Publications

Export 9 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Malheiro, António, and José Francisco Reis. "Identification of proofs via syzygies." Philosophical Transactions of the Royal Society A. 377.2140 (2019). AbstractWebsite

In 1900, Hilbert gave a lecture at the International Congress of Mathematicians in Paris, for which he prepared 23 problems that mathematicians should solve during the twentieth century. It was found that there was a note on a 24th Problem focusing on the problem of simplicity of proofs. One of the lines of research that was generated from this problem was the identification of proofs. In this article, we present a possible method for exploring the identification of proofs based on the membership problem original from the theory of polynomial rings. To show this, we start by giving a complete worked-out example of a membership problem, that is, the problem of checking if a given polynomial belongs to an ideal generated by finitely many polynomials. This problem can be solved by considering Gröbner bases and the corresponding reductions. Each reduction is a simplification of the polynomial and it corresponds to a rewriting step. In proving that a polynomial is a member of an ideal, a rewriting process is used, and many different such processes can be considered. To better illustrate this, we consider a graph where each rewriting step corresponds to an edge, and thus a path corresponds to a rewriting process. In this paper, we consider the identification of paths, within the context of the membership problem, to propose a criterion of identification of proofs.
This article is part of the theme issue ‘The notion of ‘simple proof’ - Hilbert’s 24th problem’.

Malheiro, A. "Complete rewriting systems for codified submonoids." Int. J. Algebra Comput.. 15 (2005): 207-216. AbstractWebsite

Given a complete rewriting system R on X and a subset X0 of X+ satisfying certain conditions, we present a complete rewriting system for the submonoid of M(X;R) generated by X0. The obtained result will be applied to the group of units of a monoid satisfying H1 = D1. On the other hand we prove that all maximal subgroups of a monoid defined by a special rewriting system are isomorphic.

Malheiro, A. "On Finite Semigroup Cross-Sections and Complete Rewriting Systems." International Conference on Theoretical and Mathematical Foundations of Computer Science, TMFCS-08, Orlando, Florida, USA, July 7-10, 2008. 2008. 59-63. Abstract

In this paper we obtain a [finite] complete rewriting system defining a semigroup/monoid S, from a given finite
right cross-section of a subsemigroup/submonoid defined by a [finite] complete presentation. In the semigroup case the subsemigroup must have a right identity element which must also be part of the cross-section. In the monoid case the submonoid and the cross-section must include the identity of the semigroup. The result on semigroups allow us to show that if G is a group defined by a [finite] complete rewriting system then the completely simple semigroup M[G; I, J; P] is also defined by a [finite] complete rewriting system.

Malheiro, A. Presentations and complete rewriting systems for semigroups. (in Portuguese). Eds. G. M. S. Gomes. Faculty of Sciences of the University of Lisbon. Lisbon: University of Lisbon, 2001.
Malheiro, A. On trivializers and subsemigroups.. Semigroups and formal languages. Proceedings of the international conference in honour of the 65th birthday of Donald B. McAlister. Lisboa, Portugal, July 12–15, 2005.: Hackensack, NJ: World Scientific, 2007. Abstract

The aim of this paper is to develop the calculus of trivializers for subsemigroups. Given a finite presentation defining a semigroup S and a trivializer of the Squier complex of , we obtain an infinite trivializer of the Squier complex of a finite presentation defining a subsemigroup of S. Also, we give a method to find finite trivializers for special subsemigroups and hence to show that those subsemigroups have finite derivation type (FDT). An application of this method is given: we prove that if is a band of monoids having FDT, then so does Sα, for any α ∈Y.

Malheiro, A. "Finite derivation type for semilattices of semigroups." Semigroup Forum. 84 (2012): 515-526. AbstractWebsite

In this paper we investigate how the combinatorial property finite derivation type (FDT) is preserved in a semilattice of semigroups. We prove that if S=S[Y,S_α] is a semilattice of semigroups such that Y is finite and each S_α (α∈Y) has FDT, then S has FDT. As a consequence we can show that a strong semilattice of semigroups S[Y,S_α,λ_{α,β}] has FDT if and only if Y is finite and every semigroup S α (α∈Y) has FDT.

Malheiro, A. Finiteness conditions of semigroup presentations.. Eds. G. M. S. Gomes. University of Lisbon. Lisbon: University of Lisbon, 2006.
Malheiro, A. "Finite derivation type for Rees matrix semigroups." Theor. Comput. Sci.. 355 (2006): 274-290. AbstractWebsite

This paper introduces the topological finiteness condition finite derivation type (FDT) on the class of semigroups. This notion is naturally extended from the monoid case. With this new concept we are able to prove that if a Rees matrix semigroup M[S;I,J;P] has FDT then the semigroup S also has FDT. Given a monoid S and a finitely presented Rees matrix semigroup M[S;I,J;P] we prove that if the ideal of S generated by the entries of P has FDT, then so does M[S;I,J;P]. In particular, we show that, for a finitely presented completely simple semigroup M, the Rees matrix semigroup M=M[S;I,J;P] has FDT if and only if the group S has FDT.

Malheiro, A. "Finite derivation type for large ideals." Semigroup Forum. 78 (2009): 450-485. AbstractWebsite

n this paper we give a partial answer to the following question: does a large subsemigroup of a semigroup S with the finite combinatorial property finite derivation type (FDT) also have the same property? A positive answer is given for large ideals. As a consequence of this statement we prove that, given a finitely presented Rees matrix semigroup M[S;I,J;P], the semigroup S has FDT if and only if so does M[S;I,J;P].