the G units and, to a lesser extent, at C2 of the LA residues. The methylation degree in the G units was lower for MAEopt agar; the sulfate content was also reduced. MAE led to higher agar recoveries with drastic extraction time and solvent volume reductions. Two times lower values of [η] and Mv obtained for the MAEopt sample indicate substantial depolymerization of the polysaccharide backbone; this was reflected in its gelling properties; yet it was clearly appropriate for commercial application in soft-texture food products.

Shaping the molecular assemblies of native and alkali- modified agars in dilute and concentrated aqueous media via microwave-assisted extraction, Sousa, Ana M. M., Borges João, Silva Fernando, Ramos Ana M., Cabrita Eurico J., and Gonçalves Maria Pilar , Soft Matter, Volume 9, p.3131-3139, (2013) AbstractWebsite

The use of agar-based biomaterials for the development of emerging areas, such as tissue engineering or ‘smart materials’ production has recently gained great interest. Understanding how these gel-forming polysaccharides self-organise in aqueous media and how these associations can be tuned to meet the specific needs of each application is thus of great relevance. As an extension of previous pioneering research concerning the application of the microwave-assisted extraction (MAE) technique in the recovery of native (NA) and alkali-modified (AA) agars, this article focuses on the different molecular assemblies assumed by these novel NA and AA when using different MAE routes. The molecular architectures in dilute (5, 10, 50 and 100 mg mL1) and concentrated (1.5% (w/w)) aqueous media were imaged by AFM and cryoSEM, respectively. Relevant structural and physicochemical properties were investigated to support the microscopic data. Different extraction routes led to polysaccharides with unique properties, which in turn resulted in different molecular assemblies. Even at 5 mg mL1, AFM images included individual fibers, cyclic segments, aggregates and local networks. At higher polymer concentrations, the structures further aggregated forming multilayer polymeric networks for AA. The more compact and denser 3D networks of AA, imaged by cryoSEM, and their higher resistance to large deformations matched the 2D-shapes observed by AFM. Depending on the nature of the AA chains, homogeneous or heterogeneous growth of assemblies was seen during network formation. The obtained results support well the view of double helix formation followed by intensive double helix association proposed for agar gelation.

Development of molecularly imprinted co-polymeric devices for controlled delivery of flufenamic acid using supercritical fluid technology, da Silva, Mara Soares, Nobrega Franklin L., Aguiar-Ricardo Ana, Cabrita Eurico J., and Casimiro Teresa , Journal of Supercritical Fluids, AUG 2011, Volume 58, Number 1, p.150-157, (2011) Abstract
n/a
Epitope mapping of imidazolium cations in ionic liquid–protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation, Silva, Micael, Figueiredo Angelo Miguel, and Cabrita Eurico J. , Phys. Chem. Chem. Phys. , Volume in press, (2014) Abstract

We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium- based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim]+. Competition STD-NMR experiments using [C2mim]+, [C4mim]+ and [C2OHmim]+ also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using 35Cl NMR. Such experiments show that the nature of the cation has no influence on the anion–protein contacts, still the nature of the anion modulates the cation–protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation–anion pair and cation–protein).

Antifungals on paper conservation: An overview , Sequeira, Sílvia, Cabrita Eurico J., and Macedo Filomena M. , International Biodeterioration & Biodegradation, Volume 74, p.67-84, (2012) Abstract

Since its invention, paper has become one of the main carriers of our cultural, scientific, political, economic and historical information. Given the importance of this material, its preservation is a matter of great interest. Paper can be deteriorated due to physical, chemical and biological agents. Within microorganisms, fungi are the major paper biodeteriogens. Throughout history, several methods have been used to prevent and stop fungal deterioration on paper based materials. In this work we present a review of the main chemical and physical methods used to avoid fungal paper biodeterioration until nowadays and also of some new approaches tested recently. The advantages and disadvantages of these methods are discussed as well as their health effects. Studies regarding antifungal compositions, methods of application, performance and effects on the treated materials are also presented with the aim of providing a clear set of conclusions on the topic. (C) 2012 Elsevier Ltd. All rights reserved.

Deacidification of paper using dispersions of Ca(OH)(2) nanoparticles in isopropanol. Study of efficiency, Sequeira, S., Casanova C., and Cabrita E. J. , Journal of Cultural Heritage, OCT-DEC 2006, Volume 7, Number 4, p.264-272, (2006) Abstract
n/a
Characterization of reactive intermediates by diffusion-ordered NMR spectroscopy: A snapshot of the reaction of (CO2)-C-13 with [Cp2Zr(Cl)H], Schlorer, NE, Cabrita E. J., and Berger S. , Angewandte Chemie-International Edition, 2002, Volume 41, Number 1, p.107-109, (2002) Abstract
n/a
Flexible molecules with defined shape. X. Synthesis and conformational study of 1,5-diaza-cis-decalin, Santos, AGD, Klute W., Torode J., Bohm V. P. W., Cabrita E., Runsink J., and Hoffmann RW , New Journal of Chemistry, SEP 1998, Volume 22, Number 9, p.993-997, (1998) Abstract
n/a
R
Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods, Rodrigues, J. E. A., Erny G. L., Barros A. S., Esteves V. I., Brandao T., Ferreira A. A., Cabrita E., and Gil A. M. , Analytica Chimica Acta, AUG 3 2010, Volume 674, Number 2, p.166-175, (2010) Abstract
n/a
Inhibition of LOX by flavonoids: a structure-activity relationship study., Ribeiro, D., Freitas M., Tomé SM, Silva AM, Porto G., Cabrita E. J., Marques M. M., and Fernandes E. , European Journal of Medicinal Chemistry, Volume 72, p.137-145, (2014) AbstractWebsite

