Publications

Export 15 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Thymus mastichina: Chemical Constituents and their Anti-cancer Activity , Gordo, Joana, Máximo Patrícia, Cabrita Eurico, Lourenço Ana, Oliva Abel, Almeida Joana, Filipe Mariana, Cruz Pedro, Barcia Rita, Santos Miguel, and Cruz Helder , Natural Product Communications, Volume 7, Issue 11, p.1491-1494, (2012)
Boron trifluoride catalyzed polymerisation of 2-substituted-2-oxazolines in supercritical carbon dioxide, de Macedo, Carlota Veiga, da Silva Mara Soares, Casimiro Teresa, Cabrita Eurico J., and Aguiar-Ricardo Ana , Green Chemistry, 2007, Volume 9, Number 9, p.948-953, (2007) Abstract
n/a
Delineating binding modes of Gal/GalNAc and structural elements of the molecular recognition of tumor-associated mucin glycopeptides by the human macrophage galactose-type lectin, Marcelo, Filipa, Garcia-Martin Fayna, Matsushita Takahiko, Sardinha João, Coelho Helena, Oude-Vrielink Anneloes, Koller Christiane, André Sabine, Cabrita Eurico J., Gabius Hans-Joachim, Nishimura Shin-Ichiro, Jiménez-Barbero Jesús, and Cañada Javier F. , Chem. Eur. J., Volume in press, (2014) Abstract

The human macrophage galactose-type lectin (hMGL) is a key physiological receptor for the carcinoma-associated Tn antigen (GalNAc-α-1-O-Ser/Thr) in mucins. We herein report NMR- and modeling-based data on the molecular recognition features of synthetic Tn-bearing glycopeptides by hMGL. Cognate epitopes on the sugar and matching key amino acids involved in the interaction have been identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non-glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for hMGL binding, as is Ca2+. The dissociation constants (Kd) have been estimated by STD titrations and/or STD competition experiments and show that Gal was a poor binder for hMGL, with a Kd in the mM range, while GalNAc and MUC1 Tn-glycopetides reached Kd values in the lower μM range. STD-based results suggested a distinct interacting epitope for the two monosaccharides. NMR data have been complemented with molecular dynamics simulations and Corcema- ST to establish a 3D view on the molecular recognition process between Gal, GalNAc and the Tn-presenting glycopeptides and hMGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH-π contacts involving exclusively the NHAc moiety.

Development of molecularly imprinted co-polymeric devices for controlled delivery of flufenamic acid using supercritical fluid technology, da Silva, Mara Soares, Nobrega Franklin L., Aguiar-Ricardo Ana, Cabrita Eurico J., and Casimiro Teresa , Journal of Supercritical Fluids, AUG 2011, Volume 58, Number 1, p.150-157, (2011) Abstract
n/a
Development of PMMA membranes functionalized with hydroxypropyl-beta-cyclodextrins for controlled drug delivery using a supercritical CO(2)-assisted technology, Temtem, M., Pompeu D., Jaraquemada G., Cabrita E. J., Casimiro T., and Aguiar-Ricardo A. , International Journal of Pharmaceutics, JUL 6 2009, Volume 376, Number 1-2, p.110-115, (2009) Abstract
n/a
High-pressure NMR characterization of triacetyl-beta-cyclodextrin in supercritical carbon dioxide, Ivanova, G. I., Vao E. R., Temtem M., Aguiar-Ricardo A., Casimiro T., and Cabrita E. J. , Magnetic Resonance in Chemistry, FEB 2009, Volume 47, Number 2, p.133-141, (2009) Abstract
n/a
Imide-amide rearrangement of cyclic phosphorimidates: A mechanistic study, Cabrita, E. J., Afonso CAM, and Santos AGD , Chemistry-a European Journal, APR 1 2001, Volume 7, Number 7, p.1455-1467, (2001) Abstract
n/a
Ion Jelly Conductive Properties Using Dicyanamide-Based Ionic Liquids, Carvalho, T., Augusto V., Rocha A., Lourenco N. M. T., Correia N. T., Barreiros S., Vidinha P., Cabrita E. J., and Dionisio M. , Journal of Physical Chemistry B, Volume 118, Issue 31, p.9445-59, (2014) AbstractWebsite

The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D+) and anions (D–) were extracted. D+ values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D+ varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, 10–2 S·cm–1 and 10–10 m2·s–1. For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari–Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.

Molecular interactions and CO2-philicity in supercritical CO2. A high-pressure NMR and molecular modeling study of a perfluorinated polymer in scCO(2), Temtem, Marcio, Casimiro Teresa, Santos Gil A., Macedo Anjos L., Cabrita Eurico J., and Aguiar-Ricardo Ana , Journal of Physical Chemistry B, FEB 15 2007, Volume 111, Number 6, p.1318-1326, (2007) Abstract
n/a
Novel acid catalysed 1,4-addition-type ring-opening polymerisation of cyclic phosphorimidates, Cabrita, E. J., Candeias SX, Ramos A. M., Afonso CAM, and Santos AG , Tetrahedron Letters, JAN 1 1999, Volume 40, Number 1, p.137-140, (1999) Abstract
n/a
The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR, Coelho, Helena, Matsushita T., Artigas G., Hinou H., Cañada FJ, Lo-Man R., Leclerc C., Cabrita E. J., Jiménez-Barbero J., Nishimura S. - I., Garcia-Martín F., and Marcelo F. , J. Am. Chem. Soc., Volume 137, p.12438-12441, (2015)
Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous sílica, Aquino, Aline S., Bernard FL, Borges JV, Mafra Luis, Dalla Vecchia Felipe, Vieira MO, Ligabue R., Chaban VV, Cabrita E. J., and Einloft S. , RSC Advances, Volume 5, p.64220-64227, (2015)
Structural, Physical, and Chemical Modifications Induced by Microwave Heating on Native Agar-like Galactans, Sousa, Ana M. M., Morais Simone, Abreu Maria H., Pereira Rui, Sousa-Pinto Isabel, Cabrita Eurico J., Delerue-Matos Cristina, and Gonca̧lves Maria Pilar , Jornal of Agricultural and Food Chemistry , Volume 60, p.4977-4985, (2012) Abstract