The lipoxygenase (LOX) products have been identified as mediators of a series of inflammatory diseases, namely rheumatoid arthritis, inflammatory bowel disease, psoriasis, allergic rhinitis, atherosclerosis and certain types of cancer. Hence, LOX inhibitors are of interest for the modulation of these phenomena and resolution of the inflammatory processes. During LOX activity, peroxyl radical complexes are part of the reaction and may function as sources of free radicals. Thus antioxidants, such as flavonoids, capable of inhibiting lipid peroxidation and scavenging free radicals, may act as LOX inhibitors. The aim of this work was to assess the structure–activity relationship among a series of flavonoids concerning 5-LOX inhibition, through a systematic study of the inhibition of the formation of LTB4 in human neutrophils. The type of inhibition of the flavonoids was further studied using soybean LOX, type I, and Saturation Transfer Difference 1H NMR (STD-1H NMR) was used to characterize the binding epitopes of the compounds to LOX-1. The obtained results reinforce flavonoids as effective inhibitors of LTB4 production in human neutrophils. It was also possible to establish a structure/activity relationship for the inhibitory activity and the type of inhibition.

A new lupene triterpenetriol and anticholinesterase activity of Salvia sclareoides, Rauter, Amelia P., Branco Isabel, Lopes Rui G., Justino Jorge, Silva Filipa V. M., Noronha Joao P., Cabrita Eurico J., Brouard Ignacio, and Bermejo Jaime , Fitoterapia, DEC 2007, Volume 78, Number 7-8, p.474-481, (2007) Abstract
n/a
Q
Platinated DNA Affects Zinc Finger Conformation. The Interaction of a Platinated Single-Stranded Oligonucleotide and the C-terminal Zinc Finger of the Nucleocapsid Protein HIVNCp7, Quintal, Susana Maria, Viegas Aldino, Erhardt Stefan, Cabrita Eurico J., and Farrell Nicholas P. , Biochemistry, Volume 51, p.1752-1761, (2012) AbstractWebsite

This paper describes for the first time the intimate molecular details of the association between a platinated oligonucleotide and a zinc-finger peptide. Site-specific platination of the guanine in a ss hexanucleotide gave {[Pt(dien)d(5’-TACGCC-3’)], Pt(dien)(6-mer)}, II, characterized by mass spectrometry and 1H-NMR spectroscopy. The work extends the study of platinum-nucleobase complex-zinc finger interactions using small molecules such as [Pt(dien)(9-EtGua)]2+, I . The structure of the (34-52) C-terminal finger of the HIV nucleocapsid protein HIVNCp7 (ZF1) was characterized by 1H-NMR spectroscopy and compared with that of the N-terminal single finger and the 2-finger “intact” NCp7. Interaction of II with ZF1 results in significant changes in comparison to the “free” uncomplexed hexanucleotide – the major shifts occur for Trp37 resonances are broadened and shifted upfield and other major shifts are for Gln45 (H21, H3, Q), Met46 (NH, H2), Lys47 (NH, Q) and Glu50 (H2, H3). The Zn-Cys/His chemical shifts show only marginal deviations. The solution structure of ZF1, the 6-mer/ZF1 and II/ZF1 adducts were calculated from the NOESY-derived distance constraints. The DNA position in II/ZF1 is completely different than in the absence of platinum. Major differences are the appearance of new Met46-Cyt6H5 and Trp37-Cyt5H5 contacts but severe weakening of the Trp37-Gua4 contact, attributed to the steric effects caused by Gua4 platination, accompanied by a change in the position of the aromatic ring. The results demonstrate the feasibility of targetting specific ZF motifs with DNA-tethered coordination compounds, such as Pt compounds and Co-macrocycles – with implications for drug targetting and indeed the intimate mechansims of DNA repair of platinated DNA.