Native agars from Gracilaria vermiculophylla produced in sustainable aquaculture systems (IMTA) were extracted under conventional (TWE) and microwave (MAE) heating. The optimal extracts from both processes were compared in terms of their properties. The agars’ structure was further investigated through Fourier transform infrared and NMR spectroscopy. Both samples showed a regular structure with an identical backbone, β-D-galactose (G) and 3,6-anhydro-α-L-galactose (LA) units; a considerable degree of methylation was found at C6 of the G units and, to a lesser extent, at C2 of the LA residues. The methylation degree in the G units was lower for MAEopt agar; the sulfate content was also reduced. MAE led to higher agar recoveries with drastic extraction time and solvent volume reductions. Two times lower values of [η] and Mv obtained for the MAEopt sample indicate substantial depolymerization of the polysaccharide backbone; this was reflected in its gelling properties; yet it was clearly appropriate for commercial application in soft-texture food products.

Studies on the preparation of 4-ethoxyalkyliden and 4-aminoalkyliden-5(4H)-oxazolones, Matos, MRPN, Gois PMP, Mata MLEN, Cabrita E. J., and Afonso CAM , Synthetic Communications, 2003, Volume 33, Number 8, p.1285-1299, (2003) Abstract
n/a
Understanding the Ion Jelly Conductivity Mechanism, Carvalho, T., Augusto V., Brás A. R., Lourenço N. M. T., Afonso CAM, Barreiros S., Correia N. T., Vidinha P., Cabrita E. J., Dionísio M., and Roling B. , Journal of Physical Chemistry B, Volume 116, p.2664-2676, (2012) Abstract

The properties of the light flexible device, ion jelly, which combines gelatin with an ionic liquid (IL) were recently reported being promising to develop safe and highly conductive electrolytes. This article aims for the understanding of the ion jelly conductive mechanism using dielectric relaxation spectroscopy (DRS) in the frequency range 10−1−106 Hz; the study was complemented with differential scanning calorimetry (DSC) and pulse field gradient nuclear magnetic resonance (PFG NMR) spectroscopy. The room temperature ionic liquid 1-butyl-3-methylimmidazolium dicyanamide (BMIMDCA) used as received (1.9% w/w water content) and with 6.6% (w/w) of water content and two ion jellies with two different ratios BMIMDCA/gelatin/water % (w/w), IJ1 (41.1/46.7/12.2) and IJ3 (67.8/25.6/6.6), have been characterized. A glass transition was detected by DSC for all materials allowing for classifying them as glass formers. For the ionic liquid, it was observed that the glass transition temperature decreases with the increase of water content. While in subsequent calorimetric runs crystallization was observed for BMIMDCA with negligible water content, no crystallization was detected for any of the ion jelly materials upon themal cycling. To the dielectric spectra of all tested materials, both dipolar relaxation and conductivity contribute; at the lowest frequencies, electrode and interfacial polarization highly dominate. Conductivity, which manifests much more intensity relative to dipolar reorientations, strongly evidences subdiffusive ion dynamics at high frequencies. From dielectric measures, transport properties as mobility and diffusion coefficients were extracted. Data treatment was carried out in order to deconvolute the average diffusion coefficients estimated from dielectric data in its individual contributions of cations (D+) and anions (D−). The D+ values thus obtained for IJ3, the ion jelly with the highest IL/gelatin ratio, cover a large temperature range up to room temperature and revealed excellent agreement with direct measurements from PFG NMR, obeying to the same VFT equation. For BMIMDCA6.6%water, which has the same water amount as IJ3, the diffusion coefficients were only estimated from DRS measurements over a limited temperature range; however, a single VFT equation describes both DRS and PFG NMR data. Moreover, it was found that the diffusion coefficients and mobility are similar for the ionic liquid and IJ3, which points to a role of both water and gelatin weakening the contact ion pair, facilitating the translational motion of ions and promoting its dissociation; nevertheless, it is conceivable that a critical composition of gelatin that leads to those properties. The VFT temperature dependence observed for the conductivity was found to be determined by a similar dependence of the mobility. Both conductivity and segmental motion revealed to be correlated as inferred by the relatively low values of the decoupling indexes. The obtained results show that ion jelly could be in fact a very promising material to design novel electrolytes for different electrochemical devices, having a performance close to the IL but presenting an additional stability regarding electrical measurements and resistance against crystallization relative to the bulk ionic liquid.