P
NMR Solution Structure and SRP54M predicted interaction of the N-Terminal sequence (1-30) of the ovine Doppel protein, Pimenta, Jorge, Viegas Aldino, Sardinha João, Martins Ivo C., Cabrita Eurico J., Fontes Carlos M. G. A., Prates Jose A. M., and Pereira Rosa M. L. N. , Peptides, Volume 49, p.32-40, (2013) AbstractWebsite

Prion protein (PrPC) biosynthesis involves a multi-step process that includes translation and post-translational modifications. While PrP has been widely investigated, for the homolog Doppel (Dpl), limited knowledge is available. In this study, we focused on a vital step of eukaryotic protein biosynthesis: targeting by the signal recognition particle (SRP). Taking the ovine Dpl (OvDpl(1-30)) peptide as a template, we studied its behavior in two different hydrophobic environments using CD and NMR spectroscopy. In both trifluoroethanol (TFE) and dihexanoyl-sn-glycero-3-phosphatidylcholine (DHPC), the OvDpl(1-30) peptide revealed to fold in an alpha-helical conformation with a well-defined central region extending from residue Cys8 until Ser22. The NMR structure was subsequently included in a computational docking complex with the conserved M-domain of SRP54 protein (SRP54M), and further compared with the N-terminal structures of mouse Dpl and bovine PrPC proteins. This allowed the determination of (i) common predicted N-terminal/SRP54M polar contacts (Asp331, Gln335, Glu365 and Lys432) and (ii) different N–C orientations between prion and Dpl peptides at the SRP54M hydrophobic groove, that are in agreement with each peptide electrostatic potential. Together, these findings provide new insights into the biosynthesis of prion-like proteins. Besides they also show the role of protein conformational switches in signalization toward the endoplasmic membrane, a key event of major significance in the cell cycle. They are thus of general applicability to the study of the biological function of prion-like as well as other proteins.

The Prion-like Protein Doppel Enhances Ovine Spermatozoa Fertilizing Ability, Pimenta, J., Dias FMV, Marques C. C., Baptista M. C., Vasques M. I., Horta A. E. M., Barbas J. P., Soares R., Mesquita P., Cabrita E., Fontes CMGA, Prates J. A., and Pereira R. M. , Reproduction in Domestic Animals, Volume 47, Issue 2, p.196-202, (2012) Abstract

The function of prion-like protein Doppel was suggested to be related to male fertility. In this study, the importance of ovine Doppel polypeptide on spermatozoa capacitation and fertilization was evaluated. After refolding, recombinant Doppel (rDpl) was supplemented with different concentrations (40, 80 or 190 ng/ml) to ovine spermatozoa during the capacitation process. In experiment 1, post-thawed ovine spermatozoa were incubated with different concentrations of rDpl during 1 h for swim-up, and changes in sperm motility, concentration, vigour, viability and capacitation were monitored (10 replicates). In experiment 2, the fertilization ability of post-swim-up spermatozoa incubated as above was tested through heterologous fertilization of bovine in vitro matured oocytes (n = 423, three replicates). Regardless of dosage, rDpl improved (p = 0.03) spermatozoa viability. Sperm individual motility and vigour were the highest (p = 0.04) for the group receiving 190 ng/ml rDpl. Sperm supplemented with the highest doses of rDpl achieved higher (p = 0.02) fertilization rates (56.0 +/- 3.0%) than control (39.1 +/- 2.2%) and 40 ng/ml rDpl (39.8 +/- 2.7%). Preliminary data suggest that Doppel protein may enhance in vitro spermatozoa fertilizing ability.

O
Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes., Otelo-Cardoso, AR, Schwuchow V., Rodrigues D., Cabrita E. J., Leimkühler S., Romão MJ, and Santos-Silva T. , PLoS One, Volume 9, p.e87295 , (2014) AbstractWebsite

Molybdenum and tungsten enzymes require specific chaperones for folding and cofactor insertion. PaoD is the chaperone of the periplasmic aldehyde oxidoreductase PaoABC. It is the last gene in the paoABCD operon in Escherichia coli and its presence is crucial for obtaining mature enzyme. PaoD is an unstable, 35 kDa, protein. Our biochemical studies showed that it is a dimer in solution with a tendency to form large aggregates, especially after freezing/thawing cycles. In order to improve stability, PaoD was thawed in the presence of two ionic liquids [C4mim]Cl and [C2OHmim]PF6 and no protein precipitation was observed. This allowed protein concentration and crystallization using polyethylene glycol or ammonium sulfate as precipitating agents. Saturation transfer difference – nuclear magnetic resonance (STD-NMR) experiments have also been performed in order to investigate the effect of the ionic liquids in the stabilization process, showing a clear interaction between the acidic ring protons of the cation and, most likely, negatively charged residues at the protein surface. DLS assays also show a reduction of the overall size of the protein aggregates in presence of ionic liquids. Furthermore, cofactor binding studies on PaoD showed that the protein is able to discriminate between molybdenum and tungsten bound to the molybdenum cofactor, since only a Mo-MPT form of the cofactor remained bound to PaoD.

Synthesis of a new pyranoanthocyanin dimer linked through a methyl-methine bridge, Oliveira, Joana, Mateus Nuno, Rodriguez-borges Jose E., Cabrita Eurico J., Silva Artur M. S., and de Freitas Victor , Tetrahedron Letters, JUN 8 2011, Volume 52, Number 23, p.2957-2960, (2011) Abstract
n/a
M
Studies on the preparation of 4-ethoxyalkyliden and 4-aminoalkyliden-5(4H)-oxazolones, Matos, MRPN, Gois PMP, Mata MLEN, Cabrita E. J., and Afonso CAM , Synthetic Communications, 2003, Volume 33, Number 8, p.1285-1299, (2003) Abstract
n/a